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The sanitary quality of seed is essential in agriculture. This is because pathogenic

fungi compromise seed physiological quality and prevent the formation of plants in

thefield,whichcauses losses to farmers.Multispectral images technologies coupled

with machine learning algorithms can optimize the identification of healthy peanut

seeds, greatly improving the sanitary quality. The objective was to verify whether

multispectral images technologies and artificial intelligence tools are effective for

discriminating pathogenic fungi in tropical peanut seeds. For this purpose, dry

peanut seeds infected by fungi (A. flavus, A. niger, Penicillium sp., and Rhizopus sp.)

were used to acquire images at different wavelengths (365 to 970 nm). Multispectral

markers of peanut seed health quality were found. The incubation period of 216 h

was the one that most contributed to discriminating healthy seeds from those

containing fungi throughmultispectral images. Texture (Percent Run), color (CIELab

L*) and reflectance (490 nm) were highly effective in discriminating the sanitary

quality of peanut seeds. Machine learning algorithms (LDA, MLP, RF, and SVM)

demonstrated high accuracy in autonomous detection of seed health status (90 to

100%). Thus, multispectral images coupled with machine learning algorithms are

effective for screening peanut seeds with superior sanitary quality.

KEYWORDS

Arachis hypogaea L., machine learning, Aspergillus spp., support vector machine,
seed health
Introduction

The peanut seeds (Arachis hypogaea L.) are of great food importance because, besides

being a relevant source of vitamins, they are also rich in minerals, proteins and oil (Arya

et al., 2016; Bessada et al., 2019). However, one factor that can limit the establishment of

this and other important food crops is fungal contamination of the seeds, especially during
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2023.1112916/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1112916/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1112916/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1112916/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2023.1112916&domain=pdf&date_stamp=2023-02-22
mailto:clissia@usp.br
https://doi.org/10.3389/fpls.2023.1112916
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2023.1112916
https://www.frontiersin.org/journals/plant-science


Sudki et al. 10.3389/fpls.2023.1112916
post-harvest (Zhang et al., 2020; Wang et al., 2022). The infection of

peanut seeds by pathogens such as Penicillium spp. (Aristil et al.,

2020) and the Aspergillus spp. (Jayaprakash et al., 2019)

compromises the sanitary quality and, consequently, seed

performance (Wang et al., 2022). Traditional seed pathogen

detection protocols (ISTA, 2020) are limited and subjective,

requiring analytical expertise to obtain reliable results. This has

been an obstacle to enhance the sanitary control of peanut seeds.

Thus, investigating new methods capable of determining seed

health is part of a technological strategy in agriculture.

Considering that the peanut is produced and traded globally

(USDA, 2022), we ask ourselves: how can we detect pathogenic

fungi in seeds in a more efficient and less subjective way? The

alternative proposed brings together technological strategies based

on multispectral images and machine learning to optimize the

analysis of the seed sanitary state.

Multispectral images have wide application in studies of seeds

cultivated and forest species (Elmasry et al., 2019a; Barboza da Silva

et al., 2021b). Their ability to assess multi-angle organic realities in the

electromagnetic spectrum brings promising exploratory power for

fungal detection (Boelt et al., 2018). The main reason for this is that

the mycelia resulting from fungal colonization changes the surface and

chemical composition of the seeds (Zhang et al., 2022). This event

generates easily perceptible changes in the spectral range (França-Silva

et al., 2020; Rego et al., 2020). In peanut seeds, information acquired at

various wavelengths has made it possible to diagnose pathologies non-

invasively (Qiao et al., 2017; Ziyaee et al., 2021). Some multispectral

descriptors such as color (CIELab L*) and reflectance have high

sensitivity for detecting the post-harvest decay status of peanut seeds

(Fonseca de Oliveira et al., 2022). For instance, in a seed of an

oleaginous species (J. curcas), textural parameters obtained from

multispectral images make it possible to diagnose gray-level nuances

associatedwith fungal contamination (Bianchini et al., 2021). Thus, the

simultaneous analysis of color, reflectance and texture can increase the

accuracy in detecting peanut seed pathogens.

The interaction of light with the physical and chemical

characteristics of seeds can define their spectral identity. This

information can be valuable for improving the characterization of the

sanitary quality of the peanut seeds. In the case of the color and

reflectance parameters, the brightness characteristics of the seed surface

coat are indicative of aging of the embryonic tissues (Fonseca de

Oliveira et al., 2022) or infection by pathogenic organisms (Boelt

et al., 2018). The seed reflectance is altered in the presence of the

pathogen mycelia, which makes it possible to distinguish fungal species

with high accuracy (França-Silva et al., 2020). Also, the reflectance

property depends on parameters such as the texture and chemical

composition of the fungal colonies and the seeds (Barboza da Silva et al.,

2021a). The development of the fungus depends on the consumption of

reserves in the embryo (Zhang et al., 2022), which physically modifies

the integument with the formedmycelia. These chemical and structural

changes in the seed generate variations in reflectance (Ziyaee et al.,

2021) and in textural parameters such as smoothness, roughness and

regularity that can be detected autonomously (Rego et al., 2020). In

addition, these descriptors can reveal significant differences in

pathogens that appear similar to human visual inspection (Elmasry

et al., 2019a). Therefore, by exploring multispectral descriptor
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technologies, an opportunity is created to improve the technical rigor

of the sanitary control in the peanut seeds.

