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Continually increasing global temperature could severely affect grape berry

metabolite accumulation and ultimately wine polyphenol concentration and

color intensity. To explore the effect of late shoot pruning on grape berry and

wine metabolite composition, field trials were carried out on Vitis vinifera cv.

Malbec and cv. Syrah grafted on 110 Richter rootstock. Fifty-one metabolites were

detected and unequivocally annotated employing UPLC-MS based metabolite

profiling. Integrating the data using hierarchical clustering showed a significant

effect of late pruning treatments on must and wine metabolites. Syrah metabolite

profiles were characterized by a general trend of higher metabolite content in the

late shoot pruning treatments, while Malbec profiles did not show a consistent

trend. In summary, late shoot pruning exerts a significant effect, though varietal

specific, on must and wine quality-related metabolites, possibly related to

enhanced photosynthetic efficiency, which should be taken into consideration

when planning mitigating strategies in warm climates.
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1 Introduction

Grape berry metabolite composition is crucial for producing premium-quality wine with

regional characteristics, as the grape berry metabolic status is intimately associated with

environmental and seasonal variation (Bokulich et al., 2016). Climate change forecasts

predict significant thermal increases for Mediterranean climate zones, which will intensify

the effects on vine phenology and berry composition. Elevated ambient temperature is one of

the most prominent adverse environmental factors affecting wine quality (Gutiérrez-Gamboa

et al., 2021). Elevated temperature causes the compression of the harvest period (Rienth et al.,
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2021), or varietal shifts in phenology of certain developmental phases

(Gashu et al., 2020). These phenological changes can directly impact

grape metabolism entailing significant composition changes

(Abeysinghe et al., 2019; Venios et al., 2020), e.g., increased content

of total soluble solids (TSS), increased pH, alteration in the amino

acid profile as well as a negative effect on the accumulation of phenolic

compounds (Kliewer, 1971; Kliewer, 1977; Baeza et al., 2019). Taken

together, the impact on the wine quality and regional characteristics

can be severe (Rienth et al., 2016), thus, to produce grapes with the

desired metabolic balance and mitigate the climate challenges,

optimizing proper viticulture practices will be fundamental.

A possibility for adapting viticulture to impending climate

changes is to improve photosynthetic efficiency during grape

ripening processes, e.g., by postponing winter pruning from

dormancy to post-dormancy. Other field practices capable of

modifying vine phenology include post-veraison leaf removal, post-

bud-break pruning, and severe trimming or forcing vine regrowth

(Allegro et al., 2019; Buesa et al., 2019). Late shoot pruning, also

referred to as delayed winter pruning, is a pruning technique

practised in the spring after the bud break occurs to tune growth

and yield. Recently, its application has been proposed as a significant

tool for optimizing vine growth in warm regions, containing crop

yield, and improving wine quality (Netzer et al., 2022). It was shown

that late shoot pruning was also associated with improved

photosynthetic efficiency and lower crop load. However, the effect

of the practice seems not to be consistent between varieties, e.g.

increased yield of Merlot in New Zealand (Friend and Trought, 2007),

while the decreased yield of cv. Sangiovese in Italy (Frioni et al., 2016).

More importantly, slight or no information exists from different

varieties on the response of berry and wine chemistry following late

pruning treatments from within the same experimental setup.

The goal of this work was to investigate the effect of incremental

late shoot pruning on the chemical composition of must and wine

from Syrah and Malbec varieties. Earlier works showed phenological

syncing between the treatments, but lower yield and higher quality in

the late shoot pruned vines (Netzer et al., 2022). Using a liquid

chromatography-mass spectrometry-based approach we compared

the varietal profiles of must and wine from late shoot pruning (LSP1,

LSP2, LSP3), standard winter pruning (WP), and winter pruning and

cluster thinning (WP+T) pruning treatments.
2 Materials and methods

2.1 Experimental site and plant material

The study was performed in 2017 and 2018 on an experimental

vineyard planted in 2010 in Ayalon Valley, Israel (31°86’N; 35°01’E),

186 m above sea level. The experimental layout was a randomized

complete block design with five treatments, and it was replicated four

times. Row orientation was east/west, with a slight tendency to the

south and vine and row spacing 1.5 and 3 m, respectively (4.5 m2/

vine) (Figure S1). Pest management, irrigation and fertilization in the

vineyard were applied according to standard local agricultural

practices. Must and wine samples from the 2017 and 2018 seasons

were collected and analyzed by LC-MS.
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2.2 Winter pruning and late shoot pruning

