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Crop diseases seriously affect the quality, yield, and food security of crops. redBesides,

traditional manual monitoring methods can no longer meet intelligent agriculture’s

efficiency and accuracy requirements. Recently, deep learning methods have been

rapidly developed in computer vision. To cope with these issues, we propose a dual-

branch collaborative learning network for crop disease identification, called DBCLNet.

Concretely, we propose a dual-branch collaborative module using convolutional

kernels of different scales to extract global and local features of images, which can

effectively utilize both global and local features. Meanwhile, we embed a channel

attention mechanism in each branch module to refine the global and local features.

Whereafter, we cascade multiple dual-branch collaborative modules to design a

feature cascade module, which further learns features at more abstract levels via

the multi-layer cascade design strategy. Extensive experiments on the Plant Village

dataset demonstrated the best classification performance of our DBCLNet method

compared to the state-of-the-art methods for the identification of 38 categories of

crop diseases. Besides, the Accuracy, Precision, Recall, and F-score of our DBCLNet

for the identification of 38 categories of crop diseases are 99.89%, 99.97%, 99.67%,

and 99.79%, respectively. 811

KEYWORDS

crop disease identification, two-branch collaborative, channel attention, feature cascade,
deep learning
1 Introduction

Crop diseases have long been one of the most critical factors affecting the stable

development of agriculture (Kumari et al., 2019; Chen et al., 2021a; Chamkhi et al., 2022).

During the cultivation and growth of crops, if crop diseases are not detected and dealt with

promptly, it will miss the best time to control the disease so that the crop diseases cannot be

effectively and timely controlled and thus affect the production of crops (Mohanty et al., 2016;

Jiang et al., 2022). The annual reduction in food production caused by crop diseases in the

world accounts for about one-tenth of the total annual food production. In China, the yearly
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infestation of crop pests and diseases of different degrees is about 7

billion mu, which directly or indirectly causes the loss of about 85

billion pounds of grain and other economic crops. Meanwhile, the

issue is rising yearly, which seriously hinders the stable development

of agriculture (Yakhin et al., 2017; Kundu et al., 2021; Darakeh et al.,

2022). Countries and regions will benefit from improved ability to

predict, detect, negotiate, and effectively address emerging crop

disease outbreaks (Carvajal-Yepes et al., 2019; Pandey et al., 2020;

Woźniak et al., 2022). As a result, it is vital to design an accurate,

efficient, and nondestructive ´ method for crop disease identification

for effective disease prevention and precise drug application, which

can also recover some economic losses to a large extent.

To cope with the aforementioned issues, many methods have

been presented for crop disease identification (Asad, 2022; Fuster-

Barceló et al., 2022). Specifically, these existing methods can be

categorized as ´ traditional, machine learning, and deep learning

methods (Li et al., 2021; Cong et al., 2022a). In the early stages,

traditional methods used hand-crafted features for crop disease

identification (Dhaka et al., 2021; Yue et al., 2021). Machine

learning methods utilize hand-crafted features or semi-automated

features to identify crop diseases. Recently, deep learning methods

rely on deep network structures to extract features automatically for

crop disease identification (Albattah et al., 2022; Kendler et al., 2022).

Although most methods based on convolutional neural networks

(CNN) have shown superior performance, crop disease images are

faced with a wide variety of diseases and irregular distribution of

disease spots, so deep learning methods also face challenges.

Currently, most CNN-based methods use small-scale

convolutional kernels, and the specialized design utilizes a large

number of small-scale convolutional kernels instead of large-scale

convolutional kernels to reduce the Flops of the network model to

some extent (Viedma et al., 2022; Zhang et al., 2022). Unfortunately,

the specialized design may lose some coarse-grained features. In

contrast, large convolutional kernels are easy to ignore fine-grained

features (Melgar-Garcıá et al., 2022; Cong et al., 2022b). Figure 1

presents some representative examples of different crop disease

images, which can clearly observe that these crop disease images

face problems such as variable disease types, irregular distribution of

disease spots, and varying sizes of disease areas (Cohen et al., 2022).

Recently, the advantages of two-branch networks using different

learning strategies to integrate different feature information have

been widely used in computer vision (Zhang et al., 2021; Xie et al.,

2022; Zheng et al., 2022). In contrast, cooperative learning is applied
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to tracking learning of remote sensing scenes by taking advantage of

the synergy and complementarity between different modules (Li et al.,

2022b). To sum up, CNN-based methods also face severe challenges

in crop disease identification. To take full advantage of coarse-

grained, fine-grained, and more abstract level features, we take

advantage of the synergistic learning between different modules and

the learning strategies of different branches to fully exploit the feature

extraction capability of the deep network, we propose a dual-branch

collaborative learning network for crop disease identification, called

DBCLNet. The network mainly explores the positive effects of

collaborative learning strategy, dual-branch module, and feature

cascade module on the capacity of crop disease identification. The

significant contributions of our proposed DBCLNet model are

summarized as follows:
• We propose a dual-branch collaborative module (DBCM),

which employs convolutional kernels of different scales to

design a dual-branch learning strategy to extract coarse-

grained and fine-grained features from crop disease images.

Meanwhile, we integrate dual-branch features by drawing on

collaborative learning strategies to make our module take

advantage of both coarse-grained and fine-grained features.

• We propose a feature cascaded module (FCM) that

implements a stacking cascade process by stacking multiple

dual-branch collaborative modules, which uses cascading

features to enable better utilization of features at a more

abstract level and thus improve the discriminatory

performance of the DBCLNet model.