These multispectral image technologies coupled with artificial

intelligence algorithms can contribute to decision making ensuring

high standards of peanut seed health. Machine learning is a digital

analytical resource for predicting patterns based on numerical data

(Medeiros et al., 2020a; Medeiros et al., 2020b). It is a branch of

artificial intelligence with wide application, including studies with

seeds (Barboza da Silva et al., 2021b; Batista et al., 2022; Fonseca de

Oliveira et al., 2022). The simplicity andhigh efficiency of these features

can reduce analysis time (Elmasry et al., 2019a). Autonomous decision

making from the large volume of data generated by multispectral

images can streamline peanut seed qualitymanagement. This proposal

has been documented for seeds of other species (França-Silva et al.,

2020; Rego et al., 2020; Barboza da Silva et al., 2021a). The research

hypothesis is that multispectral image technology coupled with

machine learning algorithms can optimize the identification of the

sanitary state of peanut seeds. Therefore, the aim was to verify whether

this technique could effectively discriminate fungi that occur most

commonly in the peanut seeds.
Material and methods

Plant material

The peanut seeds (IAC 503 cultivar) used in this study were

kindly provided by Dr. Ademir Hilário Amaral, Seed Quality

Manager at the Sementes Esperança Company (https://

www.sementesesperanca.com.br/) in Jaboticabal, São Paulo, Brazil.
Trial design

Here, the idea was to investigate technological tools with the

potential to access the sanitary quality of peanut seeds. For this,

commercial peanut seeds inoculated with different types of

pathogenic fungi were used. Initially, the fungi were analyzed in a

traditional test (blotter method). Subsequently, images were

obtained at different wavelengths of these seeds according to the

incubation time of the fungi. To validate the information, verified

through the multispectral images of the seeds, machine-learning

algorithms were used. In summary, we demonstrated the possibility

of detecting pathogenic fungi in peanut seeds by imaging

parameters. Many of them, not detected by human vision in

traditional analyses. Therefore, here we present a new method for

peanut seed health analysis with potential application in monitoring

the sanitary quality of commercial seed lots.
Fungal isolation, inoculation,
and incubation

The isolates of Aspergillus flavus, Aspergillus niger, Penicillium

sp. and Rhizopus sp. were obtained from 500 peanut seeds using the

blotter method (500 seeds for each fungal isolation). Peanut seeds
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were distributed in a 9 cm plastic Petri dish (five seeds per Petri

dish) containing three layers of sterilized blotting paper moistened

with 6 mL sterile distilled water and kept at 20°C with a 12 h

photoperiod of white fluorescent light for 7 days. The seeds were

examined individually, and the fungi were identified based on

morphological characteristics using a stereomicroscope. Next, the

fungi were picked with a sterile needle and transferred to sterile

9 cm Petri dishes containing potato dextrose agar (PDA). The Petri

dishes were kept in a growth chamber at 20°C with a 12 h

photoperiod of white fluorescent light for 10 days.

After this process, disinfected seeds, asepsis with 1% sodium

hypochlorite for 3 min (Mahajan et al., 2018; Doncato and Costa,

2019), were put in direct contact with the fungal colonies and kept

in a growth chamber under the same conditions described above for

24 h. The disinfection of the seeds before inoculation of the fungus

allowed to generate information without the possible influence of

other microorganisms present in the seed or associated with it

through the air or soil during its production in the field. A group of

disinfected seeds was separated to form a control (healthy seeds).

The peanut seeds were dried on three layers of paper towels at room

temperature for 24 h. Afterwards, the infected seeds were incubated

under the same conditions previously described for 24, 48, 72, 96,

120, 144, 168, 192, 216 and 240 h.
Procedures for extracting
multispectral data

After incubation, 500 seeds from each incubation period (24, 48,

72, 96, 120, 144, 168, 192, 216 and 240 h) and from the control

treatment (healthy seeds) were placed on a transparent acetate sheet

(5.0 cm x 8.5 cm) in the same position using double-sided adhesive

tape. Before image acquisition, the light setting was adjusted to

optimize the strobe time of each illumination type and improve

signal-to-noise ratio such that the captured images could be directly

comparable. Light setup was calibrated using a representative

sample and saved for all subsequent images. The multispectral

images (spatial dimension of 2192 x 2192 pixels; 40 mm/pixel) were

captured using a VideometerLab4 device (Videometer A/S, Herlev,

Denmark, software version 5.4.6). The samples were then

illuminated with 19 monochromatic light-emitting diodes (LEDs:

365, 405, 430, 450, 470, 490, 515, 540, 570, 590, 630, 645, 660, 690,

780, 850, 880, 940 and 970 nm). The ambient light was switched off

during the image acquisition to remove false light coming into the

image. RGB (Red-Green-Blue) images were also acquired using the

same sensor.

