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Study on the nitrogen content
estimation model of cotton
leaves based on “image-
spectrum-fluorescence”
data fusion
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College of Agriculture, Shihezi, China, 2Aerospace Information Research Institute, Chinese Academy
of Sciences, Beijing, China
Objective: Precise monitoring of cotton leaves’ nitrogen content is important for

increasing yield and reducing fertilizer application. Spectra and images are used

to monitor crop nitrogen information. However, the information expressed using

nitrogen monitoring based on a single data source is limited and cannot consider

the expression of various phenotypic and physiological parameters

simultaneously, which can affect the accuracy of inversion. Introducing a

multi-source data-fusion mechanism can improve the accuracy and stability of

cotton nitrogen content monitoring from the perspective of information

complementarity.

Methods: Five nitrogen treatments were applied to the test crop, Xinluzao No. 53

cotton, grown indoors. Cotton leaf hyperspectral, chlorophyll fluorescence, and

digital image data were collected and screened. A multilevel data-fusion model

combining multiple machine learning and stacking integration learning was built

from three dimensions: feature-level fusion, decision-level fusion, and

hybrid fusion.

Results: The determination coefficients (R2) of the feature-level fusion, decision-

level fusion, and hybrid-fusion models were 0.752, 0.771, and 0.848, and the

root-mean-square errors (RMSE) were 3.806, 3.558, and 2.898, respectively.

Compared with the nitrogen estimation models of the three single data sources,

R2 increased by 5.0%, 6.8%, and 14.6%, and the RMSE decreased by 3.2%, 9.5%,

and 26.3%, respectively.

Conclusion: The multilevel fusion model can improve accuracy to varying

degrees, and the accuracy and stability were highest with the hybrid-fusion

model; these results provide theoretical and technical support for optimizing an

accurate method of monitoring cotton leaf nitrogen content.
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1 Introduction

Cotton is the dominant industry in the Xinjiang region, China’s

largest production base of high-quality commodity cotton. In 2022,

the cotton planting area covered approximately 83% of the

farmland in Xinjiang, with over 90% production. Nitrogen is an

indispensable life element of cotton crops. It is an important

component of protein, nucleic acid, chlorophyll, and some

hormones, provides important support for photosynthesis, and

significantly impacts crop growth and development (Han et al.,

2022; Wang et al., 2022). Nitrogen fertilization is the most used

fertilizer type during cotton cultivation and management, with the

highest application rate (70–80%) used in drip irrigation. Proper

nitrogen fertilizer application can promote cotton growth and

increase yield, but unreasonable application reduces fertilizer

efficiency and causes fertilizer waste and serious environmental

pollution problems (Zhang et al., 2018). Therefore, it is important to

understand the nitrogen nutrition of cotton in real-time during the

growth process and to develop an efficient and scientific nitrogen

monitoring method to improve nitrogen fertilizer efficiency.

Traditional nitrogen monitoring methods are expensive,

destructive, and time consuming. With the development of

modern information technology, efficient and non-destructive

monitoring methods, such as hyperspectral and digital imaging,

have become increasingly popular worldwide. For example,

researchers screened sensitive bands based on hyperspectral data

or combined them with vegetation indices to build and apply

nitrogen nutrition inversion models for different crops (Yao et al.,

2010; Jin et al., 2013; Zhao et al., 2018; Luo et al., 2020; Zhang et al.,

2021); this indicates that crop nitrogen content estimation using

hyperspectral techniques is practical and feasible. Chlorophyll

fluorescence monitoring differs from hyperspectral monitoring

because it provides information directly related to plant

physiological and functional properties (Ptushenko et al., 2014).

Fluorescence signals can predict the growth status of plants and

explain the changes in plant physiological and biochemical

processes (Zivcak et al., 2015; Jia, 2016). Nitrogen application rate

can notably affect the characteristic changes of chlorophyll

fluorescence parameters when used to monitor crop nitrogen

content (He et al., 2020), which indicates that fluorescence

parameters are ideal indicators of crops’ nutritional status and

can directly monitor nitrogen content (Feng et al., 2015; Li et al.,

2020a). Compared with hyperspectral and chlorophyll fluorescence,

digital image technology is simple to operate, visualize, and apply. It

includes an interval of interest segmenting, converting image color

space (Huang et al., 2020), extracting relevant color and texture

features, and building predictive models (Xiao, 2022). In recent

years, scholars have achieved good results using this technology to

model and invert the nitrogen nutrients of crops such as rice

(Saberioon et al., 2013; Wang et al., 2014; Li et al., 2015), corn (Li

et al., 2010; Liu and Li, 2010), sugar beet (Moghaddam et al., 2010),

and cotton (Zhang et al., 2020; Hong et al., 2022).

