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Laccases are plant enzymes with essential functions during growth and

development. These monophenoloxidases are involved in lignin polymerization,

and their expression respond to environmental stress. However, studies of laccases

in some plants and fungi have highlighted that many structural and functional

aspects of these genes are still unknown. Here, the laccase gene family in

Aeluropus littoralis (AlLAC) is described based on sequence structure and

expression patterns under abiotic stresses and ABA treatment. Fifteen non-

redundant AlLACs were identified from the A. littoralis genome, which showed

differences in physicochemical characteristics and gene structure. Based on

phylogenetic analysis, AlLACs and their orthologues were classified into five

groups. A close evolutionary relationship was observed between LAC gene

family members in rice and A. littoralis. According to the interaction network,

AlLACs interact more with proteins involved in biological processes such as iron

incorporation into the metallo-sulfur cluster, lignin catabolism, regulation of the

symbiotic process and plant-type primary cell wall biogenesis. Gene expression

analysis of selected AlLACs using real-time RT (reverse transcription)-PCR revealed

that AlLACs are induced in response to abiotic stresses such as cold, salt, and

osmotic stress, as well as ABA treatment. Moreover, AlLACs showed differential

expression patterns in shoot and root tissues. Our findings indicate that AlLACs are

preferentially involved in the late response of A. littoralis to abiotic stress.
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Introduction

Laccases (EC 1.10.3.2), named after their presence in the Japanese

lacquer tree (Toxicodendron vernicifluum), are multi-copper oxidases

(LMCOs). These enzymes are involved in catalyzing the oxidation of

one electron of various cellular compounds such as arylamines,

phenols, and aromatic thiols (Reiss et al., 2013). Members of the

multi-copper oxidases superfamily include ceruloplasmin, nitrite

reductase, ascorbate oxidase, and ferroxidase. Laccases have been

identified in many organisms, including plants, fungi, insects, and

bacteria, and are involved in a wide range of cellular processes (Wang

et al., 2015a; Janusz et al., 2020; Lu et al., 2021). Plant laccases are

copper-containing glycoproteins that act as key regulators for lignin

polymerization and deposition in the plant cell wall (Liu et al., 2017).

Laccases contain three conserved copper (Cu)-oxidase domains (Mot

and Silaghi-Dumitrescu, 2012), which can be used to identify laccase

family members. Due to their importance, members of this gene

family have been identified and analyzed in plants, including Lolium

perenne (Gavnholt et al., 2002), Oryza Sativa (Liu et al., 2017),

Sorghum bicolor (Wang et al., 2017), Arabidopsis thaliana

(Turlapati et al., 2011), Brachypodium distachyon (Wang et al.,

2015b), Zea mays (Caparrós-Ruiz et al., 2006), Setaria viridis

(Simões et al., 2020), Brassica napus (Zhang et al., 2013),

Gossypium arboretum (Zhang et al., 2019), Saccharum officinarum

(Cesarino et al., 2013), Eucalyptus grandis (Arcuri et al., 2020) and

Pyrus bretschneideri (Lu et al., 2021).

According to previous studies, laccases can be involved in various

cellular processes. For instance, Liu and coworkers, reported that

laccases are mostly induced in the early development stage of rice

seedlings (Liu et al., 2017), and Simões and coworkers, showed that

laccases from Setaria viridis are potentially involved in monolignol

oxidation (Simões et al., 2020). Moreover, the study of laccases in

loblolly pine revealed that these genes are expressed mainly in

immature secondary xylem, the tissue for synthesized lignin (Sato

et al., 2001). Lignin is critical in increasing plant vigor and resistance

to biotic and abiotic stresses. Accordingly, the lignin content in the

mutant line for laccases genes, LAC17 and LAC14, in Arabidopsis was

decreased compared to wild-type lines (Berthet et al., 2011),

suggesting that laccases are involved in lignin polymerization and

decomposition. Also the involvement of laccases in Cleome seed coat

lignification was described (Zhuo et al., 2022). Other roles have also

been suggested for laccases in plants, highlighting that the members of

this gene family are involved in responding to environmental stresses.