A segmentation technique based on thresholding was used to

remove the background and isolate the region of interest – ROI

(peanut seed + fungus). A processing algorithm based on

normalized canonical discrimination analysis (nCDA) was

applied to the images to highlight the intensity of the reflectance

signals pixel by pixel (Bianchini et al., 2021). This algorithm uses the

trimmed mean of pixel values, eliminating the influence of outliers

(the lowest 10% and the highest 10%) (Barboza da Silva et al.,

2021a), and then, it transforms grayscale images into score images
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with red-green-blue color codes. Different texture, color and

reflectance descriptors were extracted with a Binary Large Object

(BLOB) tool in the VideometerLab software. This tool serves to

detect the object under analysis (i.e. seeds), automatically segment

the image by making the pixels in the background null, and extract

the data individually for each object.

Texture descriptors were extracted from the images to

characterize the structural arrangement of the fungal mycelia,

which was calculated using mathematical models proposed by

Galloway (1975); Chu et al. (1990) and Albregtsen and Nielsen

(2000). These models are based on a two-dimensional matrix called

run-length matrix p(i, j), containing the number of runs of different

gray lengths (j) and levels (i), arranged according to the gray lengths

and values. Consecutive pixels of the same gray level in a given

direction constitute a run, and the run length is the number of pixels

in the run (Galloway, 1975). In general, the run-length matrix aims

to calculate the number of consecutive pixels in a given direction

that has the same gray-level intensity. For instance, a coarse texture

will be dominated by relatively long runs, whereas a fine texture will

predominantly have shorter runs (Nailon, 2010; Agwu and

Ohagwu, 2016).

The run-length emphasis describes a number of consecutive

pixels with the same gray-level value. It could be suitably termed

long or short-run emphasis depending on the number of

consecutive pixels in the chosen direction with the same grey-

level value (Tang, 1998; Agwu and Ohagwu, 2016). The run-length

and gray-level non-uniformity describe the pixel disorderliness and

pixel grey-level runs. The fraction of the image in runs simply refers

to run percentages, i.e., the ratio of the total number of runs in the

image to the total number of pixels in the image expressed as a

percentage (Tang, 1998; Agwu and Ohagwu, 2016).

Seven texture descriptors were extracted from the images: (i)

short run emphasis (SRE), which measures the distribution of short

runs, where the higher the SRE the finer the texture; (ii) long run

emphasis (LRE), which measures the opposite, i.e., the higher the

LRE the rougher the texture; (iii) gray-level nonuniformity (GLN),

which assesses the distribution of runs between gray levels; (iv) run

length nonuniformity (RLN), which measures how close the run

lengths are in the image (the closer the run lengths are, the lower the

RLN); (v) run percentage (RP), which measures the ratio between

the number of runs and the maximum number of runs in a specific

direction (linear structures will have the lowest RP values); (vi) low

gray-level run emphasis (LGRE), which measures the distribution of

the lowest gray level values in an image; (vii) high gray-level run

emphasis (HGRE), which measures the distribution of the highest

gray level values. The texture descriptors were calculated using the

following formulas:

1Þ SRE =
1
nr
oM

i=1oN
j=1

p(i, j)
j2

2Þ LRE =
1
nr
oM

i=1oN
j=1j

2p(i, j)

3Þ GLN =
1
nr
oM

i=1(oN
j=1p(i, j))

2
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4Þ RLN =
1
nr
oN

j=1(oM
i=1p(i, j))

2

5Þ RP = nr=np

6Þ LGRE =
1
nr o

M
i=1oN

j=1p(i, j)=i
2

7Þ HGRE =
1
nr
oM

i=1oN
j=1i

2p(i, j)

Where, p(i, j) represents the number of runs with pixels of a

gray level intensity equal to i and run length equal to j along a

specific direction;M is the number of gray levels; N is the maximum

run length in the image; nr is the total number of runs and np is the

number of pixels in the image.

To obtain accurate information regarding any color differences

between the fungal mycelia, an RGB color model was converted to

the CIE L* a* b* color space, which comprises all colors perceptible

to the human eye under controlled conditions. The CIE L* a* b*

color space is represented by the perceived brightness L* and the

chromaticity coordinates a* and b*. The intensity-hue-saturation

(IHS) fusion technique was also applied to combine data from all

spectral bandwidths. The CIE L* a* b* coordinates were calculated

from the XYZ tristimulus values using the following formulas:

1Þ L* = 116(
Y
Yn

)
1
3 − 16

2Þ a* = 500½( X
Xn

)1=3 − (
Y
Yn

)1=3�

3Þ b* = 200½( Y
Yn

)1=3 − (
Z
Zn

)1=3�

Where, L* represents the brightness ranging from 0.0 (black) to

100.0 (white); the dimensions a* and b* are correlated to the colors

red-green and yellow-blue, respectively ranging from -120.0 (-a* =

green; -b* = blue) to 120.0 (a* = red; b* = yellow); X, Y and Z are

original tristimulus values, and Xn, Yn and Zn are tristimulus values

of the reference white point.