The spectra of reflection or absorption can reflect differences in

crop composition and structure (Tong et al., 2006). Nitrogen

limitation and nitrogen redundancy will cause, among other
Frontiers in Plant Science 02
symptoms, yellowing or greenness of crop leaves and changes in

leaf thickness and water content, resulting in changes in spectral

reflectance characteristics. However, it is impossible to obtain the

true color based on different color spaces, such as RGB, and shape-

related values, such as area features. Nevertheless, the surface color,

shape, and other feature changes of crops can be determined using

digital images to reflect the nitrogen nutrition status. The changes in

chlorophyll fluorescence parameters can directly or indirectly

reflect the primary reaction, electron transfer, and CO2

assimilation process of photosynthesis and affect the energy

distribution of crops through nitrogen. This causes dynamic

changes in fluorescence, photosynthesis, and heat dissipation that

can be used to monitor nitrogen content (Kumar et al., 2014). The

three data sources can be used separately for crop nitrogen nutrient

inversion. However, the nitrogen information monitoring of single

data sources cannot consider the expression of the above phenotype

and physiological parameters, and, currently, the monitoring

accuracy cannot meet the requirements of precision agriculture.

One of the keyways to solve this problem is to effectively integrate

the information obtained from “spectrum, fluorescence,

and image.”

In this study, nitrogen content estimation models that combine

multiple machine learning and stacking integrated learning were

built from the three levels of feature-level fusion, decision-level

fusion, and hybrid fusion using cotton as the research object. The

fusion models were compared with the three single data source

models. The aim of this study was to improve the accuracy and

stability of nitrogen estimation models and provide theoretical and

methodological support for accurately monitoring cotton nitrogen

content and efficient use of fertilization.
2 Materials and methods

2.1 Experimental design

2.1.1 Experimental environment
This experiment was performed at the College of Agronomy,

Shihezi University, Shihezi City, Xinjiang Uygur Autonomous

Region (E 86.06°, N 44.32°) (Figure 1). A laboratory incubator

was set to a diurnal temperature of 30°C/26°C on a light/dark cycle

of 12 h each, with a light intensity of 20,000 Lux. The potting soil

was taken from the surface (0–40 cm) of the agricultural

experimental field of Shihezi University (E 86.03°, N44.18°); the

soil texture was medium loam, with alkaline hydrolyzable nitrogen,

organic matter, available phosphorus, and available potassium

contents of 103.8 mg/kg, 18.1 mg/kg, 8.91 mg/kg, and 290.3 mg/

kg, respectively, and a field water holding capacity of 24.6%. After

air drying and sieving, 3 kg of soil was weighed into flowerpots with

a uniform upper diameter of 40 cm and a height of 30 cm.

2.1.2 Experimental treatment
The cotton variety used was Xinluzao No. 53, the main local

cultivar. Five nitrogen treatments (0 g/pot (N0), 1.876 g/pot (N1),

5.628 g/pot (N2), 7.504 g/pot (N3), and 9.380 g/pot (N4) of pure
frontiersin.org
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nitrogen) were established. Each treatment had nine repetitions,

and N2 was the standard nitrogen application treatment. A total of

45 pots were planted, with two cotton plants per pot. Pure

phosphorus and pure potassium were applied at 1.876 g/pot and

1.876 g/pot, respectively. The experimental fertilizers used were

urea (N 46%), calcium superphosphate (P2O5 12%), and potassium

chloride (K2O 60%). All phosphate and potassium fertilizers were

applied before sowing; 25% of the nitrogen fertilizers were applied

basally, and the remaining 75% were drip-applied with water. Three

drip applications were made during the cotton cultivation period.

The other management schemes of the pot experiments followed

local cotton cultivation management procedures.
2.2 Data acquisition and processing

2.2.1 Data acquisition
2.2.1.1 Hyperspectral data acquisition

In this experiment, a portable spectral surface spectrometer SR-

3500 (Spectral Evolution) was used as the hyperspectral data

acquisition instrument, which has a wavelength range of 350–

2500 nm at 1 nm intervals. Spectral data were collected at 10:00–

14:00 local time on sunny days 60, 80, and 100 days after cotton

emergence. Three main cotton stem leaves with uniform growth

were selected for each treatment, and non-destructive data
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acquisition was conducted using the spectrometer’s leaf clamp

and built-in light source (Figure 2A). The leaves were labeled

with serial numbers. Three positions were measured for each leaf

(Figure 2B), and the average data of each of the three measurement

points were used as the raw spectral data (R) for that leaf, with

whiteboard correction before measuring different leaves; care was

taken to avoid leaf veins.

2.2.1.2 Chlorophyll fluorescence data acquisition

The non-destructive sampling of cotton leaf fluorescence

parameters was performed using a MultispeQ multifunctional

phytometer (Figure 2C), and the measurement times were 10:00–

14:00 under light adaptation and 22:00–03:00 under dark

adaptation on sunny days. Three positions were measured for

each leaf (Figure 2B) and the average was taken as the raw

fluorescence data for that leaf.

2.2.1.3 Image data acquisition

A Nikon D5300 digital camera was used to capture cotton leaf

images from 10:00–14:00 on sunny days. Cotton leaf images were

captured simultaneously as hyperspectral and fluorescence data

under light adaptation to avoid errors caused by different

acquisition times of data. A white background plate was used as

the bottom surface to take photos, and the collection sequence of

the blades was consistent with the hyperspectral and fluorescence
FIGURE 1

Location and environmental overview of the test area.
B C
D

A

FIGURE 2

Schematic diagram of data acquisition. (A) Hyperspectral data acquisition, (B) Leaf measurement positions, (C) Chlorophyll fluorescence, and
(D) digital image acquisition.
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data, which was convenient for subsequent collation and analysis. A

24-color standard color-correction card was placed on the

background board for image color correction. When taking

photos, the lens and leaf were vertical and kept at a fixed height

of 40 cm (Figure 2D). The images were saved in JPEG format.