For instance, the overexpression of OsChI1, a laccase gene from rice,

sharply increased the salt and drought tolerance in transgenic

Arabidopsis (Cho et al., 2014). In addition, copper tolerance was

improved in Arabidopsis transgenic lines for the overexpressed

OsLAC10, a laccase10 gene from rice (Liu et al., 2017). Similarly,

Cai and coworkers reported that the laccase2 gene in Arabidopsis is

involved in response to abiotic stresses such as drought (Cai et al.,

2006), and Xu et al. showed that laccase genes are induced by abiotic

stresses such as low/high temperature, drought, and hormone

application (ABA, MeJA, and SA) in citrus (Xu et al., 2019). Based
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on their broad substrate spectrum and ability to depolymerize lignin,

laccases moved into the focus of current research. Furthermore they

became of economic importance (Riva, 2006; Arregui et al., 2019) due

to their use as bioactive component of ascorbic acid (vitamin C)

sensors (Lee et al., 2018).

Aeluropus littoralis is a halophyte monocot model that can grow

under salt and drought conditions (Saad et al., 2011; Hashemi et al.,

2016). A. littoralis does not have the ability to be cultivated, but as a

valuable source of resistance genes, it can be used in breeding and

genetic engineering programs. The genomic resources for A. littoralis

provide the opportunity to identify the key genes and molecular

mechanisms of response to abiotic stresses (Hashemi et al., 2016).

Motivated by the importance of laccase genes in increasing the

resistance of plants against environmental conditions, the present

study analyzed the sequence structure of laccase genes as well as their

regulatory systems. In addition, the expression pattern of these genes

in response to environmental stress and ABA hormone was

investigated in root and shoot tissues.
Materials and methods

Identification of laccase genes

The protein sequences of Arabidopsis thaliana laccase family genes

(17 members) were retrieved from the Arabidopsis information resource

TAIR10 (TAIRv10, http://www.arabidopsis.org/). The sequences were

cross-checked with the Pfam database for the presence of three

domains of laccases including CuRO_1_LCC_plant (cd13849),

CuRO_2_LCC_plant (cd13875), and CuRO_3_LCC_plant (cd13897).

Arabidopsis laccase protein sequences were aligned as queries against the

Aeluropus Proteome and genome version 1 (Hashemi-Petroudi et al.,

2022) using the local BLASTP and TBLASTN program, respectively.

The resulting peptide sequences were verified with the blastP tool in

NCBI and the Pfam database for the presence of conserved laccase

(TIGR03389). In order to reduce the redundancy, % identity of all

sequences was computed with the Decrease Redundancy program

(https://web.expasy.org/decrease_redundancy), and any pairs of

sequences with more than 99% identity were removed from the

analysis. The use of the Decrease Redundancy program resulted in

reduction from 21 putative AlLACs to 15 defined protein sequences.

The naming of each laccase gene in Aeluropus (AlLAC) was based on

the closest known orthologue of Arabidopsis.
Phylogenetic analysis

To construct a phylogenetic tree, AlLACs with their orthologous

in Arabidopsis (TAIR10) and rice (IRGSP-1.0) were analyzed using

the multiple sequence alignment Muscle tool of MEGA v. 11 software

(Tamura et al., 2021) with the default parameters. A phylogenetic tree

was constructed using the maximum-likelihood (ML) method with

1000 bootstrap replicates.
frontiersin.org

http://www.arabidopsis.org/
https://web.expasy.org/decrease_redundancy
https://doi.org/10.3389/fpls.2023.1112354
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Hashemipetroudi et al. 10.3389/fpls.2023.1112354
Motif analysis, physical and chemical
properties of laccase protein sequences

The MEME database was used to predict the conserved motifs of

AlLAC protein sequences. The number of conserved motifs was

adjusted to 10, and other parameters were set as the default. The

gene structure of AlLAC genes was constructed using Tbtools (Chen

et al., 2020) based on GFF format file for exon and intron location

information known from Arabidopsis orthologs. The physical and

chemical properties, including number of amino acids, molecular

weight (kDa), theoretical pI, grand average of hydropathicity

(GRAVY), total number of negatively charged residues (Asp +

Glu), total number of positively charged residues (Arg + Lys), and

instability index of AlLACs, were calculated using the online ExPASy-

ProtParam tool (Gasteiger et al., 2005). The subcellular localization of

AlLACs were predicted using WoLF PSORT (Horton et al., 2007)

based on default settings.
Prediction of 3D protein structure and
pocket analysis of AlLACs