Finally, to verify the influence of anthocyanin pigments on

fungal spectral patterns (Fonseca de Oliveira et al., 2022), we also

captured multispectral images using a SeedReporterTM instrument

(PhenoVation B.V., Wageningen, Netherlands).
Principal component analysis

To classify the peanut seeds contaminated with different fungi, a

multivariate analysis technique based on PCA was used to identify

patterns, correlations and contributions of the texture, color, and

reflectance descriptors for discrimination of the different fungal

classes. A correlation matrix was obtained through an original

matrix n x p, where n was the number of seeds and p the number

of variables, which was decomposed into eigenvalues and

eigenvectors with the eigenvectors forming latent variables (called
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Component 1, Component 2, …, and Component p) composed of

the linear combination of variables and their respective weights. The

eigenvalues were used to verify the total percentage of variance

explained by each of the principal components (Jollife and Cadima,

2016). The PCA allowed the identification within each parameter

(texture, color, and reflectance) of the most accurate metric to

distinguish the treatments (healthy seeds and 4 fungus classes).

From the variables with the greatest contribution detected in the

PCA, was identified which incubation time interval contributed the

most to capture the greatest variability among the fungal classes.
Machine learning - creation models for
classifying fungal-infected peanut seeds

Four algorithms were used for data modeling: linear

discriminant analysis (LDA), multi-layer perceptron neural

network (MLP), support vector machine (SVM) and random

forest (RF). The models were developed based on five classes

(healthy seeds, seeds contaminated with A. flavus, A. niger,

Penicillium sp. and Rhizopus sp.), using data from 500 seeds in

total (for each treatment: 2500 analyzed data), in which 75% of the

data (n = 1875) were used for training and cross-validation. (K-fold

= 5) and 25% (n = 625) for independent validation of the models. In

the modeling analysis, all variables were used (texture: GLN, HGRE,

LRE, SRE, LGRE, RLN and RP; color: CIELab b*, CIELab a*,

CIELab L*; reflectance (395 to 970 nm). The metrics used to

measure the performance of the models were accuracy, Cohen’s

Kappa coefficient, precision, recall, F1, and confusion matrix

(documentation can be found at https://scikit-learn.org/stable/

modules/model_evaluation.html). Python 3.6.0 was used to

develop machine learning models.
Analysis of variance

The data obtained from the multispectral images of 500 seeds

provided by the variables with the greatest contribution to

discriminating the sanitary quality of peanut seeds were

submitted to ANOVA (each seed as a repetition; n=500) after

checking the assumptions of normality and homoscedasticity

using the Shapiro-Wilk and Bartlett tests. The averages were

compared using the Tukey test (P< 0.05). This statistical analyses

were performed using the R 4.0.3 software program (completely

randomized design) (R Core Team, 2022).
Results

Identification of relevant spectral
features based on texture, color,
and reflectance data

The two principal components (DIM 1 + DIM 2) explained

82.3% of the variation between classes based on texture descriptors

(Figure 1A). The variability between the different classes was mainly
frontiersin.org
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influenced by the RP descriptor (Figure 1B), with higher and lower

values for Aspergillus flavus and Rhizophus sp. groups,

respectively (Figure 1C).

The Dim 1 + Dim 2 explained 93.8% of the data variability

based on color descriptors (Figure 2A) with better separation of the

classes compared to texture descriptors (Figure 1A). The variable

that most contributed to the variability of the data was CIELab L*

(Figure 2B), with a clear separation of the five classes, particularly

Rhizopus sp. from Aspergillus niger (Figure 2C).

The two principal components explained a total of 95.2% (Dim

1 + Dim 2) of the variance between reflectance data (Figure 3A), in

which the 490 nm band had the greatest contribution to the sorting

of the classes (Figure 3B). At 490 nm, Rhizopus sp. showed the

highest reflectance values, followed by Penicillium sp. and

Aspergillus flavus, while the lowest values were obtained in seeds

infected by Aspergillus niger (Figure 3C).
Influence of the fungal development stage
on inspection of peanut seed health

In order to identify the incubation period that most contributed

to discriminate the different classes, an exploratory analysis of the

data obtained for each incubation time was carried out based on

PCA (Figure 4). This analysis was carried out considering the main

discriminating parameters of the sanitary quality of peanut seeds,

that is, RP (texture), CIELab L (color) and 490 nm (reflectance). The

two principal components explained 84.9% (Dim 1 + Dim 2) of the

variability between the data with a clear separation of the groups,
Frontiers in Plant Science 05
although there was a high correlation between Penicillium sp. and

Rhizopus sp. classes (Figure 4A). Spectral pattern differences were

influenced mainly in the incubation period of 216 h (Figure 4B). For

instance, in this period, the images captured at 490 nm and

transformed by the nCDA algorithm proved the strong

relationship of the spectral patterns of Penicillium sp. and

Rhizopus sp. (Figure 5). In addition, the Aspergillus niger-infected

seeds showed enhanced anthocyanin index compared to the healthy

seeds (Figure 6).
Machine learning models based on
different multispectral approaches

The models created based on texture descriptors reached higher

hit rates in the classification of Aspergillus flavus, Aspergillus niger,

and Rhizopus sp. (Supplementary Figure 1), with better performance

for the MLP algorithm (Supplementary Table 1). However, since

there were high incidences of false-positives and false-negatives in the

classification of Penicillium sp. for all algorithms. The models did not

achieve satisfactory performance metrics, reaching a maximum

accuracy of 67% (Supplementary Table 1).