• We introduce a focal loss function to address the category

imbalance of the samples. Specifically, this loss function

decreases the weights of the loss function for categories

with a large number of samples. Conversely, the weight of

the loss function is increased for the category with a small

number of samples. In brief, this strategy effectively reduces

the misclassification problem for categories with small

samples.
The rest of this paper is organized in detail below. Section 2

provides an overview of work related to crop disease identification

methods. Section 3 presents step-by-step details of our proposed

DBCLNet model. In Section 4, we present the experimental results

and analysis. Section 5 further summarizes the research work and the

outlook for future work.
FIGURE 1

Examples of different crop disease images. These crop disease images are from the PlantVillage data (Hughes et al., 2015), and they face issues of
complex lesion types, varying lesion area sizes, and uneven samples.
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2 Related works

Currently, various identification methods are gradually applied to

crop disease image identification (Pantazi et al., 2019; Zeng and Li,

2020). We categorize these methods into traditional methods,

machine learning methods, and deep learning methods (Flores

et al., 2021; Khalifani et al., 2022). In the following, we provide an

overview and summary of these research works.
2.1 Traditional methods

Utilize digital image processing technology to identify crop

disease images via preprocessing, hand-made features, feature

extraction, and classification (Peña-Barragán et al., 2011). For

example, Mondal et al. (Mondal et al., 2017) proposed an entropy-

based binarization and naive Bayes classifier method for disease grade

prediction of Okra and bitter gourd disease images, which firstly

extracted 43 leaf morphological features from these two crops, and

then extracted 10 and 9 critical features from the leaf morphological

features, respectively. Finally, the predicted results of disease grade

were 95% and 82.67%, respectively. However, the accuracy of the

method was unsatisfactory due to the limited extraction of valuable

features. Huang et al. (Huang et al., 2018) based on the study of

powdery mildew and stripe rust faced by winter wheat, they proposed

a method to identify wheat lesion images based on Fisher linear

discriminant analysis and support vector machine. The technique

uses FLDA for feature dimensionality reduction based on selected

spectral bands, vegetation indices, and wavelet features, and the

classification accuracy of SVM for their identification is 78%. To

sum up, the discrimination performance of traditional methods is

unsatisfactory because the valuable feature information extracted

is limited.
2.2 Machine learning methods

Introduce shallow network structures and optimization

strategies to semi automatically extract features based on

traditional methods, which saves the cost of manually crafting

features in the identification process (Feng et al., 2020; Selvaraj

et al., 2020). Ma et al. (Ma et al., 2019) designed a crop disease and

pest discrimination method based on dual spatiotemporal

LandSAT-8 satellite images. It used a synthetic minority

oversampling technique to resample the imbalanced training

dataset, and the method could achieve 80% crop disease

identification accuracy. Chaudhary et al. (Chaudhary et al., 2020).

proposed a method based on Ensemble Particle Swarm

Optimization, which achieved 96% classification accuracy after

10-fold cross-validation in a recognition classification task for 12

vegetables. Zhang et al. (Zhang et al., 2020b) segmented diseased leaf

images using the K-mean clustering algorithm, which extracts the

feature vectors of the difference histogram from each segmented

defect image based on the intensity values of adjacent pixels and

achieves a parity accuracy of 94.4% for the identification of five

diseases of cucumber. Li et al. (Li et al., 2020b) proposed shallow

CNN with kernel support vector machine and shallow CNN with
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random forest to discriminate plant diseases, respectively. They

have fewer training parameters and higher classification accuracy

than traditional CNN. Abdulridha et al. (Abdulridha et al., 2018)

significantly improved the detection accuracy of Laurel wilt disease

by introducing a multilayer perceptron based on a tree of decisions,

which also detected trees infected with Laurel wilt disease at an early

stage. Zhang et al. (Weidong et al., 2018) significantly improved the

performance of the discriminative model by embedding stacked

sparse self-coding into the limitological machine. Khan et al. (Khan

et al., 2018) proposed a segmentation method based on correlation

coefficients, which first extracted features from selected disease-

infected regions using a two-degree pre-training model.

Subsequently, they employed a genetic algorithm to choose

valuable features. Finally, they used a support vector machine to

test the classification accuracy of Lant Village and CASC-IFW up to

98.6%. In general, the machine learning methods are limited by the

shallow network, so they capture insufficient feature information.

Therefore, the machine learning methods often need to use some

feature extraction methods in crop disease identification.
2.3 Deep learning methods

Rely on a deep network structure to automatically extract

valuable features that drive a nonlinear mapping relationship in

crop disease image identification (Zhuang et al., 2022; Li et al.,

2022a). For example, Chen et al. (Chen et al., 2020) improved the

traditional VGGNet by adding a convolutional layer, swish

activation function, and BN layer. In contrast, they were

migrating the initialization weights from the pre-trained network

on ImageNet, which achieved an average accuracy of 92% on the

plant village dataset. Ferentinos et al. (Ferentinos, 2018) designed a

new CNN model for crop disease image identification, which

experimentally achieved 99.53% classification accuracy on the

plant village dataset. Coulibaly et al. (Coulibaly et al., 2019)

proposed using transfer learning to solve the problem of CNN’s

difficulty in discriminating small samples, and the identification

accuracy of this method was 95.00% in Pearl Millet Mildew. Zhang

et al. (Zhang et al., 2020a) employed the ranger optimizer to

improve the accuracy of EfficientNet for the identification of four

diseases of cucumber with 97.00%. Barbedo et al. (Barbedo, 2019)

migrated the weights pre-trained on the ImageNet to the

GoogLeNet for the PDDB dataset with discrimination accuracy up

to 88.00%. Cap et al. (Cap et al., 2022) proposed a LeafGAN with an

embedded attention mechanism, which generates disease images

from healthy crop images and uses them as training samples to

identify the five kinds of cucumber disease images with an accuracy

increase of 7.40%. Hu et al. (Cap et al., 2022) proposed a residual

neura l network model wi th mult id imens iona l fea ture

compensation, which could discriminate species, coarse-grained

diseases, and fine-grained diseases with an accuracy of 85.22% by

fusing multidimensional features via a compensation strategy. Hu

et al. (Hu et al., 2020) proposed a residual neural network model

with multidimensional feature compensation, which could

discriminate species, coarse-grained diseases, and fine-grained

diseases with an accuracy of 85.22% by fusing multidimensional

features via a compensation strategy. Chen et al. (Chen et al., 2021b)
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introduced a localization soft attention mechanism based on the

pre-trained MobileNet-V2, which embedded localization strategies

and migration learning for crop disease images with an accuracy of

99.72%. Haque et al. (Haque et al., 2022) improved Inception-v3 for

identifying maize leaf blight, tulip leaf blight, and striped leaf blight,

where the best identification result could reach 95.99%. Nandhini

et al. (Nandhini et al., 2022) proposed a gated recurrent

convolutional neural network to identify crop disease images, in

which CNN catches potential features from images in a sequence.

