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The agricultural traits that constitute basic plant breeding information are usually

quantitative or complex in nature. This quantitative and complex combination of

traits complicates the process of selection in breeding. This study examined the

potential of genome-wide association studies (GWAS) and genomewide

selection (GS) for breeding ten agricultural traits by using genome-wide SNPs.

As a first step, a trait-associated candidate marker was identified by GWAS using a

genetically diverse 567 Korean (K)-wheat core collection. The accessions were

genotyped using an Axiom® 35K wheat DNA chip, and ten agricultural traits were

determined (awn color, awn length, culm color, culm length, ear color, ear

length, days to heading, days tomaturity, leaf length, and leaf width). It is essential

to sustain global wheat production by utilizing accessions in wheat breeding.

Among the traits associated with awn color and ear color that showed a high

positive correlation, a SNP located on chr1B was significantly associated with

both traits. Next, GS evaluated the prediction accuracy using six predictive

models (G-BLUP, LASSO, BayseA, reproducing kernel Hilbert space, support

vector machine (SVM), and random forest) and various training populations (TPs).

With the exception of the SVM, all statistical models demonstrated a prediction

accuracy of 0.4 or better. For the optimization of the TP, the number of TPs was

randomly selected (10%, 30%, 50% and 70%) or divided into three subgroups

(CC-sub 1, CC-sub 2 and CC-sub 3) based on the subpopulation structure. Based

on subgroup-based TPs, better prediction accuracy was found for awn color,

culm color, culm length, ear color, ear length, and leaf width. A variety of Korean

wheat cultivars were used for validation to evaluate the prediction ability of

populations. Seven out of ten cultivars showed phenotype-consistent results

based on genomics-evaluated breeding values (GEBVs) calculated by the

reproducing kernel Hilbert space (RKHS) predictive model. Our research

provides a basis for improving complex traits in wheat breeding programs

through genomics assisted breeding. The results of our research can be used

as a basis for improving wheat breeding programs by using genomics-

assisted breeding.

KEYWORDS

Triticum aestivum, genome-wide association study, genomic breeding, n-fold
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1 Introduction

Common wheat (Triticum aestivum L.) is a major staple food

crop widely cultivated in many parts of the world. Genetic

improvements are urgently required in wheat in order to achieve

better quality, higher yields, better adaptation to diverse

environments, tolerance to biotic stresses and to meet the needs

of a growing population as well as the effects of global climate

change (Atlin et al., 2017). It is essential to sustain global wheat

production by utilizing accessions in wheat breeding. It is, therefore,

fundamental to sustaining global wheat production. The

establishment of a core collection or a mini core collection (mini

CC) representing the entire genetic diversity of wheat and its

relatives in order to find accessions with desirable traits to

engineer new varieties, is useful for breeding purposes (Frankel,

1984; van Hintum et al., 2000; Worland, 2001; Zhang et al., 2011;

Kumar et al., 2020). In particular, there is a tremendous lack of

genome-wide genotypic information due to the wheat genome’s

characteristics. There is a large genome in wheat with a size of

approximately 16 Gb and has been assembled into 14.5 Gb

(Arumuganathan and Earle, 1991; IWGSC et al., 2018). It is an

allohexaploid with three homoeologous genomes (2n = 6x = 42,

genome formula AABBDD) originating from three ancestral

parental species(Sorrells et al., 2003; Gill et al., 2004). The large

size and polyploidy-related complexity of wheat collections made

genomic analyses difficult to detect the genome-wide molecular

diversity of each accession and to determine the population

structure of wheat collections (IWGSC et al., 2018).

In spite of this, advances in next-generation sequencing

technology are providing a variety of resources for wheat

breeding, including high-quality genomic data (IWGSC et al.,

2018). A number of high-throughput single nucleotide

polymorphisms (SNPs) arrays have been developed and utilized

in wheat, including 9K (Cavanagh et al., 2013), 50K (Rasheed and

Xia, 2019), 820K (Winfield et al., 2016), 660K (Sun et al., 2020), and

35K (Allen et al., 2017). Detailed information about different arrays

has been discussed in previous papers(Bassi et al., 2016; Sun et al.,

2020). These SNP arrays were used for genomic-wide association

studies (GWAS) and genomic selection (GS) in the United States

elite wheat breeding genotype, the International Maize and Wheat

Improvement Center (CIMMYT) spring wheat breeding program,

and European winter, and spring wheat(Wang et al., 2014; Jin et al.,

2016; Winfield et al., 2016; Cui et al., 2017; Rasheed and Xia, 2019;

Yang et al., 2019). Marker-associated selection (MAS) is conducted

using the SNP data obtained through genotyping-by-sequencing

and SNP arrays(Hayashi et al., 2004; Uauy, 2017; Li et al., 2018). It is

possible through GWAS to identify individuals associated with a

target trait by finding specific markers associated with that trait

(Visscher et al., 2017; Uffelmann et al., 2021). GWAS was

successfully used for quantitative trait loci (QTL) mapping of

wheat properties, such as stress resilience, disease resistance,

flowering time and grain yield, using various molecular marker

systems (Crossa et al., 2007; Bentley et al., 2014; Bhatta et al., 2018).
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Although many agricultural traits have been studied extensively and

their markers identified, other traits, such as the awn traits that

could be used to improve wheat grain yields, have rarely been

studied (Goddard, 2009; Sukumaran et al., 2018; Sheoran et al.,

2019; Krishnappa et al., 2021).