Models based on color descriptors showed higher hit rates with

the SVM algorithm, particularly in the recognition of Aspergillus

niger (Supplementary Figure 2), with an accuracy of 82%

(Supplementary Table 1). Using reflectance descriptors, all

machine learning models reached satisfactory hit rates

(Supplementary Figure 3), except for Penicillium sp. based on RF

(0.67) and the SVM (0.07) algorithms. However, the models had
A

B

C

FIGURE 1

(A) Principal component analysis (PCA) of healthy peanut seeds and seeds infected by Aspergillus flavus, Aspergillus niger, Penicillium sp. and Rhizopus
sp. based on texture descriptors; (B) contribution of texture descriptors for discrimination of different classes of fungi; (C) means of the texture descriptor
that most contributed to the variability between fungal classes, i.e., RP. SRE, Short Run Emphasis; LRE, Long Run Emphasis; GLN, Gray-Level
Nonuniformity; RLN, Run Length Nonuniformity; RP, Run Percentage; LGRE, Low Gray-Level Run Emphasis; HGRE, High Gray-Level Run Emphasis.
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perfect recognition of healthy seeds (LDA) and seeds contaminated

with Aspergillus niger (LDA and SVM) and Rhizopus sp. (LDA,

MLP and SVM), achieving accuracies ranging from 80% to 98%

(Supplementary Table 1).

When machine learning models were developed using all

parameters combined (i.e., texture, color, and reflectance)
Frontiers in Plant Science 06
(Figure 7), there was an improvement in the performance,

particularly for RF and SVM algorithms, which had showed high

false-positive and false-negative rates in the classification of

Penicillium sp. using only reflectance data (Supplementary

Figure 3). Combining texture, color and reflectance descriptors,

the rate of correctly classified Penicillium sp. increased from 0.67 to
A

B C

FIGURE 2

(A) Principal component analysis (PCA) of healthy peanut seeds and seeds infected by Aspergillus flavus, Aspergillus niger, Penicillium sp. and
Rhizopus sp. based on color descriptors; (B) contribution of color descriptors for discrimination of different classes of fungi; (C) means of the color
descriptor that most contributed to the variability between fungal classes, i.e., CIELab L*.
A

B

C

FIGURE 3

(A) Principal component analysis (PCA) of healthy peanut seeds and seeds infected by Aspergillus flavus, Aspergillus niger, Penicillium sp. and
Rhizopus sp. based on reflectance descriptors; (B) contribution of reflectance descriptors for discrimination of different classes of fungi; (C) means of
the reflectance descriptor that most contributed to the variability between fungal classes, i.e., 490 nm.
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0.80 for RF models (92% accuracy; 90% Kappa; 92% precision; 92%

recall; 92% F1), and from 0.07 to 0.93 for SVM models (99%

accuracy; 98% Kappa; 99% precision; 99% recall; 99% F1)

(Figure 7). In general, the best performance was verified for the

SVM algorithm, with a correct classification of 1.00 for healthy

seeds, and seeds contaminated with Aspergillus flavus, Aspergillus

niger and Rhizopus sp. (Figure 7).
Discussion

We bring here technological approaches applied to accesses the

sanitary quality of peanut seeds. Using multispectral images, we

identified peanut seeds containing fungal infection with high accuracy.

The insights brought by our results go beyond the limitations of

traditional methods for seed health analysis (ISTA, 2020), which is

known to be subjective. By using these imaging technologies together

withmachine learning capabilities, we propose an autonomousmethod

offungi detection inpeanut seeds. Thus, newmethods tomitigate fungal

contamination in peanut seeds were investigated here.

The texture of the peanut seeds analyzed proved to be a highly

effective spectral descriptor of their sanitary state. Fungal organisms

colonizing the seeds physically alter the tegument through the mycelia

formed and cause changes to its surface (França-Silva et al., 2020; Rego

et al., 2020). This event is remarkable from a spectral point of view,

because it affects the interaction of light with infected tissue and

generates distinct levels of gray that can be identified digitally

(Bianchini et al., 2021; Barboza da Silva et al., 2021a). We found

here, that these spectral changes can characterize healthy or diseased

seeds (Figure 1A and Figure 1B), as documented by other studies (Qiao

et al., 2017; Ziyaee et al., 2021). In this work, the texture parameter Run
Frontiers in Plant Science 07
Percentage (RP) was able to accurately discriminate fungal infection in

the studied seeds (Figure 1C). For instance, in the present work, the

fungus Rhizopus sp. showed the lowest RP value, indicating that this

class of fungi has more linear structures. It also generated data that

assists human vision in the identification of pathogens of global

sanitary relevance. Overall, texture is a promising marker of peanut

seed health. However, additional color parameters showed a similar

technological application. This means that complementary results

were generated with the potential to make the seed health analysis

even more assertive.