The Phyre2 server was applied to predict the 3D structure of

AlLAC proteins (Kelley et al., 2015). Similar structures were analyzed

using the Phyre investigator tool to recognize the pocket site related to

the binding region.
Promoter analysis of AlLAC genes

PlantCare (Lescot et al., 2002) was used to study cis-regulatory

elements in the 1000 bp promoter region. The sequence information

was retrieved from Aeluropus genome version 1 (Hashemi-Petroudi

et al., 2022). The identified cis-regulatory elements were classified

based on their function, and drawn as a graph.
Protein-protein interaction network

The STRING v11.5 database was used to identify the interactions of

AlLAC proteins based on their orthologues in Arabidopsis. The first shell

of the network was adjusted to ≤ 20 and the second shell was fixed to no

more than 10. Gene ontology (GO) enrichment analysis was used to

identify the significant (FDR ≤ 0.05) molecular function, biological

process, and cellular component terms presented in the LAC-

interaction network using the STRING. Cytoscape v3.8.2 (Shannon

et al., 2003) was used to construct the LAC-interaction network.
Plant materials, growth conditions and
applied stress

Seeds of Aeluropus were grown at 25 ± 2°C under 16 hours of

light and 8 hours of darkness in the greenhouse at Sari Agricultural

Sciences and Natural Resources University. After three weeks, the
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samples were transferred in groups of three to plastic containers, each

containing five liters of Hoagland’s nutrient solution under

hydroponic culture (Hoagland and Arnon, 1950). After two

months, plants of similar size were selected for exposure to stress

conditions. For salinity stress, plants were treated gradually by adding

100 mM salt (NaCl) every 48 hours to a final concentration of 600

mMNaCl. For osmotic stress, plants were treated with 20% PEG 6000

of -0.80 MPa. PEG was added to a plastic container and samples

(roots and leaves) were collected at different exposure periods of 0

hour (h), as control sample, 6 hours, 48 hours and one week. For cold

stress, the plants were exposed to a temperature of 4°C. Sampling of

roots and leaves tissues was done 6 h, 48 h and one week after stress

exposure, in leaves three biological replicates. The abscisic acid (ABA)

treatment was also done by spraying 100 micromolar hormones on

the leaves; two leaf and root tissues were sampled at 3, 6, 24 and 48

hours after applying the treatment, in three biological replicates.

Three untreated vases were used as controls.
RNA extraction and cDNA synthesis

Total RNA was extracted from leaf and root tissue of all three

biological replicates using the Threezol kit (Threezol, Riragene, Iran).

The quantity and quality of the RNA samples were measured by

spectrophotometry and 1.5% agarose gel electrophoresis, respectively.

DNase I treatment (DNase I RNase-free, Thermo Scientific) was used

to remove genomic DNA. After combining the RNA of the biological

replicates, cDNA synthesis was performed using a kit (Thermo

Scientific) according to the company’s instructions, and diluted

five times.
Realtime-qPCR analysis

The expression levels of the target genes were measured with a

Bio-Rad CFX96 machine, using The Maxima SYBR Green/ROX

qPCR Master Mix kit (Thermo Scientific) in three technical

replicates. The cycling profile started at 95°C for 15 seconds, then

40 cycles of 95°C for 15 seconds and 60°C for 60 seconds. At least one

negative control (NTC) was considered for each primer. Melting

curve analysis of samples and threshold cycle were calculated with

CFX software (Bio-Rad). Normalization of gene expression was done

with the geometric mean method using specific reference genes of

each tissue. Selecting the appropriate internal control gene is very

important when determining gene expression, opting for genes that

show the least amount of gene expression changes in different stress

conditions (either different tissues or sampled at different times).

Specific reference genes for leaf tissue were GTF and U2SnRNP, and

specific reference genes for root tissue were PRS3 and EF1a (Hashemi

et al., 2016). Five AlLAC genes, AlLAC5, AlLAC12.2, AlLAC14,

AlLAC16.1, and AlLAC17.1, were selected based on bioinformatics

analyses and primers were designed using AlleleID software (version

7.5, Table S1). Quantitative analysis of the data related to the relative

expression level of the studied genes was done using the 2-△△CT

method (Livak and Schmittgen, 2001).
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Results

In total, 15 LAC proteins in Aeluropus littoralis (AlLAC) were

identified (Tables 1, S2). According to their physicochemical

properties, the AlLACs encoded proteins ranging from 175

(AlLAC16.1) to 648 aa (AlLAC7.3). The pI values were predicted to

be between 5.17 (AlLAC11.1) and 8.93 (AlLAC17.3); eight of the 15

AlLACs showed a pI greater than 7.0 (Table 1). Based on the

instability index, four of the 15 AlLACs could be introduced as

unstable proteins, while the other 11 were predicted to be stable. In

addition, most AlLAC proteins (10 of the 15) showed negative values

for the GRAVY index, indicating that AlLACs are more hydrophilic.