Meanwhile, RNN is used to learn temporal features between images

in a sequence. Unlike traditional and machine learning methods,

deep learning methods only need to design operations such as

convolution kernels and pools at different scales to automatically

extract contextual information and global and feature information

of the images.
3 Methodology

Our present the overview architecture of DBCLNet in Figure 2.

In the input stage, a given crop disease image is transmitted to

DBCLNet model after pre-processing. Secondly, we input the

preprocessed crop disease images into the Single branch module,

which uses the cooperative learning strategy to extract coarse-

grained and fine-grained features. Thirdly, we use feature cascaded

module to extract more abstract features by stacking and cascading

learning strategies. Finally, the feature information is converted

into feature vectors in the form of the full connection. Meanwhile,

the Softmax function is used to output the classification results in

the form of probability.
Frontiers in Plant Science 04
3.1 Network framework

Figure 2 presents the details of DBCLNet. Our DBCLNet consists of a

single-branch module (SBM), a dual-branch collaborative module

(DBCM), a feature cascaded module (FCM), and a fully connected

module. SBM is designed to extract the basic features of crop disease

images, DBCM is employed to extract coarse-grained and fine-grained

features of crop disease images, FCM is utilized to extract features at the

more abstract level of crop disease images, and FCM is used for the

category probability output of the final classification results. In addition,

Table 1 reports the details of each module in the DCBLNet model.
3.2 Dual-branch collaborative module

Inspired by the feature extraction capacity of convolutional

kernels of different scales (Li et al., 2020a; Lian et al., 2021; Chen

et al., 2022), we design a dual-branch collaborative module (DBCM)

by taking advantage of the collaborative complementarity of

convolutional kernels of different scales for feature extraction. The

module is called the dual-branch cooperative module. It is worth

noting that our designed module includes shallow feature extraction,

deep feature extraction, channel attention, and collaborative learning.

In the following, we present the design details of DBCM step by step.

3.2.1 Shallow feature extraction
CNN is a classic representative of deep neural networks inspired

by biological neural networks (Dong et al., 2022). The network

structure of CNN is different from other deep learning models,

which employ local connections instead of full connections to
FIGURE 2

Given a crop disease image of size 224 × 224 × 3 (height × weight × channel), we first expand the number of channels from 3 to 32 dimensions using a
convolution kernel of 1 × 1 size. Meanwhile, the base features of the image are extracted, and the size of the feature map is compressed after one
single-branch module (SBM). Subsequently, we employ six cascaded DBCMs to form an FCM for coarsegrained and fine-grained feature extraction and
integration. The DBCM uses a cooperative learning strategy to integrate features at different levels, and the FCM further extracts features at more
abstract levels. Additionally, we add a channel attention mechanism to each branch in the DBCM, and we use maximum pooling for the attention
mechanism for branches with smaller convolutional kernels. Similarly, we use average pooling for the branches with larger kernels. Finally, we utilize a
1 × 1 sized convolutional kernel to downscale the number of channels. After maximum global pooling, we flatten the feature matrix into a one-
dimensional vector to obtain the classification result by the Softmax function.
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extract contextual feature information of the images (Kong et al.,

2021). Additionally, CNN utilizes shared weights instead of assigning

weights to each input to reduce the number of parameters. Based on

these advantages, CNN has better generalization performance in the

field of computer vision.

Inspired via weighted feature fusion of CNN (Dong et al., 2022),

we employ thirty-two 1 × 1 convolution kernel to perform feature

image up-dimensional mapping on the input image. Specifically, we

use any of the convolution kernels to convolve the red, green, and blue

channels of the input image and integrate them into one feature map

until the thirty-two feature maps are solved. We mainly utilize

multiple convolution kernels to reconstruct multiple feature maps

so that the feature information of the input image can be used by the

dual-branch collaborative module as much as possible. Concretely,

the initial convolution of the input image Xh,w,c is defined as:

Xf
h,w,n = s (o

i,j,c
(Xh,w,cKi,j,c,n + Biasi,j,c,n)), (1)

where h, w, and c represent the height, width, and channel of the

input image, respectively. Ki,j,c,n denotes the n
th convolution kernel of

the input image in the ith row and jth column of the cth channel, and n

denotes the number of convolution kernels. Biasi,j,c,n denotes the bias

value of the convolution operation, s(·) represents the Swish
Frontiers in Plant Science 05
activation function of the convolution operation, and Xf
h,w,n denotes

the nth feature map of the output. Swish = x · Sigmoid(bx), b
represents a constant or trainable parameter. In addition, the Swish

activation function is upper bound-free and lower bound-free,

smooth, and non-monotonic. Meanwhile, the Swish outperforms

ReLU on deep models. Subsequently, we redefine the integration of

shallow feature information as  Xc
S ∈ Rh,w,c. The shallow feature

information includes both a large amount of valuable feature

information and a large amount of useless feature information. We

use a dual-branch network in the deep feature extraction stage to

extract useful and remove useless features. Our work defines the

shallow feature extraction process as a single-branch module. The

feature information we extract in the initial stage is used as the input

for the deep feature extraction stage.

3.2.2 Deep feature extraction
In depth feature extraction stage, we propose extracting coarse-

grained and fine-grained features using convolutional kernels of

different scales for the input features, in which the coarse-grained

mainly includes thetexture and global feature information of the

images, and the fine-grained feature mainly consists of the detail and

local feature information of the images. Subsequently, we define the

dual-branch convolution process as:
TABLE 1 Details of each module of DCBLNet.