We found that peanut seeds had consistent color distinctions

(Figure 2A). This behavior, especially expressed by the CIELab L*,

accurately translated gradual variations of brightness between

infected and healthy tissue (Figure 2B). Each pathogen presented

a luminosity identity characteristic of the genus and species studied

(Figure 2C), which is hardly perceptible to the naked eye. Computer

vision has extended the human sensory capacity to detect color

differences, which is useful for assessing the appearance of in

organic tissues (Altmann et al., 2022). This is because parameters

such as luminosity (Figure 2) are numerically interpreted from

multispectral images and express organic variations in a less

subjective way (Brühl and Unbehend, 2021). In the sanitary field,

this is interesting because it can facilitate the identification of

pathogenic organisms in seeds (Rego et al., 2020) and mitigate

their occurrence in post-harvest. This can avoid potential negative

effects on plant establishment in the field that reduce yields (Ebone

et al., 2020). By imaging across broad spectra, we can ensure the

selection of peanut seeds with superior sanitary quality through

non-invasive color analysis. Also, for other cultivated species,

spectral imaging can discriminate physical and physiological

characteristics that impact seed quality and agricultural
A

B

FIGURE 4

(A) Principal component analysis (PCA) of healthy peanut seeds and seeds infected by Aspergillus flavus, Aspergillus niger, Penicillium sp. and
Rhizopus sp. after 24, 48, 72, 96, 120, 144, 168, 192, 216 e 240 h of incubation; (B) Contribution of incubation periods for discrimination of different
classes of fungi.
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FIGURE 5

RGB (Red-Green-Blue) images and reflectance images captured at 490 nm from healthy peanut seeds and seeds infected by Aspergillus flavus,
Aspergillus niger, Penicillium sp. and Rhizopus sp. after 216 h of incubation. The reflectance imagens were transformed by a normalized canonical
discrimination (nCDA) algorithm; each pixel in the reflectance image contains a unique reflectance value dependent on the color, texture, and
chemical composition of the fungal mycelia.
FIGURE 6

Anthocyanin index in peanut seeds infected by Aspergillus flavus, Aspergillus niger, Penicillium sp. and Rhizopus sp. after 216 h of incubation.
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performance (Hu et al., 2020; Bello and Bradford, 2021). Therefore,

the color analysis of peanut seeds, in addition to other spectral

characteristics, comprises an opportunity to improve the visual

interpretation of contaminated seeds.

The third spectral feature we highlight for detecting pathogens

in peanut seeds is reflectance (Figure 3A). This property has the

potential to translate light reflected by infected seeds into

information that differentiates fungal species (França-Silva et al.,

2020; Rego et al., 2020). In the present study, contaminated seeds

were accurately distinguished from healthy seeds by their superior

reflectance in the 490 nm range (Figure 3B). These results may be

associated with three aspects: i) the mycelia formed by Rhizopus sp.,

Penicillium sp. and A. flavus enhanced the brightness of the seeds

(Figure 2C). This behavior contributed to the increase in reflectance
Frontiers in Plant Science 09
(Fonseca de Oliveira et al., 2022); ii) the formation of mycelia and

toxicogenic compounds alters the chemical composition of infected

seeds (Zhang et al., 2022), which can reduce light absorption and

favor reflection enhancement in the spectral range (Figure 3C); iii)

fungal colonization intensifies the production of anthocyanins as a

plant response to tissue deterioration (Liu et al., 2018; Fonseca de

Oliveira et al., 2022). This pigment, is also produced by fungi (Bu

et al., 2020; Sicilia et al., 2021) and its accumulation in the

contaminated seeds (Figure 6) may have contributed to the lower

reflectance found (Figure 3C). In peanut studies, reflectance has

been exploited in infrared bands to detect fungi (Qiao et al., 2017;

Xing et al., 2019; Conceição et al., 2021). Here, the fungi were

observed in the visible spectrum (490 nm) which expands the

chances of detecting organisms of seed sanitary importance
FIGURE 7

Confusion matrices and performance metrics of machine learning models based on linear discriminant analysis – LDA, multi-layer perceptron neural
network – MLP, random forest – RF and support vector machine – SVM using a test dataset for classifying healthy peanut seeds and seeds
contaminated with different groups of fungi using the combination of texture, color, and reflectance descriptors of multispectral images.
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(Figure 5). We highlight that from an optimum incubation time

(216 h), each pathogen studied showed a predictable spectral nature

when reflectance was analyzed together with texture and color

parameters (Figures 4A, B). This indicates that our results add to

the evidence in the literature and reinforce the potential of these

parameters as markers of peanut seed health.