2.2.1.4 Cotton leaf nitrogen data acquisition

After the spectral, fluorescence, and image data were collected,

cotton leaves were harvested, stored in envelopes with ice bags, and

brought to the laboratory. The cotton leaves were fixed at 105°C for

30 min, dried at 80°C to a constant weight, crushed, and then heated

for digestion using the H2SO4-H2O2 method. The total nitrogen

content was determined using the Kjeldahl method.

2.2.2 Data processing
2.2.2.1 Hyperspectral data processing method

Data processing was implemented using Python 3.8

programming, and the raw hyperspectral data were first

convolutionally smoothed (Savitzky–Golay) to improve the

signal-to-noise ratio. Then, the second-order differentiation of the

spectral logarithm ([lg(SG)]”) was used to eliminate baseline drift

and background signals to improve the analytical accuracy (Wang,

2013). Finally, a standard normal variate (SNV) and detrending

were used to eliminate spectral errors caused by solid particle size,

surface scattering, and light range variations (Jin et al., 2013).

Because there is homogeneity and redundancy in full-band

spectral data, two preprocessing methods, SG-SNV-Detrending

and [lg(SG)]”, were selected to improve the signal-to-noise ratio

and analysis accuracy in this study. Pearson’s correlation analysis

was conducted on the spectra obtained using different pretreatment

methods and cotton leaf nitrogen content. The feature bands that

significantly correlated at the 0.01 level were selected, and the

redundant information was eliminated using the random-frog

method to reduce the number of nitrogen-sensitive feature bands

while ensuring minimum collinearity among the selected bands.
2.2.2.2 Chlorophyll fluorescence data processing method

The variable fluorescence (Fv), PSII maximum photochemical

efficiency (Fv’/Fm’), non-photochemical quenching coefficient

(NPQ), and photochemical quenching coefficient (qL) were

calculated from the parameters of initial fluorescence (F0), maximum

fluorescence (Fm), steady-state fluorescence intensity (Fs), initial

fluorescence under light adaptation (F0’), maximum fluorescence

under light adaptation (Fm’), and variable fluorescence under light

adaptation (Fv’). Chlorophyll fluorescence eigenvectors were screened

using Pearson correlation analysis for subsequent modeling. The

formula for calculating the fluorescence parameters is as follows:

Fv = Fm − F0

Fv 0 =Fm 0 =
(Fm0 − F0 0 )

Fm 0

NPQ =
Fm
Fm 0 − 1
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qL =
(Fm0 − Fs)
(Fm 0 −F0 0 )

� F0 0

Fs
2.2.2.3 Image data processing method

Cotton leaf image processing includes color correction,

segmentation, and extraction of the color and morphological

features of the region of interest. First, the original image

(Figure 3A) was corrected using the 24-color-correction card,

which reduces the errors caused by solar illumination or the

external environment on the color features of the leaf. Then, to

eliminate the influence of the color-correction card on cotton leaf

segmentation, the maximum outline of the cotton leaf was found to

obtain its minimum external rectangle (Figure 3B), the RGB (a color

space, composed of red, green, and blue color channels) image was

converted into HSV (a color space, composed of hue, saturation,

and value channels) format, and the interval of interest to be

segmented was detected using the minimum and maximum HSV

values. The noise was removed using a closing operation, and the

mask image was finally obtained (Figure 3C).

The color features of the cotton leaf images were extracted using

Python-OpenCV2. First, the color target image (Figure 3D) was

converted into different color spaces to obtain the RGB, HSV, and

L*a*b* (a color space composed of a luminance channel and a and b

color channels), which are used for color feature extraction of

cotton leaves. Finally, nine color feature parameters, including the

first-order color moment in the RGB, HSV, and L*a*b* color space

of cotton leaves, were obtained.

The size of the leaf area directly determines the intensity of

photosynthesis and the final yield of crops (Begonia and Begonia,

2007). Relevant studies have confirmed a significant correlation

between crop leaf area and nitrogen content (Zhang, 2019). The

morphological features of the cotton leaf area in this study were

extracted using the grid method. First, the 24-color-correction card

grid image was segmented based on the color feature information

(Figure 3E). Because the color-correction card is a customized

standard grid of 10 cm × 10 cm, the pseudo-leaf area to be

measured can be represented by the number of pixels. The

number of pixel points measured on the leaf (pseudo-leaf area) is

multiplied by the scaling ratio (K) to calculate the actual area of the

leaf, which is used as the morphological feature parameter of the

leaf for subsequent modeling. K can be expressed as follows:

K =
L
X

where L is the actual area of the color-correction card, which is

100 cm2, and X is the number of pixels in the pixel coordinate

system of the card.

2.2.2.4 Nitrogen data processing method

The total nitrogen content of all cotton leaves obtained in 2.2.1

was summarized for processing, and the data marked as NULL due

to experimental mis-operation were removed as outliers.