Based on the prediction of the subcellular localization, AlLACs are

predominantly located in organelles such as chloroplasts (Chlo.) and

vacuoles (Vacu.) (Table 1). Overall, AlLACs showed variation based

on their physicochemical properties, suggesting that they may have

diverse functions.
Phylogenetic relationships of
LAC gene family

The phylogenetic tree for members of the LAC gene family in

Arabidopsis (AtLACs), rice (OsLACs), and A. littoralis (AlLACs)

separated LACs into five main groups (Figure 1). Furthermore,

AlLACs were more similar to their orthologs in rice, suggesting that

a close evolutionary process may have occurred in this gene family in

rice and A. littoralis. Moreover, it seems that the diversity of LAC

family has more occurred after derivation of monocots and dicots.

AlLACs from group I, including AlLAC11.1, AlLAC6, AlLAC16.2, and
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AlLAC11.2 showed a greater genetic distance than other members,

suggesting that these members may have a higher potential for further

molecular functional investigation. In addition, the gene structure,

conserved motifs, and encoded domain distribution of AlLACs were

analyzed (Figure 2 and Table S3). Ten conserved motifs and three

encoded domains were identified in AlLACs. Motif 4 was in the Cu-

oxidase 1 domain region, while motifs 6, 1, and 3 were predicted in

Cu-oxidase 2 domain, and motifs 5 and 2 were located in Cu-oxidase

3 domain (Figure 2). Some of the conserved motifs (motif 9 and motif

10) were identified in the extra-domain region that can be used to

identify the AlLACs. Among the various gene structures observed in

AlLACs, the maximum exon/intron number was observed

in AlLAC11.1.
Structural analysis of AlLAC proteins

The predicted 3D structure and binding sites of AlLACs revealed

diverse structures among members (Figure 3). Moreover, leucine (L),

proline (P), valine (V), phenylalanine (F), glycine (G), and alanine (A)

were frequently predicted in the binding site region of AlLACs

(Figure 4). The residues detected in the pocket sites of all AlLACs

demonstrate the key positions of the important amino acids likely

related to their function and interaction points.
Protein-protein interaction of LACs

The interaction network for AlLAC proteins was drawn based on

their orthologs in the model plant, Arabidopsis. Sks11, sks13, and
TABLE 1 Physicochemical properties of AlLAC gene family members in A.littoralis.Accession number and sequences (gene, protein, and CDS) of AlLAC
gene family members are provided in Table S2.

Gene
name

Protein
length

MW
(kDa)

pI (Asp +
Glu)1

(Arg +
Lys)2

instability
index

GRAVY Protein Subcellular Localization
Prediction

AlLAC5 594 64.72 8.64 39 44 Unstable -0.051 Mito. Vacu.

AlLAC6 317 35.08 7.79 26 27 Stable -0.329 Vacu.

AlLAC7.1 585 63.17 6.99 43 42 Unstable 0.040 Chlo. Mito.

AlLAC7.2 593 65.33 6.44 53 46 Stable -0.129 Chlo. Extr.

AlLAC7.3 648 67.65 5.22 47 27 Stable 0.132 Plas.

AlLAC11.1 532 57.56 5.17 51 36 Stable -0.198 Chlo.

AlLAC11.2 511 57.23 8.84 44 50 Stable -0.358 Nucl.

AlLAC12.1 560 61.80 5.60 55 39 Stable -0.106 Vacu.

AlLAC12.2 304 32.87 5.51 23 16 Unstable 0.021 Cyto.

AlLAC14 579 63.97 6.40 57 51 Stable -0.235 Mito. Golg.

AlLAC16.1 175 19.37 5.85 17 12 Unstable -0.186 Cyto.

AlLAC16.2 550 61.38 8.40 49 52 Stable -0.214 Vacu.