The winter pruning and late shoot pruning treatments were

performed exactly as described by (Netzer et al., 2022) on the vines

of Vitis vinifera cv. Syrah, and Vitis vinifera cv. Malbec was grafted on

110 Richter rootstock. Briefly, five pruning treatments including LSP1

(pruning after 1 week of bud break), LSP2 (pruning after 2 weeks of

bud break), LSP3 (pruning after 3 weeks of bud break), WP+T

(standard winter pruning and cluster thinning as control), and WP

(standard winter pruning as control). These pruning treatments were

randomly assigned to blocks, so there were 11*4 vines for each

treatment and treatments were applied to the same vines in

both years.
2.3 Berry sampling and metabolite analysis
in must and wine

Each year, berries from all the treatments were harvested at a

more or less, similar TSS (°Brix) value. Must samples were collected

from bulk unfermented juice after settling for an hour and then

decanting the liquid. The wine samples were obtained from the micro

vinification process of the corresponding treatments (Drori et al.,

2017). Must and wine from both the 2017 and 2018 seasons were then

analyzed by LC-MS as described below.

2.3.1 Metabolite extraction
For the metabolite analysis, must samples were pulverized by

mortar and pestle while keeping the material frozen by pouring liquid

nitrogen. Approximately 200 mg of must powder was weighed and

lyophilized in ScanVac CoolSafe™ (Labogene, Denmark, https://

www.labogene.com). While wine samples were directly lyophilized

in polypropylene tubes without pulverization. Metabolites were then

extracted by adding 1ml pre-chilled methanol: chloroform: water

extraction solution (2.5:1:1 v/v), following the protocol described by

(Hochberg et al., 2013; Degu et al., 2014). After that, internal

standards (300ml of 1mg/ml ampicillin in water and 380ml of

1mg/ml corticosterone in methanol) were subsequently added as

described (Degu et al., 2016). The mixture was then briefly

vortexed, 100ml of methanol was added and then placed on a

horizontal shaker for 10min at 1000rpm. The samples were

sonicated for 10min in an Elmasonic S30 ultrasonicator (Elma

Singen, Germany, http://www.elma-ultrasonic.com/) and

centrifuged at 14000rpm for 10 min (Centrifuge 5417R, Eppendorf

SE, Hamburg, Germany, https://www.eppendorf.com). The

supernatant was then decanted into new tubes, mixed with 300ml of
chloroform and 300ml of MiliQ water (Millipore, MA, USA, https://

www.merckmillipore.com), vortexed for 10s and then centrifuged

again for 5min at 14000rpm. The water/methanol phase, obtained

from the extraction protocol (around 1ml), was collected, and filtered

using 0.22 mm (Millipore, MA, USA, https://www.merckmillipore.

com) and stored in vials for UPLC analysis.

2.3.2 UPLC analysis
Each sample was analyzed twice in an Ultra Performance Liquid

Chromatography coupled with a Quadrupole Time-of-Flight Mass-
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Spectrometer (UPLC-QTOF MS, Waters, MA, USA, https://www.

waters.com/) system operating in both positive and negative ion

modes, alternatively (Table S6). The MassLynx™ software (Waters,

MA, USA, https://www.waters.com/) version 4.1 was used for UPLC

system control and data acquisition. The acquired raw data were

processed using the MarkerLynx application manager (Waters, MA,

USA, https://www.waters.com/) as described by Hochberg et al., 2013.

Metabolite’s annotation was based on the mass fragment

(mass/charge; m/z), their retention time (RT), and the comparison

with the internal library as well as the current scientific literature

(Degu et al., 2014). In addition, metabolites were also annotated based

on fragmentation patterns crossed with the ChemSpider metabolite

database (www.chemspider.com).