Considering the clear difference in data values under different

nitrogen application levels, outliers cannot be eliminated using

discretization. Therefore, the data under different nitrogen
frontiersin.org
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application levels were separated, and the outliers were eliminated

again using the criteria of the quartile method: when the nitrogen

value was less than the 25th percentile minus 1.5 times the

interquartile range (IQR) or greater than the 75th percentile plus

1.5 times the IQR, the data point was eliminated as an outlier.
2.3 Model construction and evaluation

Of the 289 groups of cotton leaf data samples, 40, 58, 63, 69, and

59 belonged to the N0, N1, N2, N3, and N4 groups, respectively.

The above data samples were randomly divided into training and

validation sets using a 7:3 ratio. To evaluate the model’s

generalization performance, reduce over-fitting, and obtain as

much effective information as possible, all machine learning or

integrated learning models adopted 5-fold cross-validation.

2.3.1 Data-fusion methods
2.3.1.1 Multi-source feature-level fusion method

Feature-level fusion extracts the features from different data

sources, such as digital images, chlorophyll fluorescence, and

hyperspectral data. The feature vectors extracted from these data

sources were connected and substituted into the regression model to

obtain inversion results (Figure 4).
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The extracted digital image features, chlorophyll fluorescence

features, and hyperspectral features were fused using the cascade

method. Because integrated learning has strong noise resistance and

generalization ability, the stacking integrated learning model was

selected for regression prediction. This is a layered integration model;

the data set was trained and predicted with the base-learner, and the

output value was used as the input value for the next stage of training

for the meta-learner to obtain the final forecast result. In this study,

the stacking integrated learning algorithm included four learners:

random forest (RF), support vector machine (SVM), K-nearest

neighbor (KNN), and ridge regression (RR). Subsequently, the

appropriate base- and meta-learners were selected to optimize the

model fit and generalization ability to obtain the cotton leaf nitrogen

inversion results through feature-level fusion.

2.3.1.2 Multi-source decision-level fusion method

Decision-level fusion separately models digital image features,

chlorophyll fluorescence features, hyperspectral features, and cotton

leaf nitrogen content in three dimensions based on the prediction

results to match image and text data (Figure 5).

The features extracted from digital images, chlorophyll

fluorescence, and hyperspectral data were used for initial machine

learning modeling; RF, KNN, SVM, and RR were used for modeling

and evaluation, and the prediction results of the optimal model were
B

C

D

E

A

FIGURE 3

Schematic diagram of image data processing. (A) Original image of cotton leaf, (B) Minimum external matrix, (C) Masked image after dividing,
(D) Color target image, and (E) Extraction and marking process of color card.
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selected. The prediction results of the three data sources were put

into the stacking integrated learning algorithm for regression

prediction, and the decision-level fusion of cotton leaf nitrogen

inversion results was obtained.

2.3.1.3 Multi-source hybrid-fusion method

Hybrid fusion is similar to decision-level fusion; the feature-level

and decision-level fusion results were fed second into the stacking

integrated learning algorithm for regression prediction to obtain

hybrid fusion cotton leaf nitrogen inversion results (Figure 6).

2.3.2 Model evaluation
The determination coefficient (R2) and root-mean-square error

(RMSE) were selected as evaluation indicators of the model. R2

indicates a deviation between the predicted and actual values; larger
Frontiers in Plant Science 06
R2 values indicate better fitting models. RMSE analyzes the accuracy

of the predicted and the actual values: smaller RMSEs indicate smaller

deviations between the predicted and actual values and higher model

accuracy. The calculation formulas for R2 and RMSE are as follows:

R2 = 1 −o
n
i=1(xi − �yi)

2

on
i=1(yi − �yi)

2

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(xi − yi)
2

n

s

where xi is the predicted value, yi is the actual value, yi is the average

of the actual values, and n is the number of samples available

for validation.
B C DA

FIGURE 5

Decision-level fusion framework of cotton leaf nitrogen inversion. (A) Data acquisition, (B) Features selection, (C) Regression modeling, (D) Feature-
level fusion.
B C DA

FIGURE 4

Feature-level fusion framework of cotton leaf nitrogen inversion. (A) Data acquisition, (B) Features selection, (C) Regression modeling, (D) Feature-
level fusion.
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3 Results and analysis

3.1 Screening of nitrogen-sensitive feature
parameters based on different data sources

3.1.1 Screening of hyperspectral
feature parameters

The method in Section 2.2.2.1 was used to obtain the

hyperspectral feature parameters. The results showed that there

were approximately 10 infrared-sensitive feature bands of nitrogen

content selected under the different treatments (Table 1), but with

some differences due to the environment and variety. The sensitive

feature band of processed spectral information is consistent

between SG-SNV-Detrending and R processing, but the [lg(SG)]”

processed spectral fluctuation amplitude is larger than that in R

processing. This shows that different spectral preprocessing

methods affect the selection of sensitive feature bands.