Layers (type) Input Size Output Size Repeat #Parammater

Input_1 3 × 224 × 224 3 × 224 × 224 1 0

Conv_1 3 × 224 × 224 32 × 224 × 224 1 658

SBM_1 32 × 224 × 224 16 × 112 × 112 1 1024

DBCM_1 16 × 112 × 112 24 × 112 × 112 2 11868

DBCM_2 24 × 112 × 112 40 × 56 × 56 3 33114

DBCM_3 40 × 56 × 56 80 × 28 × 28 4 172484

DBCM_4 80 × 28 × 28 112 × 14 × 14 4 385636

DBCM_5 112 × 14 × 14 192 × 14 × 14 3 1438708

DBCM_6 192 × 14 × 14 320 × 7 × 7 2 509234

Conv_2 320 × 7 × 7 1280 × 7 × 7 1 292634

MaxPooling_1 192 × 14 × 14 320 × 7 × 7 1 0

Flatten_1 1280 1280 1 0

Linear_1 1280 38 1 909512
Total Trainable Parameters: 3,754,872
TABLE 2 Error matrix for accuracy verification of of the identification results of crop disease images.

Item Reference information Row total Evaluation metrics

True False

Identification results True TP FN TP+FN ARec = TP/(TP+FN)

False FP TN FP+TN –

Columns total TP+FP FN+TN N –

Evaluation metrics APre = TP/(TP+FP) AAcc = 1 - AR –
AFscore = 2� APre � ARec

APre + ARec
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Xc
c1 = Swish (CNN 3�3(X

c
S) + Bc

1), (2)

Xc
c2 = Swish (CNN 7�7(X

c
S) + Bc

2), (3)

where CNN3×3 and CNN7×7 denote the 3×3 and 7×7 convolution

operation in the upper and lower branches of the deep feature

extraction stage, B1 and B2 represent the bias vales in the upper

and lower branches of the deep feature extraction stage, and Xc
c1 and

Xc
c2 denote the fine-grained and coarse-grained features in the upper

and lower branches of the deep feature extraction stage. Despite the

fact that we can capture the coarse-grained and fine-grained features

of the image better in the step, the network model parameters are

complex and inefficient. To reduce the parameters of the model and
Frontiers in Plant Science 06
improve the efficiency of the network, we introduced a depthwise

convolution operation in the subsequent stage of the initial feature

extraction of the DBCM. Subsequently, we could redefine the features

of the dual-branch as follows:

Xc
d1 = Swish (Depthwise CNN3�3(X

c
c1) + Bc

1), (4)

Xc
d2 = Swish (DepthwiseCNN 3�3(X

c
c2) + Bc

2), (5)

where Xc
c1 and Xc

c2 are the features obtained from Eqs. (??0) and

(3). Xc
d1 and Xc

d2 are the features after depthwise convolution. The

convolution operation can not only reduce the model’s parameters

and improve the model’s efficiency but also capture the local features
TABLE 3 Identification results of different deep learning methods tested on the PlantVillage dataset for 38 crop disease images.

Method AAcc ↑ APrm ↑ ARec ↑ AFscore ↑

AlexNet (Krizhevsky et al., 2017) 0.8261 0.9038 0.8609 0.8789

VGGNet (Simonyan and Zisserman, 2014) 0.9139 0.9332 0.8879 0.8978

GoogLeNet (Szegedy et al., 2015) 0.9284 0.9499 0.8874 0.8949

MobileNet (Howard et al., 2017) 0.9483 0.9633 0.9171 0.9201

ShuffleNet (Zhang et al., 2018) 0.9467 0.9372 0.9532 0.9551

ResNet50 (He et al., 2016) 0.9569 0.9578 0.9560 0.9570

DenseNet1 (Huang et al., 2017) 0.9713 0.9665 0.9749 0.9748

DenseNet2 (Too et al., 2019) 0.9975 00.9968 0.9951 0.9948

EfficientNet (Tan and Le, 2019) 0.9913 0.9939 0.9887 0.9913

RegNet (Radosavovic et al., 2020) 0.9884 0.9904 0.9851 0.9845

ViT (Dosovitskiy et al., 2020) 0.9879 0.9909 0.9842 0.9863

CoAtNet (Dai et al., 2021) 0.9927 0.9933 0.9919 0.9915

DBCLNet 0.9989 0.9997 0.9967 0.9979
fro
Optimal: red Suboptimal: blue.
TABLE 4 Complexity analysis of different identification models.

Method Flops ↓ Training time ↓ Parameters ↓ Memory ↓

AlexNet (Krizhevsky et al., 2017) 312.11 M 3.3 h 15.6 MB 2.77 MB

VGGNet (Simonyan and Zisserman, 2014) 7.63 G 2.5 h 126.7 MB 62.59 MB

GoogLeNet (Szegedy et al., 2015) 1.59 G 18.7 h 6.7 MB 30.03 MB

MobileNet (Howard et al., 2017) 227.71 M 3.1 h 24.4 MB 50.39 MB

ShuffleNet (Zhang et al., 2018) 150.6 M 2.8 h 2.2 MB 20.85 MB

ResNet50 (He et al., 2016) 8.22 G 3.4 h 24.4 MB 109.69 MB

DenseNet1 (Huang et al., 2017) 2.88 G 15.5 h 7.6 MB 147.10 MB

DenseNet2 (Too et al., 2019) 3.02 G 15.7 h 7.8 MB 152.25 MB

EfficientNet (Tan and Le, 2019) 399.3 M 4.0 h 5.0 MB 79.40 MB

RegNet (Radosavovic et al., 2020) 203.75 M 4.7 h 2.6 MB 23.53 MB

ViT (Dosovitskiy et al., 2020) 6.72 G 49.3 h 20.5 MB 339.01 MB

CoAtNet (Dai et al., 2021) 4.15 G 30.5 h 13.0 MB 231.11 MB

DBCLNet 275.51 M 2.8 h 3.6 MB 57.17 MB
Optimal: red; Suboptimal: blue.
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of the channel dimension. How to fully use the feature information of

different channel levels is the problem we solve later.

3.2.3 Channel attention
We introduce the channel attention module to exploit the features

of different channel levels further. Meanwhile, we introduce the

maximum pooling channel attention for the upper branch and

average pooling channel attentionfor the lower branch. Figure 3

reports the flowchart of max pooling (Maxpooling) and average

pooling (Avgpooling). The channel attention includes global

information embedding and adaptive calibration. We first consider

the interdependence between each channel in the output features for

the global information embedding of the upper and lower branches.