2.3.3 Data normalization and statistical analysis
The chemical feature’s peak area detected by the instrument was

normalized by internal reference for UPLC analysis (i.e., ampicillin

and corticosterone in the negative and positive ion mode,

respectively). We used two different internal standard references as

analytes have different ionizing efficiency in positive and negative ion

modes, e.g., some analytes are not ionized in negative mode, but very

well ionized in positive mode. We annotated metabolites uniquely in

both negative and positive ion modes. We used corticosterone as an

internal standard reference to normalize data of metabolites

annotated in positive ion mode, and due to poor ionization of

corticosterone in negative mode, we use another internal standard

ampicillin as a reference to normalize data of metabolites annotated in

negative mode to minimizes the variability in sample preparation as

well as variability generated by the instrument such as injection

volume. Further accuracy was acquired by normalizing samples’

values to the relative dry weight (post-lyophilization). Therefore,

data refer to the relative metabolite abundance based on ion counts.

For hierarchical clustering representation, mean values were used,

and metabolite values were ln (x+1) transformed. In addition, unit

variant scaling was applied for this analysis.

The two datasets (wine and must) were utilized for statistical

analysis based on i) hierarchical clustering as a multivariate approach

to the study; ii) analysis of variance for each detected metabolite

(multifactorial ANOVA) considering the effect of three factors

(pruning, cultivar, and year), the effect of their interactions

(pruning × cultivar, pruning × year, cultivar × year, pruning ×

cultivar × year); iii) Pearson correlation analysis for investigating

on the putative relationships among metabolites both as must and

wine autocorrelations and must-to-wine bipartite correlation.

Statistical analysis and data visualizations were performed in the R

environment (R Core Team, 2022a) using R studio IDE (R Studio

Team, 2022b).
3 Results

3.1 Pruning exerts a significant effect on
must and wine metabolite status

Standard winter pruning was conducted according to common

agricultural practice in mid-February. In examining the seasonal

patterns of phenological development throughout the three seasons,
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previous findings showed that late pruning treatments re-started the

phenological process at a similar pace (Netzer et al., 2022). A one-

week difference between dates of late pruning, conducted per the

relevant treatments, was evident in the phenological pattern until

mid-May. Nonetheless, a significant increase in the pace of

development in the later winter pruning treatments was apparent

frommid-May until the end of June, bringing all treatments to sync at

veraison (stage 35).

To test if the phenological syncing was reflected in the must and

wine chemistry, we analysed samples of must and wine using LC-MS-

based protocol across the entire experimental setup, i.e., a total of 160

samples. Fifty metabolites were consistently identified and

unequivocally annotated. Metabolites primarily belong to

polyphenols, including anthocyanins, flavonoids, phenolic acids,

and stilbenes (Figure 1; Tables S1, S2). Hierarchical clustering was

performed using the metabolic data of must and wine. The

dendrogram obtained after the cluster analysis sharply divided the

samples based on their origin (wine vs must) (Figure 1). Next, the

samples were clustered by ‘cultivar’ (Malbec vs Syrah), and then by

‘year’ (2017 vs 2018). The opposite pattern was shown for the wine

samples, i.e., first by ‘year’, then by ‘cultivar’. Within each sub-cluster

(pruning-cultivar-year combination), samples from the most extreme

late shoot pruning treatments (LSP3 and LSP2) and samples from the

no-late pruning treatments (WP+T and WP) formed two separate

groups (Figure 1). When repeating the analysis for must and wine

samples separately, clustering was observed primarily by ‘cultivar’

(Malbec vs Syrah), then by year in the must (Figures 2A, B). In the

wine, clustering was observed primarily by treatment (Figures 3A, B).

In both datasets, five main groups of metabolites were identified based

on their pattern of change i) amino acids, (ii) anthocyanins (iii)

flavonoids (flavanols, flavanones, flavanonol and flavonols) (iv)