3.1.2 Screening of chlorophyll fluorescence
feature parameters

Nitrogen can alter the photosynthetic capacity of crop leaves;

fluorescence, as a direct probe for photosynthesis, can be an

indicator of crop nitrogen content. In this study, the correlation

between chlorophyll fluorescence parameters and cotton leaf

nitrogen content was analyzed. The results showed a significant

correlation between the chlorophyll fluorescence parameters and

cotton leaf nitrogen content (Figure 7). Fm, Fv, Fv/Fm, Fv’/Fm’, qL,

and NPQ correlated with nitrogen content, and the absolute value
Frontiers in Plant Science 07
of the correlation coefficient was greater than 0.5. All fluorescence

parameters except NPQ correlated positively with cotton leaf

nitrogen content. The correlation coefficients between Fm and Fs,

Fm and Fv, F0 and Fs, and NPQ and Fv/Fm were 0.736, 0.970,

0.747, and -0.994, respectively. This shows a strong correlation

between the corresponding parameters, high information overlap,

and some multicollinearity. Therefore, principal component

analysis (PCA) was used for linear transformation to remove

feature redundancy and noise reduction. The principal

component information loads (variance percentages) were

45.507%, 35.048%, 17.780%, 1.181%, 0.438%, 0.036%, 0.011%, and

2.819 × 10-15%. This indicates that the first, second, third,

and fourth principal components carried more feature

information, and the cumulative variance rate reached 99.516%. If

the number of principal components continues to increase, the

information load will fall below 1%, and the cumulative variance

rate will no longer increase significantly. Therefore, the first four

principal components were used as chlorophyll fluorescence

features for subsequent modeling in this study.
3.1.3 Screening of image feature parameters
The correlations between image parameters (the first-order color

moment in the three color spaces and the morphological parameter

leaf area (LA)) and the nitrogen content in cotton leaves were

analyzed. The results (Figure 8) showed that all parameters except

the color parameter a* were significantly correlated. LA, B, H, and a*

correlated positively with nitrogen content, whereas G, R, S, V, L*,

and b* correlated negatively with nitrogen content. Where LA, B, H,
B

C

D EA

FIGURE 6

Hybrid-fusion framework of cotton leaf nitrogen inversion. (A) Data acquisition, (B) Features selection, (C) Regression modeling, (D) Feature-level
fusion.
TABLE 1 Screening results of hyperspectral sensitive bands under different treatments.

Pretreatment Feature Sensitive Bands

R 2212, 2225, 2224, 1253, 2222, 2307, 1704, 2235, 1724, 2213, 1728, 1702, 2337

[lg(SG)]” 1293, 1174, 1077, 1123, 1650, 1251, 1100, 1244, 1490, 1665

SG-SNV-Detrending 2178, 2213, 2212, 2214, 1725, 2197, 2196, 2195, 1728, 1726
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S, and b* had a highly correlated relationship with nitrogen content,

R2 reached 0.509, 0.436, 0.479, -0.472, and -0.445, respectively, and

the correlation between the above parameters was low, indicating that

the feature redundancy was low and the collinearity was weak; this

means these parameters can be used as the image features for the

subsequent modeling processing.
3.2 Cotton leaf nitrogen content
estimation model based on single data
source in fusion framework

3.2.1 Cotton leaf nitrogen content estimation
model based on hyperspectral features

The spectral features obtained from Section 3.1.1 were

substituted into supervised learning regression algorithms of

different principles to model and evaluate the nitrogen content in

cotton leaves. We used RF, KNN, SVM, and RR models to avoid

duplication of effort due to weak differences between models. RF is a

set of multiple decision trees, KNN performs regression using

finding the nearest neighbors of the samples, SVM performs

regression using the kernel method, and RR is an improved

partial least squares regression. From the results of the model

evaluation indices (Figure 9), the estimation accuracy of the

sensitive feature bands based on R under four model training

events was low, with an R2 value of 0.352, which is lower than

that obtained from SG-SNV-Detrending and [lg(SG)]”

preprocessing. Sensitive feature bands screened using [lg(SG)]”

and SG-SNV-Detrending pretreatment were substituted into the

four models, and R2 was approximately 0.4–0.7, which can be used

for quantitative evaluation of nitrogen content. When constructing

the RF model with [lg(SG)]” pretreatment, the training set R2 was

0.965, RMSE was 1.532, and the fit of the model was excellent.

However, the validation set R2 and RMSE were lower than those of

the SVM model under the same pretreatment, indicating that its

generalization performance is inferior to that of the SVMmodel. By
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comprehensive comparison, the SVM model built with spectral

features under the [lg(SG)]” pretreatment had an optimal

estimation of cotton leaf nitrogen content, with a training set R2

and RMSE of 0.746 and 3.811, and a validation set R2 and RMSE of

0.683 and 3.841, respectively.

3.2.2 Cotton leaf nitrogen content estimation
model based on chlorophyll
fluorescence features

The model construction method is consistent with the

hyperspectral estimation model in Section 3.2.1; that is, RF, KNN,

SVM, and RR machine learning models were used to establish a

relationship between the chlorophyll fluorescence features screened

in Section 3.1.2 and the nitrogen content of cotton leaves. The

results (Figure 10) show that the R2 of the RF, KNN, and RR

training and validation sets were greater than 0.6, and the RMSE

was less than 5, indicating that the above three models can estimate

nitrogen content. The SVM had the effect of under-fitting. The

training set R2 was 0.457, and the validation set R2 was 0.525. The

model-learning ability was insufficient, and the generalization

ability was weak. By comprehensive comparison, the R2 and

RMSE of the estimation model of cotton leaf nitrogen content

based on RF were optimal, with a training set R2 and RMSE of 0.893

and 1.790, and a validation set R2 and RMSE of 0.702 and 4.086,

respectively, which can be used for cotton leaf nitrogen content

estimation based on chlorophyll fluorescence features.
3.2.3 Cotton leaf nitrogen content estimation
model based on image features