For the upper branch, we utilize the maximum pooling to retain more

image texture information, which also reduces the model parameters

to a certain extent and thus prevents the network from overfitting.

Mathematically, the maximum pooling can be expressed as:

Fcmax = MaxPooling (Xc
d1) = o

Wc
i,j∈Rh,w,c

max  
(p,q)∈Wc

i,j

xcd1(i, jt), (6)

where Fcmax denotes the matrix that integrates the maximum

pooled values of all rectangular regions W associated with the cth

feature map. xcd1(i, j) denotes the element located at (p,q) in the

rectangular region W of the cth feature map. For the lower branch,

we utilize average pooling for retaining as much background feature

information of the image as possible. Mathematically, the average

pooling can be defined as:

Fcavg = Avg Pooling (Xc
d2) =

1

Wc
i,j

��� ��� o
Wc

i,j∈Rh,w,c

xcd2(i, j), (7)

where Fcavg denotes the matrix that integrates the average pooled

values of all rectangular regionsW associated with the cth feature map.

jWc
i,jj indicates the number of elements in the rectangular area Wc

i,j. To

take advantage of the aggregation feature in the squeeze operation of

the upper and lower branches, we perform the operation after it to
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capture the channel-related dependencies. Subsequently, the adaptive

recalibration process ofthe upper and lower branches is defined as

follows:

Fs1 = Far(Fmax,W) = Sigmoid (Swish (W1Fmax)W2), (8)

Fs2 = Far(Favg,W) = Sigmoid (Swish (W1Favg)W2), (9)

where W1 ∈ RC
r�C and W2 ∈ RC�C

r . To limit the model’s

complexity and benefit generalization, we parameterize the gating

mechanism by forming a bottleneck of two fully connected layers

around the nonlinearity, i.e., a reduced-dimensional decay rate of r.

~F
c
d1 = Fscale(F

c
d1, F

c
s1) = Fcs1F

c
d1, (10)

~F
c
d2 = Fscale(F

c
d2, F

c
s2) = Fcs2F

c
d2, (11)

where ~Fd1 = ½~F1d1, ~F2d1,…, ~F
C
d1�, ~Fd2 = ½~F1d2, ~F2d2,…, ~F

C
d2�. Fscale(Fcd1,

Fcs1) and Fscale(F
c
d2, F

c
s2) based on the channel-wise multiplication

betweenthe scaler Fcs1 and Fcs2, as well as the feature map Fcd1 ∈
Rh�w and Fcd2 ∈ Rh�w, respectively. We fuse them in the subsequent

stages to empower our DBCM to consider the complementary

information of the advantageous features of the upper and

lower branches.
3.2.4 Collaborative learning
To fully take into account the complementary advantages of the

features of our DBCM integration of the upper and lower branches.

The upper branch focuses on capturing fine-grained feature

information, and the branch focuses on capturing coarse-grained

feature information. Therefore, the process of integrating coarse-

grained and fine-grained features is called collaborative learning. To

fully exploit the low-level features, we integrate the input features into

the coarse-grained and fine-grained feature levels in the feature

integration process. Eventually, the process of collaborative learning

of these features is defined as:
BA

FIGURE 3

The schema of the Max pooling and Avg pooling operations. (A) Channel attention mechanism of the upper branch, which is used to refine fine-grained
features. (B) Channel attention mechanism of the lower branch, which is used to refine coarse-grained features.
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FcDBCM = Concatenate (Xc
s , F

c
d1, F

c
d2), (12)

where Xc
s is the base feature extracted from Eq. (1). Fcd1 is

extracted step by step from the upper branch via Eqs. (2), (4), (6),

(8), and (10). Fc
m
∘
d2

is extracted step by step from the lower branch

via Eqs. (3), (5), (7), (9), and (11). FcDBCM denotes the final extracted

features via the DBCM. Thanks to our design, we usedeep

convolution to capture deep feature information in the feature

extraction process, and use different scales and different strategies

of convolution to capture features with different advantages. In

addition, we added the channel attention mechanism to DBCM

(Tan and Le, 2019), which contains a max pooling layer or an

average pooling layer with two fully connected layers. Similar to the

traditional attention mechanism, the channel attention mechanism

acts on the feature map from the perspective of the channel, which

makes the network pay more attention to the disease spots on the

leaves and reduce the weight of the disease-free regions better to

capture the disease spot features in the leaves. To comprehensively

consider the features at a more abstract level and the lost feature by

convolution, we then designed a cascaded stacked DBCM module

called the feature stacked module.
3.3 Feature cascaded module

redInspired by the MBConv network [60], we cascade multiple

DBCMs for extracting features at a more abstract level, called the

feature cascaded module. Meanwhile, the DBCM mentioned above is

the basic unit module that constitutes the FCM. An DBCM unit can

be defined as a function of FFCM = DBCMM(FBDCM), where DBCM is

the dual-branch collaborative module, FFCM is output feature, FDBCM
is input feature with FDBCM ∈ Rh,w,c, where h and w are the hight and

width of the feature map, and c is the number of channels.

Subsequently, an FCM can be represented by a series of DBCM

combinations, and the stack-cascaded process is defined as:

FFCM = DBCM 1(FDBCM) ȯ · · · ȯ DBCM s(FDBCM)

= ȯ
i=1…s

DBCM Iterii (FDBCM) :
, (13)

where DBCMIteri
i represents the DBCM is represented Iteri times

in stage i. In our FCM, we designed to repeatedly stack 6 DBCM.

Specifically, each DBCM was repeated 2,3,4,4,3 and 2 times, that is to

say, the repetition times of DBCM on both sides were reduced, and

the repetition times of DBCM in the middle were more. The unique

design makes it difficult for our network to lose key feature

information in deep feature extraction. Then, the feature map

obtained by FCM is reduced by 1×1 convolution. Finally, we obtain

the final discrimination result through maximum pooling, and full

connection layer.
3.4 Loss function

Most current classification studies focus on the cross-entropy loss

function in traditional classification tasks (Bahri et al., 2020). Most

current classification studies focus on the cross-entropy loss function

in traditional classification tasks. Specifically, the process constructs a
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probability distribution between the true and predicted values while it

uses a cross-entropy loss function to describe the distance between

these two probability distributions. It minimizes the cross-entropy

loss by iterative training to obtain the optimal training model.