hydroxycinnamic acids and (iv) stilbenes. The analysis of variance

revealed that different pruning treatments had a significant effect on

most of the detected metabolites (Tables S1, S2), but all metabolic

groups were differentially affected, with the most influenced metabolic

classes being anthocyanins (Figures S2A–D) and stilbenes (Figures

S3A–D). The highest relative content of anthocyanins and stilbenes

were detected in the most extreme late pruning treatment in must, i.e.,

vines pruned three weeks after bud-break (LSP3). For instance, a

general trend in Syrah must sample was observed from the “late shoot

pruning” treatments (i.e., LSP3, LSP2, and LSP1) which measured

higher anthocyanin and stilbene content in comparison with the

standard pruning treatments, i.e., WP+T and WP. Among the

anthocyanins, Pet-3-glu, Cyan-3-glu, Peo-3-glu, Delph-3-acet, Pet-

3-acet, Cyan-3-acet, Peo-3-acet, Peo-3-coum showed higher content

in the LSP3 Syrah must (Figure S2A), while Delph-3-glu, Delph-3-

acet, Peo-3-acet, accumulated in LSP3 wine samples (Figure S2B). On

the other hand, in Malbec, the LSP3 late-pruning treatments reported

higher anthocyanin abundance as compared with the “no-late-

pruning” with higher accumulation in LSP3 in must and LSP2

treatment in wine samples, but it significantly depends on the

season (Figures S2C, D). Among the stilbenes trans-piceid, cis-

piceid, trans-resv, cis-resv and delta-viniferin showed higher

content in Syrah must and wine samples which were also affected

by seasonal variations (Figures S3A, B), on the other hand, Malbec

showed higher content of trans-piceid and cis-piceid in both must

and wine in 2017’s most extreme late pruning treatment, i.e., LSP3
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(Figures S3C, D). Flavanols such as Proc-B2 and epicatechin followed

the same trend as anthocyanins in the Syrah wine sample (Figure 3A).

Flavanols like Proc-B1, Proc-rt1.84, Proc-B2, catechin, epicatechin,

epigallocatechin and gallocatechin followed a general trend with the

highest accumulation in LSP3 2018 in Malbec must (Figure 2A) and

Proc-rt1.84, epigallocatechin in wine samples (Figure 3A). Among

flavonols, quercetin and myricetin were higher in the late pruning

treatments, in Syrah must samples (Figure 2A). Notably, naringenin-

chalcone and astilbin were not affected by the pruning treatments.

The statistical analysis using post hoc Tukey’s test revealed a

significant difference between cultivars (Malbec vs Syrah) and

between vintages (2017 vs 2018) (Tables S1, S2).
3.2 Factor interaction affected
metabolite accumulation

Cultivar × treatment interaction mainly concerned the group of

anthocyanins and stilbenes (Tables S1, S2). A general trend of higher

metabolite content in the late pruning treatments was evident in must

samples. All other metabolites either did not follow a common trend

or were not significantly affected. Must flavanols, flavonols, and

hydroxycinnamic acids were affected by cultivar and year

interaction, while wine anthocyanins and flavonols were affected by
Frontiers in Plant Science 04
cultivar and year interaction (Table S1). No effect from the interaction

between pruning and year factors was detected except for the flavanol

(Proc-rt1.84), the flavonol (myricetin-3-glucoside), and stilbene (cis-

piceid). The triple interaction effect (treatment × cultivar × year)

denotes a high sensitivity of secondary metabolites to external

conditions. The triple interaction effect involved some classes of

flavanols (Proc-B1, Proc-rt1.84, Proc-rt2.6, epigallocatechin) and

hydroxycinnamic acids (p-coumarate, coutarate, ferulate, caff-tart),

stilbene (trans-piceid, trans-resv) as well as flavanonol (astilbin) and

the flavonol (myr-3-glu) in the must (Figure 2; Table S1). While in

wine samples, flavanols (Proc-B1, Proc-rt1.84, Proc-B2) flavonols

(quer-3-glu), and stilbene (delta-viniferin) were affected by the

interaction between (treatment × cultivar × year) (Figure 3; Table

S2). When repeating the ANOVA separating the two cultivars, Syrah

reported more significant and consistent metabolite changes than

Malbec in the anthocyanin and flavonol classes, whereas Malbec

showed more significant variations in the hydroxycinnamic acids

(Figures 2, 3; Table S2). The number of metabolites affected by the

cultivar-to-pruning interaction (cultivar × pruning) was higher in

wine than in must. Besides stilbenes, cultivar-to-pruning interactions

also concerned flavanols, flavonols, and more anthocyanins than in

the must samples. Other interactions also regarded the combined

effect of treatment and cultivar with vintage; they were generally

noticed for some metabolites from every class except for

hydroxycinnamic acids and flavanols.
FIGURE 1

Hierarchical clustering heatmap obtained from cluster analysis. Cluster sharply divided the samples based on the kind of sample (wine vs must) then
cultivar, year and pruning treatments. Samples from the most extreme late shoot pruning treatments (“LSP3” and “LSP2”) and samples from the no-late
pruning treatments (“WP+T” and “WP”) seemed to form two different groups. The late shoot pruning treatment “LSP1” alternatively clustered with one of
the two groups.
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3.3 Correlation analysis showed a
positive correlation between
anthocyanin and flavanols