The above four machine learning models were established based

on the image features selected in Section 3.1.3 and the cotton leaf

nitrogen content. According to the evaluation results of each model

training and validation set (Figure 11), the R2 of RF, SVM, and RR

was approximately 0.7. The RMSE was approximately 3.9,

indicating that the RF, SVM, and RR algorithms have excellent
FIGURE 7

Correlation analysis of nitrogen content and chlorophyll fluorescence
parameters in cotton leaves. *p< 0.05, **p< 0.01.
FIGURE 8

Correlation analysis of nitrogen content and image parameters in
cotton leaves. *p< 0.05, **p< 0.01.
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FIGURE 10

Validation of the cotton leaf nitrogen content estimation model based on chlorophyll fluorescence features. Validation results of (A) RF, (B) KNN,
(C) SVM, and (D) RR models.
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C D
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FIGURE 9

Validation of the cotton leaf nitrogen content estimation model based on hyperspectral features. Validation results of (A) random forest (RF),
(B) K-nearest neighbor (KNN), (C) support vector machine (SVM), and (D) ridge regression (RR) models.
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accuracy and stability in modeling and can reliably estimate the

nitrogen content in cotton leaves, although the R2 of KNN was 0.64,

and the RMSE was 4.535. By comprehensive comparison, the

estimation model of cotton leaf nitrogen content based on RR

was optimal, with a training set R2 and RMSE of 0.761 and 3.162,

and a validation set R2 and RMSE of 0.706 and 3.819, respectively,

which can be used for cotton leaf nitrogen content estimation based

on image features.
3.3 Cotton leaf nitrogen content
estimation model based on “image-
spectrum-fluorescence” data fusions

3.3.1 Cotton leaf nitrogen content estimation
model based on feature-level fusion

The feature parameters of hyperspectral, chlorophyll

fluorescence, and digital images screened in Section 3.1 were

cascaded. In feature-level fusion, after permutation, combination,

and screening, the learners in stacking integrated learning obtained

the optimal combination using RF and RR as base-learners and

SVM as a meta-learner. It can be seen from the evaluation results

(Figure 12A) that the training set R2 of the feature-level fusion

model is 0.933 and the RMSE is 1.581, which shows that the

goodness of fit of the model to the training set data is excellent,

and that it has comprehensively learned the properties of the
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training set data. The validation set R2 was 0.752, and the RMSE

was 3.806, indicating that the strong learning ability did not weaken

its generalization, and the accuracy remained stable.

3.3.2 Cotton leaf nitrogen content estimation
model based on decision-level fusion

The prediction results of the three optimal models constructed

using the hyperspectral, chlorophyll fluorescence, and digital image

features in Section 3.2 were substituted into the decision-level

fusion method for training and validation. Among them, the

optimal combination of stacking integrated learning in decision-

level fusion included KNN and RR as base-learners and RF as a

meta-learner. (Figure 12B) The decision-level fusion model had a

training set R2 and RMSE of 0.997 and 0.349, and a validation set R2

and RMSE of 0.771 and 3.558, respectively. Although the R2 value of

the decision-level fusion training set is close to 1, the validation set

R2 shows excellent model performance with no significant decline.

This can be used for cotton leaf nitrogen content estimation.

Combined with the RMSE, the model’s accuracy is slightly better

than the feature-level fusion model.
3.3.3 Cotton leaf nitrogen content estimation
model based on hybrid fusion

The feature-level and decision-level fusion prediction results

were substituted into the hybrid fusion for modeling, and training
B

C D

A

FIGURE 11

Validation of the cotton leaf nitrogen content estimation model based on image features. Validation results of (A) RF, (B) KNN, (C) SVM, and
(D) RR models.
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validation was conducted. Among them, the optimal combination

of stacking integrated learning in hybrid fusion included KNN and

RR as base-learners and RF as meta-learner. The results

(Figure 12C) show that, in the hybrid-fusion model, the training

set R2 and RMSE were 0.996 and 0.419, and the validation set R2

and RMSE were 0.848 and 2.898, respectively. Compared with the

feature-level and decision-level fusion, the linear fitting relationship

between the model’s actual and the predicted values was closer to a

1:1 line. Therefore, the hybrid-fusion model was the best among the

cotton leaf nitrogen content estimation models based on “spectrum-

fluorescence-image” data fusion.
3.4 Models performance comparison test

The algorithm’s advantages enabled us to compare single data

source models with multilevel fusion models in the same algorithm

dimension by avoiding false improvement in fusion model

accuracy. Therefore, the features of the spectrum, chlorophyll

fluorescence, and image were substituted into the stacking

integrated learning algorithm, and the best combination of

learners was selected for training and validation, aiming to unify

the algorithm that outputs the final prediction results in the fusion

models. The comparison results are shown in Figure 13. Compared

with the three single data source models, the feature-level fusion

model validation set R2 improved by 2.8–6.3%, and the RMSE

decreased by 4.7–8.2%. The decision-level fusion model validation
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set R2 increased by 2.5–3.6% and the RMSE decreased by 8.8–9.9%.