AlLAC17.1 579 62.97 8.47 32 36 Stable 0.073 Chlo.

AlLAC17.2 566 61.56 8.04 35 37 Stable 0.047 Extr. Cyto.

AlLAC17.3 569 62.40 8.93 39 46 Stable -0.086 Chlo.
1: Total number of negatively charged residues (Asp + Glu), 2: Total number of positively charged residues (Arg + Lys).
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SKU5 proteins, which have oxidoreductase activity, were the most

similar to AlLAC11.2, AlLAC16.2, and AlLAC6 proteins, respectively

(Figure 5). There were no direct interactions between the laccases

themselves. Three interaction groups were observed: the first group

contained Sks11 (AT3G13390), sks13 (AT3G13400), and SKU5

(AT4G12420); the second group contained LAC7 and LAC17; and

the third group contained LAC5 and LAC6. LAC5 showed the most

and strongest interactions compared to the other laccases. Gene

ontology (GO) enrichment analysis revealed several biological

process terms; iron incorporation into metallo-sulfur cluster, lignin

catabolism, regulation of symbiotic processes, plant-type primary cell

wall biogenesis, and L-ascorbic acid biosynthesis were significantly

linked with the LAC-interaction network (Table S4). In addition,

molecular function terms including cysteine desulfurase activity,

glucose-6-phosphate isomerase activity, ferrochelatase activity,
Frontiers in Plant Science 05
copper ion binding, oxidoreductase activity, cellulose synthase

(udp-forming) activity, and antioxidant activity were significantly

associated with the LAC-interaction network (Table S4).
Promoter analysis

The upstream region of AlLAC genes was analyzed to detect

putative cis-regulatory elements. The cis-regulatory elements that are

involved with stress, growth and development, phytohormones, and

transcription factor (TF) site were observed in the promoter region

(Figure 6). The common and unknown function of cis-regulatory

elements were frequently observed upstream of AlLACs (Figure 6A).

Cis-regulatory elements to methyl jasmonate (MeJA) and ABA

responsiveness (ABRE) were frequently detected in the promoter
FIGURE 1

Phylogenetic tree of LAC gene members in Arabidopsis (AtLAC), rice (OsLAC), and A.littoralis (AlLAC).
B C DA

FIGURE 2

Phylogenetic tree of AlLAC proteins (A), conserved motif distribution of AlLAC proteins (B), conserved domains of AlLAC proteins (C), and gene structure
of AlLAC genes (D). The logo and sequence of conserved motifs are provided in Table S3.
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region (Figure 6B). Moreover, acting elements related to ethylene

(ERE), salicylic acid (SA), gibberellic acid (GA), and auxin

responsiveness were also observed in the promoter region

(Figure 6B), as were stress-responsive MYB elements such as as-1,

an acting element involved in oxidative stress-responsive, and STRE

(stress-controlled transcription factors) elements (Figure 6C).

Dehydration-responsive element (DRE) and MBS (MYB binding

site involved in drought-inducibility) elements were also observed

upstream of AlLACs (Figure 6C). These results suggest that laccases
Frontiers in Plant Science 06
probably cooperate with factors involved in stress response and are

probably present in stress-dependent signaling pathways.
Expression in response to ABA application

The expression levels of five candidate AlLAC genes (AlLAC5,

AlLAC14, AlLAC16.1, AlLAC17.1, and AlLAC12.2) were investigated

under ABA application in shoot and root tissues of A. littoralis
FIGURE 3

Three-dimensional docking analysis of AlLACs. The binding residues are shown on protein structure.
FIGURE 4

Frequency of each amino acid in ligand-binding sites in all studied AlLAC proteins.
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(Figure 7). The AlLAC genes for real time RT-PCR analysis were

selected on their mRNA abundance and salt stress inducibility reported

in (Younesi-Melerdi et al., 2020). Based on their expression profile, all

selected genes illustrated tissue-specific expression, and they were

highly expressed in shoot tissues. Interestingly, all studied AlLACs

were sharply upregulated after 48 hours of ABA application in shoot

tissues, while AlLAC14 was upregulated at all-time points of ABA

application in shoot tissues. Besides, all AlLACs showed a down-

regulation after 3 h of ABA application in root tissues. Overall, ABA

may indirectly affect the expression of AlLACs in the shoot.
Frontiers in Plant Science 07
Expression profile of AlLAC genes under
abiotic stresses