To study the coordination of metabolic processes concerning

the pruning treatments, a correlation analysis using Pearson

correlation was performed. The correlation analysis of must

samples revealed high positive correlations among anthocyanins
Frontiers in Plant Science 05
and flavanols. Vitisin_A showed a negative correlation with most

of the metabolite classes except anthocyanins and stilbenes in

must samples of Syrah and Malbec. Cultivar differences included a

high number of positive correlations of gallocatechin and

quercetin with anthocyanins in Syrah (Figure 4A; Table S3

Sheet1), and strong positive correlations among flavanols in

Malbec (Figure 4B; Table S3 Sheet2) as well as strong positive

correlations of astilbin, coutarate, caff-tart, and trans-piceid with
A

B

FIGURE 2

Heatmap and 2D PCA score plot of annotated LC-MS based metabolites in must Samples. (A) Hierarchical clustering heatmap obtained from the cluster
analysis sharply divided the samples into cultivar and year and pruning. (B) PCA score plot from metabolite data including cultivar and year and pruning
treatments. Samples from the most extreme late shoot pruning treatments (“LSP3” and “LSP2”) and samples from the no-late pruning treatments (“WP+T”
and “WP”) seemed to form two different groups. The late shoot pruning treatment “LSP2” alternatively clustered with one of the two groups.
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the group of flavanol. Similar relations were also observed in the

wine samples. When comparing the two cultivars separately, the

Malbec correlation matrix reported higher indices in the number

of correlations and their strength (Figures 5A, B; Table S4 Sheet1

and Sheet2). On the contrary, must and wine anthocyanins did

not correlate well except for the wine delph-3-glu, delph-3-acet

and peo-3-acet with all the must anthocyanins (Figure 6; Table S5

Sheet1 and Sheet2).
Frontiers in Plant Science 06
4 Discussion

The wine quality is reflected by the amount and composition of a

large number of primary and secondary metabolites that shape its

sensorial experience. Considering this view, it is likely that optimizing

the environmental conditions during the grape ripening period will be

required to produce good quality wine. These conditions can be

achieved by modifying the viticulture practices in which late shoot
A

B

FIGURE 3

Heatmap and 2D PCA score plot of annotated LC-MS-based metabolites in wine Samples. (A) Hierarchical clustering heatmap obtained from the cluster
analysis sharply divided the samples by year and then cultivar and pruning. (B) PCA analysis suggests that the wine samples were clustered by ‘year’ (2017
vs 2018) and then by ‘cultivar’ (Malbec vs Syrah).
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pruning is the most important and economical way. Late shoot

pruning can delay the phenology towards a cooler environment,

thus able to minimize the effect of elevated temperature. The

current study aimed to dissect the effect of late shoot pruning on

differential metabolite accumulation in two red grapevine varieties,

Malbec and Syrah.
Frontiers in Plant Science 07
In the LC-MS based metabolite profiles, amino acids did not

follow a general trend, but their concentration decreased in late

pruning, likely because these aromatic amino acids are precursors

to the biosynthesis of secondary metabolites (Wang et al., 2017), and

play a role in fruit and wine chemical quality. Among secondary

metabolites, anthocyanins, flavanols, flavonols and stilbenes were the
A

B

FIGURE 4

Correlation analyses between metabolites of two cultivars (A) Syrah must, most of the metabolites were positively correlated except rutin, myr-3-glu,
kaem-3-glu, hydro-benz-hex, ferulate and benzoic acid which were negatively correlated. (B) Malbec must, most of the metabolites were positively
correlated except p-coumarate, ferulate and cis-resv were negatively correlated with other metabolites. Amino acids were negatively correlated with
most of the metabolites except rutin, ferulate in Syrah must, while quercetin, kaem-3-glu, p-coumarate and ferulate showed a positive correlation with
amino acids. Vitisin_A was negatively correlated with most other metabolite groups.
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most affected groups by pruning treatments. Our findings suggest that