Subsequently, the cross-loss function for binary classification is

defined as follows:

Lossce = −yt log(yp) − (1 − yt)log(1 − yp)

=
− log  (yp), yt = 1

− log  (1 − yp), yt = 0

(
, (14)

where yt represents the true value, yp represents the predicted

value, yt = 1 denotes the predicted result is a positive sample, and

yt = 0 denotes the predicted results is a negative sample. yp is the result

of the activation function output in the range [0,1]. Note that the

more positive sample with higher output probability, the smaller the

loss. In contrast, the more negative samples with a smaller output

probability, the smaller the loss. In general, the effectiveness of the

cross-entropy loss function for the multiclassification discrimination

problem appears unsatisfactory.

Since the Plant village dataset is faced with category imbalance,

that is to say, the number of samples varies significantly between

different crop images. These issues can also bring challenges to crop

disease identification. For example, similar features are repeatedly

extracted for the same crop during feature extraction, resulting in

higher classification accuracy for categories with a more significant

number of samples and lower classification accuracy for categories

with fewer samples. Therefore, we employ a focal loss function

superior to the cross-entropy loss function (Bahri et al., 2020). It

weakens the problem of sample imbalance by strengthening the

categories with few samples and weakening the categories with

many samples. Its expression is defined as:

Lossfl =
−a(1 − yp)

g log  yp, yt = 1

−(1 − a)ygp log  (1 − yp), yt = 0
,

(
(15)

where yt and yp are defined as shown in Eq. (14). a is the

equalization factor, which is used to equalize the number of

samples from different categories. g is the adjustment factor, which

is utilized to adjust the decayrate of the different category sample

weights. In a real classification task, this function decreases the weight

of loss for samples with higher prediction probability and increases

the weight of loss for samples with lower prediction probability. This

strategy makes our discriminative model more focused on the sample

imbalance problem. As shown in Figure 4, it shows a loss in terms of

dynamically scaled cross-entropy, where the scaling factor g decreases
to zero as the confidence level of the correct category increases.

Extensive statistical results show that our model has the best

discriminatory performance when a = 2 and g = 0.25.
3.5 Experimental data

Our DBCLNet with 12 compared methods is tested on the

PlantVillage data (Hughes et al., 2015). Specifically, this publicly

available dataset has a total of 54304 images of crop leaves, mainly

including 38 healthy and diseased images of 14 types of crops,
frontiersin.org

https://doi.org/10.3389/fpls.2023.1117478
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhang et al. 10.3389/fpls.2023.1117478
including apples, blueberries, cherries, potatoes, tomatoes, etc.

Figure 5 shows the histogram distribution of the number of

samples in different categories of the PlantVillage dataset. From

Figure 5, we can observe that the samples in the dataset are

incredibly uneven. The unbalanced samples face severe challenges

in the discriminative and generalization performance of the model.

To balance the number of samples from different categories to

improve the generalization performance of our model,we adopt the

strategy of data augmentation. Specifically, we utilize mirror flip,

rotation, and contrast change strategies to enhance the data for the

categories with fewer samples. As shown in Figure 6, we show a

typical example of crop image augmentation before and after.

Notably, the augmented PlantVillage data has a total of 87867

samples. Meanwhile, the samples of different categories are better

balanced after data augmentation.
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4 Experimental results

In this section, we mainly introduce the experimental settings,

evaluation matrices, identification evaluation, and ablation study. To

fairly and comprehensively evaluate the discriminatory performance

of our method, our DBCLNet is compared with twelve deep learning

methods, including traditional network models: AlexNet (Krizhevsky

et al., 2017), VGGNet (Simonyan and Zisserman, 2014), and

GoogLeNet (Szegedy et al., 2015); low-weight network models:

MobileNet (Howard et al., 2017) and ShuffleNet (Zhang et al.,

2018); deep network models: ResNet50 (He et al., 2016), DenseNet1

(Huang et al., 2017), and DenseNet2 (Too et al., 2019); attention

network models: EfficientNet (Tan and Le, 2019), RegNet

(Radosavovic et al., 2020), ViT (Dosovitskiy et al., 2020), and

CoAtNet (Dai et al., 2021). We utilize the recommended parameter

settings to run the source codes provided by the authors to obtain the

best results from different methods.
4.1 Experimental settings

We method run on a Windows 10 PC with AMD Ryzen 5 3600X

Central Processing Unit (CPU) at 3.80 GHz, 32-GB memory,

NVIDIA GeForce GTX 1080Ti GPU, and Pytorch deep

learning framework.

In our NBCLNet, we set the batch size is 16, the optimizer is

AdamW with b1 = 0.9 and b1 = 0.999 optimizer decay rates.

Meanwhile, the wight decay is 0.05. Our DBCLNet are trained with

50 iterations, with the base learning rate is set as 10-3. Additionally,

the learning rate schedule is cosine decay, and the label smooth is 0.1.

According to our DBCLNet input requirements all crop disease

images are set to a size of 224×224×3. The number of samples for

the original category imbalance was increased to 87867 data sets with

the number of balanced samples by data augmentation. Subsequently,

we build samples according to the ratio of 8:1:1 for training set,

validation set and test set. The training set is used to train and
FIGURE 4

The effect of the focal loss function on the relationship between the
true class and the loss function. When g > 0, the discriminative model
focuses on difficult and misidentified samples as the loss continues to
decrease.
FIGURE 5