Expression patterns of five selected AlLAC genes in response to

abiotic stresses – cold, osmotic (using PEG application), and salt

stress – were evaluated in shoot and root tissues (Figures 8-10). In

response to cold stress, AlLAC5 was upregulated after seven days in

shoot tissues, while AlLAC14 was highly induced after 48 hours and

seven days in both shoot and root tissues (Figure 8). AlLAC16.1

and AlLAC17.1 were less induced in response to cold stress, and
FIGURE 5

Protein–protein interaction network of AlLACs using STRING server v11 based on Arabidopsis interactome data.
B

C

A

FIGURE 6

Cis-regulatory distribution in the promoter region of AlLAC genes. Percentage of cis-regulatory elements based on their functions (A), distribution of cis-
regulatory elements related to phytohormone (B), and distribution of cis-regulatory elements related to growth and development, TF binding site, and
stress responsiveness (C). More details of Cis-regulatory distribution in the promoter region of AlLAC genes are provided in Table S5.
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AlLAC12.2 showed upregulation at all studied time points, especially

after seven days, in root tissues. In response to salt stress, AlLAC genes

showed diverse expression patterns. For instance, AlLAC5,

AlLAC17.1, and AlLAC12.2 were upregulated in roots, while

AlLAC14 showed a high upregulation in the shoot (Figure 9).

Furthermore, AlLAC5, and AlLAC17.1 were upregulated in both

root and shoot, suggesting that these genes are directly associated

with response to salt stress. In addition, AlLAC16.1 showed a down-

regulation in root tissues at all-time points in response to salinity

(Figure 9). The expression profile of AlLACs was analyzed under PEG

application for induction of osmotic stress. Interestingly, all studied

genes showed an upregulation in root tissues, and high expression was

recorded after 48 h (Figure 10). In shoot tissues, AlLAC14 was sharply
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induced after 48 hours in response to drought stress. Overall,

AlLAC14 appears to be more expressed in shoot tissues, and

AlLACs are more involved in the late response of A. littoralis to

abiotic stress.
Discussion

Laccases have important roles such as lignin polymerization in

plants, and also contribute to resistance to environmental stresses (Bao

et al., 1993; Sato et al., 2001; Berthet et al., 2011). Enzymes of this gene

family moved into focus due to their ability to catalyze steps in bio-

economy (Arregui et al., 2019; Agustin et al., 2021) and their utilization
FIGURE 7

Expression profile of AlLAC genes under ABA treatments. Different letters above each bar indicate a significant difference (p < 0.05) based on Tukey’s
range test.
FIGURE 8

Expression profile of AlLAC genes in response to cold stress. Different letters above each bar indicate a significant difference (p < 0.05) based on Tukey’s
range test.
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as biosensors (Lee et al., 2018). Thus far, laccases have not been studied

in Aeluropus littoralis, a model plant that is highly resistant to salinity

stress (Saad et al., 2011; Hashemi et al., 2016). A. littoralis has a high

potential in the field of resistance to abiotic stresses and serves to

identify and isolate new stress-adapted genes. In the current study, 15

AlLACs were identified from the A. littoralis genome. Previous studies

have identified 30 LACs from rice (Liu et al., 2017), 40 LACs from the

pear genome (Lu et al., 2021), 52 LACs from the Setaria viridis genome

(Simões et al., 2020), 54 LACs from the Eucalyptus grandis genome

(Arcuri et al., 2020), 29 LACs from the Brachypodium distachyon

genome (Wang et al., 2015b), 17 LACs from the Arabidopsis thaliana
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genome (Turlapati et al., 2011), and 27 LACs from the Sorghum bicolor

genome (Wang et al., 2017). The lower number of laccase genes found

here suggests that the laccase gene family is probably less extended inA.

littoralis during evolutionary processes. Based on their physicochemical

characteristics and gene structure, AlLACs were diverse, indicating that

the members of this gene family are involved in various cellular

processes (Ahmadizadeh et al., 2020; Heidari et al., 2021a). Intron/

exon number was also diverse among AlLACs. It was stated that the

number of exons/introns can affect the expression levels; genes with

fewer exons can be rapidly activated (Jeffares et al., 2008; Koralewski

and Krutovsky, 2011; Iñiguez and Hernández, 2017; Heidari et al.,
FIGURE 9

Expression profile of AlLAC genes in response to salt stress. Different letters above each bar indicate a significant difference (p < 0.05) based on Tukey’s
range test.
FIGURE 10