flavanol accumulation is linked to the time of pruning in addition to

environmental factors reported, e.g., light (Cortell and Kennedy,

2006; Reshef et al., 2017), soil conditions (Perin et al., 2020)

temperature (Del-Castillo-Alonso et al., 2016b), UV-B radiation
Frontiers in Plant Science 08
(Del-Castillo-Alonso et al., 2016a), and biotic stresses (Kuhn

et al., 2013).

Among stilbenes, our study showed that resveratrol and viniferin

were significantly modulated by the pruning treatments, with Syrah

showing higher resveratrol content and Malbec in viniferin content.
A

B

FIGURE 5

Correlation analyses between metabolites of wine samples from two cultivars. (A) In Syrah wine, most of the metabolites were positively correlated
except cyan-3-coum, myr-3-glr and caffeic acid, which were negatively correlated. (B) In Malbec wine, most of the metabolites were positively
correlated except cyan-3-coum, and citrate which were negatively correlated while rutin, caffeic acid, trans-piceid, cis-piceid, and benzoic acid had a
weak correlation with other metabolites. Amino acids, phenylalanine and tryptophan were negatively correlated with most of the metabolites except
trans-resv, cis-resv in Syrah wine, while caffeic acid, trans-piceid, and cis-piceid in Malbec wine showed a positive correlation with amino acids.
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These results are consistent with previous studies showing the high

plasticity of these phytoalexins (Anesi et al., 2015) and their relation

to climate conditions (Dal Santo et al., 2016; Guerrero et al., 2020).

Our study shows a clear varietal specificity with respect to the

effect of pruning treatments on the metabolite profile. For example,

the role of the genotype is evident in anthocyanin’s pattern of change
Frontiers in Plant Science 09
across the experimental setup, which follows a general trend of

accumulation towards the later pruning treatments in Syrah. These

results are supported by the findings that anthocyanin content

changes in relation to climate conditions (Shah et al., 2021), and

the effect of pruning on their accumulation (Zheng et al., 2017).

However, many anthocyanins in Malbec did not follow a similar
A

B

FIGURE 6

Correlation analyses between metabolites of must and wine samples from two cultivars. (A) In Syrah must and wine samples, must amino acids were
negatively correlated with wine metabolites except for phenylalanine, cyan-3-coum, myr-3-glr and caffeic acid which were negatively correlated with
most of the must metabolites. Must delta-viniferin was negatively correlated with most of the wine metabolites. (B) In Malbec must and wine samples,
must amino acids were negatively correlated with wine metabolites except for amino acids and cyan-3-coum which were negatively correlated with
most of the must metabolites. Must vitisin_A, kaem-3-glu and delta-viniferin were negatively correlated with most of the wine metabolites.
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trend, suggesting that different varieties have specific mechanisms

regulating anthocyanin metabolism.

The effectiveness of the time-dependent late pruning technique

for improving grape composition was confirmed in both Syrah and

Malbec. Grapes from the late shoot pruning treatments had a higher

concentration of polyphenols in the must, which is in line with earlier

observations of late pruning to decouple the ripening dynamics of

sugars and phenolic substances (Sadras and Moran, 2012; Frioni et al.,

2016; Silvestroni et al., 2018; Moran et al., 2021).

Wine metabolite profiling also confirmed the ameliorating effect

of pruning, which is consistent with previous findings (Moran et al.,

2018; Moran et al., 2019). Statistical analysis on a dataset of 51

detected metabolites revealed significant differences for all the

metabolite classes except hydroxycinnamic acids. Differences

between treatments were augmented in Syrah and slightly

attenuated in Malbec wine, but in both cultivars, the higher color

intensity and phenolic substances found in response to late shoot

pruning are desirable attributes, as described also by Moran et al.