The R2 of the hybrid-fusion model validation set increased by 12.4–

15.9%, and the RMSE decreased by 25.7–26.6%. These results

indicate that all multilevel data-fusion methods improved the

accuracy of regression fitting of the three single data sources to

different degrees. Among them, the accuracy of the feature-level and

decision-level models in predicting the outcome, although

improved compared with the single data source models, is not

significant, as it can combine the prediction results of feature-level

fusion and decision-level fusion with the real values for a second fit,

greatly improving the evaluation indicators and achieving optimal

accuracy and stability of the model. Therefore, the hybrid-fusion

model can be applied for cotton leaf nitrogen content monitoring.
B

C

A

FIGURE 12

Validation of the cotton leaf nitrogen content estimation model based on “image-spectrum-fluorescence” data fusion. Validation results of
(A) feature-level fusion, (B) decision-level fusion, and (C) hybrid-fusion models.
FIGURE 13

Comparison of the precision of the optimal model between
multilevel data fusion and three single data sources.
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4 Discussion
Applying hyperspectral techniques to invert parameters, such as

leaf nitrogen content, is one of the main tools for studying the

nitrogen nutrient status of cotton. First, preprocessing and data

transformation of the original feature spectra are important steps to

effectively improve the accuracy of the model. Previous studies have

shown that preprocessing of spectra can effectively eliminate noise

and baseline drift and highlight the location of spectral feature

bands (Arneberg et al., 2007). The accuracy of the models built

using relevant studies (Nguyen and Lee, 2006; Li et al., 2016; Wang

et al., 2020; Li et al., 2020b) using different forms of spectral

transformations is higher than the models built using the original

spectra. Feature screening mainly solves the collinearity problem of

the spectrum, and wavelengths with less redundant information are

selected for direct model construction, which is a simple, fast, and

intuitive method easy to implement (Bai et al., 2018; Jia et al., 2019).

In this study, the [lg(SG)]”-SVM model was the most accurate

(training set R2 = 0.746, RMSE = 3.811, validation set R2 = 0.683,

RMSE = 3.841). The original spectra can effectively extract the

feature parameters and improve model accuracy using both

transformation forms. To prevent overlap between the

hyperspectral feature bands obtained from the experiment and

the visible region acquired from the digital images, we used the

first 10–13 near-infrared region-sensitive bands for modeling to

ensure differences between the data sources, reduce the collinearity

of each variable of the fusion model, and improve the accuracy and

stability, and the selected sensitive bands were similar to those from

previous studies (Niu et al., 2000; Xue et al., 2003).

Spectroscopic technology can be used to effectively monitor the

nitrogen content of crops. However, spectral reflectance mainly

reflects the concentration of plant biochemical components, is not

sensitive to crop photosynthetic activity, and cannot directly reveal

the photosynthetic physiological state of vegetation (McMurtrey

et al., 2003; Ashourloo et al., 2014). Although chlorophyll

fluorescence can provide information directly related to plant

physiological functions (Smith et al., 2018), it has been widely

used for crop growth, development, and nutrition monitoring in

recent years. In this study, by analyzing the relationship between

chlorophyll fluorescence parameters and nitrogen content in cotton

leaves, we found that the correlations between Fm, Fv, Fv/Fm, Fv’/

Fm’, qL, NPQ, and nitrogen content were stronger than the

correlations between fluorescence parameters and nitrogen

content of wheat plants established by Feng et al. (2012) and

Zivcak et al. (2015). This indicated that different degrees of

correlation exist between the fluorescence parameters and

nitrogen content for different crops. Because of the strong

multicollinearity among individual parameters, PCA was used to

reduce the dimensionality, and variables with high information

overlap were regrouped to reduce feature redundancy while

retaining most of the valid information. The first four principal

components were selected to establish a model for estimating the

nitrogen content of cotton leaves based on chlorophyll fluorescence

characteristics, and the results showed the best RF (training set R2 =

0.893, RMSE = 1.790, validation set R2 = 0.702, RMSE = 4.086); RF
Frontiers in Plant Science 12
is an integration of multiple decision trees with high error balance

and noise immunity and is widely used by researchers for crop

phenotypic indicator monitoring with good modeling results (Han

et al., 2019; Lu et al., 2019; Wang et al., 2021).

Digital image technology can identify the subtle differences

between the surface layers of samples within the range of visible

light. When collecting digital images of cotton leaves, it has been

found that the influence of uncertain factors, such as the external

environment and light intensity, is likely to lead to inaccurate and

inconsistent image colors (You et al., 2020). In this study, the effect of

these random errors on image color features was minimized by taking

pictures in sufficient sunlight and correcting the standard color card.