Expression profile of AlLAC genes in response to osmotic stress (PEG application). Different letters above each bar indicate a significant difference
(p < 0.05) based on Tukey’s range test.
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2022). According to phylogenetic analysis, LAC gene family members

from A. littoralis, Arabidopsis, and rice were grouped into five classes,

and a close evolutionary process was observed between AlLACs and

their orthologues in rice. This finding suggests that mutations have

occurred in coding sequence regions after the divergence between

dicots and monocots (Faraji et al., 2021a; Musavizadeh et al., 2021).

In addition, the distribution of conserved motifs might be associated

with the diversity and function of genes from a family (Faraji et al.,

2021b). Some conserved motifs were observed in the extra-domain site

– these regions can be used to identify AlLACs and their role of these

proteins in stress response.

AlLACs also showed diverse 3D structures. Leucine, proline,

valine, phenylalanine, glycine, and alanine were identified as the

amino acids that affect the interaction and function of AlLACs. The

interaction network for AlLAC proteins based on their orthologues in

the model plant, Arabidopsis, suggested that laccases are probably

involved in diverse cellular processes related to cellulose synthase

activity and oxidoreductase activity, including iron incorporation into

metallo-sulfur cluster, lignin catabolism, regulation of symbiotic

processes, plant-type primary cell wall biogenesis, and L-ascorbic

acid biosynthesis. Previous studies have also stated that laccases are

associated with processes related to plant cell wall components

(Cesarino et al., 2013; Liu et al., 2017). Notably, the weak

interaction between the laccases indicates that they likely work in

independent pathways.

Several classes of cis-acting elements related to response to

hormones, light, abiotic and biotic stresses, growth and

development processes were identified upstream of AlLAC genes,

suggesting that the members of this gene family have multifunctional

roles in A. littoralis (Ahmadizadeh and Heidari, 2014; Rezaee et al.,

2020). We investigated the expression profile of five AlLAC genes in

response to ABA and PEG application, cold, and salt stress using

qRT-PCR. Notably, AlLACs showed differential expression patterns

in shoot and root tissues, indicating that these genes have different

functions. Our findings demonstrated that AlLAC14 is more induced

in shoot tissues after 48 hours of exposure to stresses, however further

molecular functional studies of this gene are recommended. In

addition, the selected AlLAC genes were upregulated in response to

application of ABA hormone, a stress-dependent regulator that many

signaling pathways use in response to adverse environmental

conditions (Heidari et al., 2021b). The induction of AlLAC genes

after 48 hours of ABA application raises that these genes probably

have some interaction with signaling pathway related to ABA.

Furthermore, the selected AlLAC genes illustrated diverse

expression in response to abiotic stresses, including cold, salt, and

osmotic stress. Interestingly, these AlLACs were induced after 48

hours of exposure to stress conditions, revealing that AlLACs are

associated with late response pathways of A. littoralis. Several studies

have mentioned the role of laccases in the process of lignification

(Sato et al., 2001; Berthet et al., 2011). Laccases involves in lignin

polymerization and can affects the lignin synthesis (Berthet et al.,

2011). Lignin is a component of plant cell walls that plays an

important role in increasing the resistance and strength of plants.
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Besides, it was reported that LACs can be regulated by transcription

factor MYB and be induced by abiotic stresses (Xu et al., 2022). Our

results suggest that laccases are involved in response to adverse

conditions from direct and indirect pathways in A. littoralis.
Conclusion

The present study identified 15 AlLACs in the Aeluropus littoralis

genome, which formed five groups based on phylogenetic analysis.

AlLACs showed high diversity in structure and physicochemical

properties, suggesting that these gene family members were

influenced by evolutionary pressure. Various cis-regulatory

elements were observed upstream of AlLACs, revealing that AlLACs

are involved in different cell signaling pathways. Moreover, AlLACs

showed tissue-specific expression, suggesting that AlLAC genes might

be associated with growth and development processes. All of the

selected AlLAC genes were induced in response to salt, osmotic, and

cold stress, indicating that they can play a role in increasing the

tolerance to adverse conditions.
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