(2019) for Syrah wine. Notably, in wine, the extreme late shoot

pruning treatment (three weeks after bud break) was not

characterized by the highest values of anthocyanin content as

reported for the must samples. This suggests the existence of a non-

linear relation between wine and must metabolites mediated by

practices in the field. The year of production (vintage) and cultivar

were major factors in the separation of wine samples on a PCA, while

the treatment factor was more apparent in Malbec than in Syrah,

which is not consistent with the must data. When considering the

interaction between cultivar and treatments, Syrah positively

modulates its metabolites in response to pruning treatments

compared to Malbec. The results of this study also suggest a strong

effect of late shoot pruning on both must and wine, consistent

throughout the years.

Late shoot pruning can be effective when environmental conditions

may limit the achievement of the desired grape ripeness, which is

supported by earlier studies performed by (Mori et al., 2007; Sadras

and Moran, 2012) as well as observations by Moran et al. (2018). Moran

et al. (2018) found an interaction between the timing of pruning and

temperature, whereby late pruning enhanced grape phenolic substances-

to-sugars ratio in high-temperature vines but not in unheated control

vines. Thus, the present study suggests that late shoot pruning by forcing

the plant (1) to produce leaves later in the season, which will be

considerably more efficient for photosynthesis and (2) having less sink

load, improves carbon utilization by secondary metabolite biosynthetic

pathways, including increased synthesis of phenolic substances.
5 Conclusion

The late shoot pruning shifted grapevine phenology and

perturbed its metabolism. Nonetheless, a combination of a highly
Frontiers in Plant Science 10
regulated berry phenological syncing, renewed leaf development with

improved carbon assimilation capacity and a lower cluster load, led to

improved metabolic features such as more stilbenes and flavonoids.

Having that said, varietal-specific qualitative and quantitative

metabolic alterations of the berry metabolism should be considered,

and similar studies should be conducted before upscaling conclusions.
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Glossary

LSP3 Late shoot pruning 3 (three weeks after bud-break)

LSP2 Late shoot pruning 2 (two weeks after bud-break)

LSP1 Late shoot pruning 1 (one week after bud-break)

WP+T Standard winter pruning and cluster thinning

WP Standard winter pruning

Delph-3-glu Delphindin-3-O-glucoside

Mal-3-glu Malvidin-3-O-glucoside

Pet-3-glu Petunidin-3-O-glucoside

Cyan-3-glu Cyanidin-3-O-glucoside

Peo-3-glu Peonidin-3-O-glucoside

Delph-3-acet Delphinidin-3-O-(6′′-acetylglucoside)

Mal-3-acet Malvindin-3-O-(6′′-acetylglucoside)

Pet-3-acet Petundin-3-O-(6′′-acetyl-glucoside)

Cyan-3-acet Cyanidin-3-O-(6′′-acetyl-glucoside)

Peo-3-acet Peonidin-3-O-(6′′-acetyl-glucoside)

Delph-3-coum Delphinidin-3-O-(6′′-p-coumaroyl-glucoside)

Mal-3-coum Malvidin-3-O-(6′′-p-coumaroyl-glucoside)

Pet-3-coum Petunidin-3-O-(6′′-p-coumaroylglucoside)

Cyan-3-coum Cyanidin-3-O-(6′ ′-p-coumaroyl-glucoside)

Peo-3-coum Peonidin-3-O-(6′′-p-coumaroyl-glucoside)

Proc-B1 Procyanidin B1

Proc-rt1.84 unknown (similar to Procyanidin retention time 1.84 minute)

Proc-B2 Procyanidin B2

Proc-rt2.6 unknown (similar to Procyanidin retention time 2.6 minute)

Narin-chalc-glu Naringenin-chalcone-4-Oglucoside

Quer-3-glu Quercetin-3-O-glucoside

Quer-3-glr Quercetin-3-O-glucuronide

Rutin Quercetin-3-O-rutinoside

Myr- 3-glu Myricetin-3-O-glucoside

Myr-3-glr Myricetin-3-O-glucuronide

Kaem-3-glu Kaempferol-3-O-glucoside

Kaemp-3-glr Kaempferol-3-O-glucuronide

Coumarate-hex Coumarate-hexoside (p-Coumaric acid glucoside)

Hydro-benz-
hex

Hydroxybenzoate hexoside (Hydroxybenzoic acid 4-O-
glucoside)

Caff-tart caffeoyl-tartaric acid

Resv Resveratrol
F
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