Huang et al. (2020) and Agarwal and Gupta (2018) proved that the

fitting and generalization performance of a model built using

combining multiple color spaces was better than that using a single

color space. Therefore, in this study, the first moments of RGB, HSV,

and L*a*b* color spaces and LA parameters were used to establish

correlations with cotton leaf nitrogen content, extract as many of the

relevant features of the image as possible from multiple angles,

integrate more comprehensive information, and improve the

accuracy of the inversion results of the subsequent fusion

algorithm. All components of the RGB color space contain

brightness information; therefore, they are vulnerable to external

conditions; however, the hue and saturation in the HSV color space

are separated from the value, and the color channels a* and b* in the

L*a*b* color space are separated from the luminance, correcting the

leaf color deviation in RGB color spaces to some extent. The color-

calibration card is secondarily used to standardize the color of all

leaves, avoiding large differences in the models’ parameters and

results due to different external conditions, light, and other

uncertain factors. Therefore, the model established in this study is

more general. When inverting models of cotton leaf nitrogen content

based on digital image features, the evaluation index value of RR was

the best among the four machine learning models (training set R2 =

0.761, RMSE = 3.162, validation set R2 = 0.706, RMSE = 3.819). This

shows that although the correlation between the filtered image

features is low, there is also a weak linear relationship. The RR loss

is unbiased in exchange for numerical stability; therefore, the fitting is

more effective. In addition, RF and SVM showed good capability for

estimating the nitrogen content based on image features.

Although data-fusion technology has developed rapidly, its

application is mainly limited to urban planning, target

classification, and recognition (Xing and Meng, 2018; Hoffmann

et al., 2019; Zhao et al., 2021). Few studies on the inversion of

agricultural parameters have achieved fusion only at the data and

feature levels (Zhou et al., 2017; Li, 2018; Zhang, 2020; Jing et al.,

2022), and the improvement of model accuracy and stability has

been relatively limited. No multimodal and multilevel fusion

regression model has been proposed for crop nutrition

monitoring. In this study, a multilevel data-fusion model

combining multiple machine learning and stacking integrated

learning was built to accurately monitor the nitrogen content of

cotton crops to obtain as many phenotypic structural, physiological,

and biochemical features related to cotton nitrogen as possible

through hyperspectral, chlorophyll fluorescence, and digital image

data sources.
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Out of the three data source features for modeling, feature-level

fusion can obtain the highest level of complementary information

(training set R2 = 0.933, RMSE = 1.581, validation set R2 = 0.752,

RMSE = 3.806). Decision-level fusion can further train and learn

from the results of individual decisions made using each data source

(training set R2 = 0.997, RMSE = 0.349, validation set R2 = 0.771,

RMSE = 3.558). Machine learning is adopted for independent

modeling of each data source instead of stacking because: (1) the

single data source features substituted into the stacking model do

not significantly improve the accuracy; (2) the multilevel fusion

model must consider running time and efficiency, and the stacking

algorithm is used in this study to output the final result of each

fusion framework; and (3) combining the three-node parallel-

running stacking models with multiple nested stacking models

increases the time consumption and the running load of the

entire fusion model greatly. Therefore, the machine learning

model is used for single data source modeling.

The hybrid-fusion method can integrate the training results of

feature-level and decision-level fusion models, has significant anti-

noise ability, and significantly improves the regression accuracy of

nitrogen content inversion (training set R2 = 0.996, RMSE = 0.419,

validation set R2 = 0.848, RMSE = 2.898). The precision of the fused

models is better than the single data source models under the same

algorithm, and the precision of the hybrid-fusion model is optimal.

This shows the superiority of data fusion using spectral data,

chlorophyll fluorescence parameters, and digital images to estimate

cotton nitrogen content. However, the consequent limitation is the

increase in data acquisition costs. Different data acquisition devices

can be integrated to solve this problem and achieve portable,

synchronous, and efficient data acquisition. Follow-up research can

apply the above methods to monitoring nutrient elements at different

scales during different growth periods of crops, providing a reference

and ideas for implementing precision agriculture. With changes in

the growth period and other factors, the nitrogen nutrition status of

cotton leaves will also change, leading to differences in the parameters

related to nutritional status extracted from each data source.

Therefore, it is necessary to adjust the method of optimizing

feature screening and model construction while continuously

enriching the experimental data.
5 Conclusion

In this study, three data sources—hyperspectral, chlorophyll

fluorescence, and digital camera—were used to monitor cotton leaf

nitrogen content, screen the features of each data source, and

establish multilevel data-fusion models. The following conclusions

were drawn:

(1) The original spectral information was pre-treated using

different spectral transformation methods. Bands that correlated

significantly with the nitrogen content of cotton leaves were

selected; each round of processing yielded approximately 10 near-

infrared bands as spectral-based features. Correlation analysis

between chlorophyll fluorescence parameters and nitrogen

content revealed significant collinearity between some parameters,

and the first four principal components based on fluorescence were
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selected as features using PCA. Meanwhile, the correlation between

the extracted image parameters and the nitrogen content was

analyzed, and the parameters with strong correlation, low

redundancy and low collinearity were selected as the features

based on digital images.

(2) The evaluation index values were optimal when the spectral

data were processed using [lg(SG)]”-SVM to estimate nitrogen

content, the chlorophyll fluorescence features substituted into RF

were used to build the nitrogen content estimation model, and the

digital image features substituted into RR were used to build the

nitrogen content estimation model. The three optimal estimation

models of data sources were used for the steps in the decision-level

fusion framework.

(3) This study combined the information obtained from the

three data sources to build multilevel data-fusion models.

Compared with the single data source models under the same

algorithm, multilevel data-fusion models had improved accuracy

and stability. They can improve the accuracy and stability of cotton

leaf nitrogen inversion to varying degrees, and the hybrid-fusion

model had the best results. This provides a feasible method and

approach precisely monitoring crop nitrogen nutrition.
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