Given the technological potential discussed, how can we ensure

speed and efficiency in the interpretation of peanut seed health in face

of the abundant volume of information obtained through

multispectral images? By exploring the potential of machine

learning algorithms, we found they have excellent accuracy for this

task (Figure 7). This means that human subjectivity can be mitigated

in sanitary analysis while increasing assertiveness in recognizing

healthy seeds. Human visual decision based on color, texture, and

reflectance (i.e., 490 nm) is hardly sensitive enough to capture

spectral nuances relevant for a more assertive pathological analysis

(from 90 to 100% accuracy). The universe of intelligent machines

brings possibilities for continuous improvements in the seed industry

(Elmasry et al., 2019b; Medeiros et al., 2020b). This includes the

identification of fungi (França-Silva et al., 2020; Rego et al., 2020;

Barboza da Silva et al., 2021a). In the peanut production chain, the

insertion of digital technologies adapted for autonomous analysis of

fungi can greatly enhance the sanitary rigor of seeds produced

around the world (USDA, 2022). In addition, it indirectly reduces

the uncertainties of contamination. These digital technologies have

been explored by various imaging methods (Janik et al., 2021; Ziyaee

et al., 2021). Therefore, by assisting our own abilities with artificial

cognitive capabilities we can enhance our decision-making potential,

and then use this for a purpose of global utility: high sanitary quality.
Conclusion

We found multispectral markers of peanut seed sanitary states.

Texture (RunPercentage), brightness (CIELab L*) and reflectance (490

nm), analyzed together, are highly effective to discriminate pathogenic

fungi (A. flavus, A. niger, Penicillium sp. and Rhizopus sp.). The

incubation period of 216 h for the multispectral analysis of the fungi

allows discriminating themprecisely in peanut seeds. The autonomous

analysis of these markers is an opportunity to advance the accuracy of

peanut sanitary determination in the seed industry. Thus,multispectral

images coupled with machine learning algorithms are effective (from

90 to 100%) for screening peanut seeds with superior sanitary quality.
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testing, vol. 50. (Bassersdorf, Suıḉa: Zürischstr: CH–8303 Bassersdorf).

Janik, E., Niemcewicz, M., Podogrocki, M., Ceremuga, M., Gorniak, L., Stela, M.,
et al. (2021). The existing methods and novel approaches in mycotoxins’ detection.
Molecules 26, 1–19. doi: 10.3390/molecules26133981

Jayaprakash, A., Thanmalagan, R. R., Roy, A., Arunachalam, A., and Lakshmi, P. T.
V. (2019). Strategies to understand Aspergillus flavus resistance mechanism in arachis
hypogaea l. Curr. Plant Biol. 20, 100123. doi: 10.1016/j.cpb.2019.100123

Jollife, I. T., and Cadima, J. (2016). Principal component analysis: A review and
recent developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 374, 1–16.
doi: 10.1098/rsta.2015.0202

Liu, Y., Tikunov, Y., Schouten, R. E., Marcelis, L. F. M., Visser, R. G. F., and Bovy, A.
(2018). Anthocyanin biosynthesis and degradation mechanisms in solanaceous
vegetables: A review. Front. Chem. 6. doi: 10.3389/fchem.2018.00052

Mahajan, G., Mutti, N. K., Jha, P., Walsh, M., and Chauhan, B. S. (2018). Evaluation
of dormancy breaking methods for enhanced germination in four biotypes of Brassica
tournefortii. Sci. Rep. 8, 1–8. doi: 10.1038/s41598-018-35574-2

Medeiros, A. D., Capobiango, N. P., da Silva, J. M., da Silva, L. J., da Silva, C. B., and
dos Santos Dias, D. C. F. (2020a). Interactive machine learning for soybean seed and
seedling quality classification. Sci. Rep. 10, 1–10. doi: 10.1038/s41598-020-68273-y

Medeiros, A. D., da Silva, L. J., Ribeiro, J. P. O., Ferreira, K. C., Rosas, J. T. F., Santos,
A. A., et al. (2020b). Machine learning for seed quality classification: An advanced
approach using merger data from FT-NIR spectroscopy and x-ray imaging. Sensors
(Switzerland) 20, 1–12. doi: 10.3390/s20154319

Nailon, W. (2010). “Texture analysis methods for medical image characterization,”
in Biomedical imaging. Ed. Y. Mao (London.: Rijeka, Croatia: InTech), 75–100.

Qiao, X., Jiang, J., Qi, X., Guo, H., and Yuan, D. (2017). Utilization of spectral-spatial
characteristics in shortwave infrared hyperspectral images to classify and identify
fungi-contaminated peanuts. Food Chem. 220, 393–399. doi: 10.1016/
j.foodchem.2016.09.119

R Core Team (2022). A language and environment for statistical computing: R
foundation for statistical computing (Vienna, Austria: R Foundation).

Rego, C. H. Q., França-Silva, F., Gomes-Junior, F. G., de Moraes, M. H. D., de
Medeiros, A. D., and da Silva, C. B. (2020). Using multispectral imaging for detecting
seed-borne fungi in cowpea. Agric. 10, 1–12. doi: 10.3390/agriculture10080361

Sicilia, A., Catara, V., Scialò, E., and Lo Piero, A. R. (2021). Fungal infection induces
anthocyanin biosynthesis and changes in dna methylation configuration of blood
orange [citrus sinensis l. (osbeck)]. Plants 10, 1–10. doi: 10.3390/plants10020244

Tang, X. (1998). Texture information in run-length matrices. IEEE Trans Image
Process. 7 (11), 1602–1609. doi: 10.1109/83.725367

USDA (2022). Peanut explorer: world production. peanut map explor. Available at:
https://ipad.fas.usda.gov/cropexplorer/cropview/commodityView.aspx?cropid=
2221000. [Accessed February 11, 2023].