Histogram of the different categories of samples in the PlantVillage data (Hughes et al., 2015). From left to right are the 630 apple scab images, 621 apple
black rot images, 275 apple cedar rust images, 1645 apple healthy images, 1502 blueberry healthy images, 854 cherry healthy images, 1052 cherry
powdery mildew images, 513 corn gray leaf spot images, 1192 corn common rust images, 1162 corn healthy images, 985 corn leaf blight images, 1180
grape black rot images, 1383 grape black measles images, 423 grape healthy images, 1076 grape leaf blight images, 5507 orange citrus greening images,
2297 peach bacterial spot images, 360 peach healthy images, 997 pepper bell bacterial spot images, 1477 pepper bell healthy images, 1000 potato early
blight images, 152 potato healthy images, 1000 potato late blight images, 371 raspberry healthy images, 5090 soybean healthy images, 1835 squash
powdery mildew images, 456 strawberry healthy images, 1109 strawberry leaf scorch images, 2127 tomato bacterial spot images, 1000 tomato early
blight images, 1591 tomato healthy images, 1909 tomato late blight images, 952 tomato leaf mold images, 1771 tomato septoria leaf spot images, 1676
tomato splider mite images, 1404 tomato target spot images, 373 tomato mosaic virus images, and 5357 tomato yellow curl virus images, respectively.
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optimize our DBCLNet model, the validation set is used to verify the

validity of our model, and the test set is used to test the discrimination

performance of our model.
4.2 Evaluation matrices

In evaluation matrices, we selected accuracy (AAcc), precision

(APre), recall (ARec), and F1 score (AFscore) as evaluation metrics for

agricultural disease image identification. For each classification result,

theymay be categorized into four cases: true positive (TP), false

negative (FN), false positive (FP), and true negative (TN). AAcc

indicates the ratio of the total number of correctly predicted

samples to the total number of tested samples, and the higher

accuracy indicates the better discrimination performance of the

proposed method. APre represents the proportion of true samples

among all predicted positive samples, while a higher value indicates a

better discriminative performance of themethod. ARec indicates that

accurate prediction is true in the proportion of all true, and the higher

the value, the better the discrimination performance of this method.

AFscore is the combined average of accuracy AAcc and recall ARec, and

its higher value indicates the better identification performance of the

method. In addition, Table 2 reports the details of the expressions for

each matrices.
4.3 Identification evaluation

To demonstrate the effectiveness and generalization performance of

our DBCLNet using the PlantVillage data comparing 12 deep learning

methods. Meanwhile, our DBCLNet and the compared method are

configured according to the same training, test, and validation set. We

chose the traditional network models (Simonyan and Zisserman, 2014;

Szegedy et al., 2015; Krizhevsky et al., 2017), low-weight network

models (Howard et al., 2017; Zhang et al., 2018), deep network

models (He et al., 2016; Huang et al., 2017; Too et al., 2019), and

attention network models (Tan and Le, 2019; Dosovitskiy et al., 2020;

Radosavovic et al., 2020; Dai et al., 2021) to compare our methods fairly

and comprehensively. In addition, the source code and running

parameters of all the compared methods are provided by the authors.
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Table 3 exhibitions the identification results of 38 crop disease

images tested by different methods. For traditional network models,

AlexNet (Krizhevsky et al., 2017) obtained the lowest classification

accuracy AAcc, precision APre, recall ARec, and F1 score AFscore.

Because of its simple and shallow network structure, AlexNet

(Krizhevsky et al., 2017) has poor performance in multi-

classification of crop disease images. VGGNet (Simonyan and

Zisserman, 2014) and GoogLeNet (Szegedy et al., 2015) increase the

depth of the network making them better than AlexNet (Krizhevsky

et al., 2017) in feature extraction, but their classification performance

is also unsatisfactory due to the limitation of the influential network

model. In general, the traditional network models are limited by the

depth and effective network structure, which makes them difficult to

solve the multi-classification problem of crop disease images.

For low-weight network models, MobileNet (Howard et al., 2017)

introduces depth-separable convolution to build lightweight deep

neural networks, while it introduces a width and a resolution

multiplier to effectively trade-off between latency and accuracy.

Therefore, their discrimination performance for crop disease images

is better than VGGNet (Simonyan and Zisserman, 2014), and

GoogLeNet (Szegedy et al., 2015) thanks to their effective network

structure. ShuffleNet (Zhang et al., 2018) introduces pointwise group

convolution and channel shuffle for neural networks to save

computational resources, which significantly reduces the

computational overhead while retaining the accuracy of the model.

Therefore, ShuffleNet (Zhang et al., 2018) has the discrimination

ability similar to that of MobileNet (Howard et al., 2017) for crop

disease image discrimination. Overall, the low-weight network

models have a more efficient structure than the traditional network

models. Therefore, they have better discrimination performance than

VGGNet (Simonyan and Zisserman, 2014), and GoogLeNet (Szegedy

et al., 2015). However, their classification accuracy is also somewhat

insufficient due to the restriction of network depth.

For deep network models, ResNet50 (He et al., 2016) introduces

both deep network structure and residual mechanism making it have

better feature extraction ability and convergence speed. Therefore,

ResNet50 (He et al., 2016) is better than traditional networks and low-

weight network models for crop disease image identification.

DenseNet1 (Huang et al., 2017) introduces a skip dense

connectivity module and a deep network layer based on ResNet50
B C D E F
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A

FIGURE 6

Example representation of an enhanced sample. From left to right are (A) raw image, (B) mirror rotated image, (C) rotated 90 degree image, (D) rotated
180 degree image, (E) rotated 270 degree image, (F) low-saturated image, (G) high-saturated image, (H) low-contrasted image, (I) high-contrasted
image, (J) low-brightened image, (K) high-brightened image, and (L) Overexposed image.
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(He et al., 2016) to make its discrimination ability better than that of

ResNet50 (He et al., 2016). DenseNet2 (Too et al., 2019) explores the

discrimination ability of different deep learning methods for crop

disease images, while further optimizing DenseNet1 (Huang et al.,

2017) significantly improves the discrimination performance of

DenseNet2 (Too et al., 2019).In general, the deep network model

improves the discrimination performance of the network model at the

expense of network depth and computational resources.

For attention network models, EfficientNet (Tan and Le, 2019)

employs a strategy with channel attention mechanism stacking to

make the model have better feature extraction capability, so it

performs better in identifying crop disease images. RegNet

(Radosavovic et al., 2020) proposes that the adopted design space

design strategy follows an incremental design approach, which has a

better discriminatory performance. ViT (Dosovitskiy et al., 2020) uses

a transformer relying on the number of samples of training data being

large enough and the image content being rich sufficient for image

classification, which has achieved better identification results in the

identification of crop disease images. CoAtNet (Dai et al., 2021)

effectively combines convolutional neural network and transformer,

and at the same time embedding attention into the model, CoAtNet

(Dai et al., 2021) achieves better discrimination results than ViT

(Dosovitskiy et al., 2020) for crop disease image discrimination.

Overall, the attention model has the advantages of effective network

structure, deep feature extraction layer, and attention mechanism. It is

worth noting that although DenseNet2 (Too et al., 2019), EfficientNet

(Tan and Le, 2019), and CoAtNet (Dai et al., 2021) achieved better

discrimination results for crop disease image identification, they are

still lower than our DBCLNet. Thanks to our design, our DBCLNet

can better extract coarse-grained, fine grained, and more abstract-

level features of images. Hence, our network model has better

discriminative performance than the compared methods.

As Table 4 shows the Flops, training time, parameters and

memory of different discriminatory models. Compared to most

methods, our DBCLNet has a significant advantage in terms of

training time. Although our DBCLNet is worse than ShuffleNet in

terms of Flops, Parameters, and Memory, our DBCLNet still has some

advantages over other methods. In general, our method not only has

high discriminative performance but also outperforms most methods

in model complexity.

Figure 7 shows the accuracy of different methods for crop

disease image identification under different iterations. For

traditional network models, the accuracy of AlexNet (Krizhevsky

et al., 2017) and GoogLeNet (Szegedy et al., 2015) does not increase

significantly with the increase in the number of iterations. They tend
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to be stable when the number of iterations is around 35. VGGNet

(Simonyan and Zisserman, 2014), RegNet (Radosavovic et al., 2020),

and MobileNet (Howard et al., 2017) do not have ideal identification

accuracy with a small number of iterations. MobileNet (Howard

et al., 2017), ResNet50 (He et al., 2016), EfficientNet (Tan and Le,

2019), and ViT (Dosovitskiy et al., 2020) are still able to obtain good

discrimination with fewer iterations. With the increase in the

number of iterations, our DBCLNet rapidly increases to the

highest classification accuracy and tends to be stable at about

10 iterations.

From Figure 8, we can observe the confusion matrix plot of

DBCLNet for the test samples. We can clearly observe that DBCLNet

can achieve more than 99.00% identification results for most crop

disease images. It is worth noting that the identification result of our

DBCLNet for the apple disease images is 100.00%, while its

discrimination result for the Grape disease image was only wrong

by one.
4.4 Ablation study

To explore the positive impact of each module in our DBCLNet

on discriminatory performance, we performed the following ablation

study on the augmented PlantVillage data (Hughes et al., 2015),

including (1) our DBCLNet without batch standard normalization

layer (-w/o BSNL), (2) our DBCLNet without single-branch module

(-w/o SBM), (3) our DBCLNet without dual-branch collaborative

module (-w/o DBCL), (4) our DBCLNet without feature cascaded

module (-w/o FCM).

As shown in Table 5, the following discriminatory results can be

observed: (1) -w/o BSNL has less effect on the identification results, it

doesn’t have feature extraction so it has less impact. (2) -w/o SBM is

employed to extract the underlying features so it has less impact on

the discriminatory performance. (3) -w/o DBCL has the greatest

impact on the identification results, it focuses on extracting coarse-

grained and fine-grained features, so it significantly impacts the

discrimination results. (4) -w/o FCM has a greater impact on the

identification results, it focuses on a more abstract level of extraction

and therefore has a greater impact on the discrimination results. Our

full model has the best results for the identification of cropdisease

images. From Table 5, we designed each module to impact our

DBCLNet positively. Our full model has the highest AAcc, APrm,

ARec, and AFscore scores. Overall, our DBCLNet can obtain optimal

discrimination performance thanks to the special design of

each module.
TABLE 5 Discriminatory results of different modules for the implementation of ablation studies on test samples.

Method AAcc ↑ APrm ↑ ARec ↑ AFscore ↑

-w/o BSNL 0.9477 0.9360 0.9552 0.9569

-w/o SBM 0.9723 0.9758 0.9745 0.9765

-w/o DBC 0.8771 0.8885 0.8677 0.8859

-w/o FCM 0.8994 0.9046 0.8951 0.9067

DBCLNet (full model) 0.9989 0.9997 0.9967 0.9979
fro
Optimal: red; Suboptimal: blue.
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5 Discussion

This paper presented a dual-branch collaborative learning network

for crop disease identification. We first provide a comprehensive

overview of the current research in the crop disease image

identification field. Meanwhile, we also summarize the advantages

and disadvantages of various methods and the wide application of

deep learning methods in this field. Subsequently, we explained the
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proposed DBCLNet in detail. Our DBCLNet comprises a single-branch

module, a dual-branch collaborative module, and a cascaded feature

module. The SBM extracts basic features of crop disease images, and the

DBCM focuses on extracting coarse-grained. Fine-grained features

from crop disease images and the FCM mainly extract crop disease

image features at a more abstract level. Extensive experiments on the

augmented PlantVillage data demonstrate that my DBCLNet has good

discrimination ability for 38 types of crop disease images.
FIGURE 7

Histogram of the different categories of samples in the augmented PlantVillage data (Hughes et al., 2015).
B C D

E F

A

FIGURE 8

Confusion matrix of our DBCLNet is tested on the 38 crop disease images. (A) Confusion matrix of apple, (B) Confusion matrix of grape, (C) Confusion
matrix of corn, (D) Confusion matrix of Potato, (E) Confusion matrix of Tomato, and (F) Confusion matrix of others.
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Despite the satisfactory results of my DBCLNet for the crop

disease image identification issue, our method has some limitations.

On the one hand, our method is inferior to other crops in disease

identification of corn and potato because the disease characteristics of

corn and potato are challenging to extract. However, our method

outperforms other comparative methods for identifying these two

crops. On the other hand, our method uses a deep network structure

to extract coarse-grained, fine-grained, and more abstract features,

improving discrimination performance at algorithm complexity’s

cost. Compared with the low-weight network model, our method

has a more complex network structure and a more significant number

of parameters. We future will focus our research on two issues:

extracting fine features and optimizing network models.
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