Wang, J., Wei, X., Kamran, M., Chen, T., White, J. F., and Li, C. (2022). Quality and
nutrition of oat seed as influenced by seed-borne fungal pathogens during storage. J.
Plant Dis. Prot. 129, 243–252. doi: 10.1007/s41348-021-00563-7

Xing, F., Yao, H., Liu, Y., Dai, X., Brown, R. L., and Bhatnagar, D. (2019). Recent
developments and applications of hyperspectral imaging for rapid detection of
mycotoxins and mycotoxigenic fungi in food products. Crit. Rev. Food Sci. Nutr. 59,
173–180. doi: 10.1080/10408398.2017.1363709

Zhang, H., Jia, B., Lu, Y., Yoon, S., Ni, X., Zhuang, H., et al. (2022). Detection of
aflatoxin B1 in single peanut kernels by combining hyperspectral and microscopic
imaging technologies. Sensors 22, 4864. doi: 10.3390/s22134864

Zhang, X., Wang, R., Ning, H., Li, W., Bai, Y., and Li, Y. (2020). Evaluation and
management of fungal-infected carrot seeds. Sci. Rep. 10, 1–8. doi: 10.1038/s41598-020-
67907-5

Ziyaee, P., Ahmadi, V. F., Bazyar, P., and Cavallo, E. (2021). Comparison of different
image processing methods for segregation of peanut (Arachis hypogaea l.) seeds
infected by aflatoxin-producing fungi. Agronomy 11, 1–15. doi: 10.3390/
agronomy11050873
frontiersin.org

https://doi.org/10.5772/65349
http://ajiips.com.au/new/paper_page.php?volume=6&issue=1&amp;first_page=38
http://ajiips.com.au/new/paper_page.php?volume=6&issue=1&amp;first_page=38
https://doi.org/10.1016/j.meatsci.2022.108766
https://doi.org/10.1016/j.jspr.2019.101550
https://doi.org/10.1016/j.jspr.2019.101550
https://doi.org/10.1007/s13197-015-2007-9
https://doi.org/10.1016/j.indcrop.2020.113186
https://doi.org/10.1038/s41598-021-97223-5
https://doi.org/10.3389/fpls.2022.914287
https://doi.org/10.3390/agriculture11030220
https://doi.org/10.1016/j.tifs.2019.08.022
https://doi.org/10.1186/s13007-021-00709-6
https://doi.org/10.1017/S0960258518000235
https://doi.org/10.1002/ejlt.202000329
https://doi.org/10.1186/s12864-019-6442-2
https://doi.org/10.1016/0167-8655(90)90112-F
https://doi.org/10.1016/j.foodchem.2020.128615
https://doi.org/10.1590/0034-737X201966050010
https://doi.org/10.3390/agronomy10040545
https://doi.org/10.3390/s19051090
https://doi.org/10.1186/s13007-019-0411-2
https://doi.org/10.3389/fpls.2022.849986
https://doi.org/10.3390/s20123343
https://doi.org/10.1016/s0146-664x(75)80008-6
https://doi.org/10.1186/s13007-020-00659-5
https://doi.org/10.3390/molecules26133981
https://doi.org/10.1016/j.cpb.2019.100123
https://doi.org/10.1098/rsta.2015.0202
https://doi.org/10.3389/fchem.2018.00052
https://doi.org/10.1038/s41598-018-35574-2
https://doi.org/10.1038/s41598-020-68273-y
https://doi.org/10.3390/s20154319
https://doi.org/10.1016/j.foodchem.2016.09.119
https://doi.org/10.1016/j.foodchem.2016.09.119
https://doi.org/10.3390/agriculture10080361
https://doi.org/10.3390/plants10020244
https://doi.org/10.1109/83.725367
https://ipad.fas.usda.gov/cropexplorer/cropview/commodityView.aspx?cropid=2221000
https://ipad.fas.usda.gov/cropexplorer/cropview/commodityView.aspx?cropid=2221000
https://doi.org/10.1007/s41348-021-00563-7
https://doi.org/10.1080/10408398.2017.1363709
https://doi.org/10.3390/s22134864
https://doi.org/10.1038/s41598-020-67907-5
https://doi.org/10.1038/s41598-020-67907-5
https://doi.org/10.3390/agronomy11050873
https://doi.org/10.3390/agronomy11050873
https://doi.org/10.3389/fpls.2023.1112916
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	Fungal identification in peanuts seeds through multispectral images: Technological advances to enhance sanitary quality
	Introduction
	Material and methods
	Plant material
	Trial design
	Fungal isolation, inoculation, and incubation
	Procedures for extracting multispectral�data
	Principal component analysis
	Machine learning - creation models for classifying fungal-infected peanut seeds
	Analysis of variance

	Results
	Identification of relevant spectral features based on texture, color, and reflectance data
	Influence of the fungal development stage on inspection of peanut seed health
	Machine learning models based on different multispectral approaches

	Discussion
	Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