GS is a new MAS form that offers efficiency gains over

phenotypic selection or conventional MAS. A MAS is an indirect

selection process in which individuals are selected according to a

trait of interest(Fernando and Grossman, 1989). However, MAS is

only practical when a given trait is governed by a single gene or a

small number of genes, whereas such an approach would be difficult

or irrelevant for quantitative traits (i.e., traits governed by tens or

hundreds of minor genes)(Bernardo, 2008). In terms of short and

long-term responses, GS was reported to obtain more considerable

gains from selection than MAS based on only a few significant

markers. As part of the GS process, a training population (TP) of

relevant individuals is developed, which is a population that consists

of individual genotypes and phenotypes. Based on this information,

it is possible to develop a model that uses phenotypes as responses

and genotypes as predictors, based on the effects of dense markers

distributed across the genome on the net genetic merit of an

individual. An estimated individual effect of each marker is

estimated, and the additive sum of all the markers effects is used

to calculate each individual’s genomic-estimated breeding value

(GEBV)(Meuwissen et al., 2001). Further, genomic selection has the

potential to increase gain per unit of cost due to recent advances in

genotyping that enable thousands of marker data points to be

generated more economically and rapidly than was previously

possible (Lorenz et al., 2012). At the same time, phenotyping

remains time and labor-intensive. GS was extensively studied in

animal breeding to accelerate the rate of gain for quantitative traits,

and it is becoming more widely adopted in plant breeding. The

accuracy of GS prediction is determined by the correlation between

GEBV and trait phenotype(Wolc et al., 2011). In wheat, GS was

assessed for breeding important quantitative traits such as grain

yield, quality traits such as flour yield, flour protein, solvent

retention capacity for sucrose, lactic acid, water absorption,

sodium carbonate, and softness equivalent, as well as resistance to

Fusarium head blight (FHB) and stem rust (Heffner et al., 2011a;

Heffner et al., 2011b; Rutkoski et al., 2015; Arruda et al., 2016;

Guzman et al., 2016).

The purpose of this study is to conduct two genomics-assisted

breeding approaches (GWAS, GS) with the K-wheat core collection

(CC) with genetic diversity for ten agricultural traits. In the first

step, a mini core collection (miniCC) was constructed based on SNP

markers across the Kwheat genome. We then used the miniCC to

identify trait-associated markers using the fixed and random model

circulating probability unification (FarmCPU). The third step

involved evaluating the prediction accuracy with the CC using

various compartmentalized training sets and statistical models. This

study will serve as a foundation for the development of improved

wheat varieties that are more efficient than conventional

breeding methods.
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2 Materials and methods

2.1 Plant materials

The K-wheat core collection (CC) reported in previous studies was

used as a training population for this study (Min et al., 2021). The CC

consists of accessions collected worldwide and stored in National

Agrobiodiversity Center (http://genebank.rda.go.kr/). Based on 37

simple-sequence repeat (SSR) markers, this CC includes 567

accessions from 49 countries. (Figure 1; Supplementary 1).
2.2 Genotyping and built of K-wheat
mini-core collection

Since the CC was established based only on 37 SSRs (Balfourier

et al., 2007), it cannot scan the entire genome of wheat. Therefore,

the CC genotype was further determined with the Axiom® 35k

breeders SNP array (Affymetrix, CA, USA) (Allen et al., 2017) to

screen the entire genome and re-analyze subpopulation structure.

Genotyping was performed on an Affymetrix GeneTitan system

following Affymetrix’s manual (Axiom® 2.0 Assay Manual

Workflow User Guide Rev3). SNP callings were performed using

modified versions of Affymetrix Power Tools (APT) and

SNPolisher™(Affymetrix, CA, USA) to account for the wheat

genome’s specificity. Genotype scoring was performed in

Affymetrix Genotyping Console using recommended QC metrics

(0.82 DQC, 97 QC call rate) (Przewieslik-Allen et al., 2021). Among

35,143 SNPs, SNPs with a minor allele frequency (MAF) of 5% or

less were removed.

Genocore (Jeong et al., 2017) and CoreHunter (Thachuk et al.,

2009) programs were used to select the K-wheat mini CC based on

the whole genome SNPs. Genocore selected subsets using -d 0.001
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and -cv 200 parameters. Core Hunter selected subsets using

default options.
2.3 Population structure analysis

STRUCTURE 3.4.0 software (Pritchard et al., 2010) was used to

analyze population structure. There were 50,000 burn-in iterations,

followed by 100,000 Markov Chain Monte Carlo (MCMC) iterations

after a burn-in of each run. The hypothetical number of

subpopulations (k) was preset from 2 to 9. STRUCTURE

HARVESTER (Earl, 2012) was used to identify the best k. SNPs

were considered for phylogenetic analysis using the SNPhylo pipeline

to generate phylogenetic trees by the maximum likelihoodmethod (Lee

et al., 2014). Multivariate analysis was performed using the principal

component analysis (PCA) of the three components of Tassel v.5.2.5

(Bradbury et al., 2007). The PCA was constructed based on individual

eigenvectors. PCA plots were classified according to subgroups of the

population structure analysis.
2.4 Phenotype and statistical analysis

Agricultural traits of 567 accessions were measured at the National

Institute of Crop Science research field (35° 49’ 48.235”N, 127° 2’

27.183”E). Ten agricultural traits were measured from 2018 to 2019,

and the accumulated data was quantified for each trait. Agricultural

traits were: awn color (AC), awn length (AL), culm color (CCL), culm

length (CL), ear color (EC), ear length (EL), leaf length (LL), leaf width

(LW), days to heading (HD), and days to maturity (MD).

The bar plot depicts the phenotypic data distribution for all ten

traits. Correlation analyses between phenotypes were performed

using Pearson correlation coefficients of mini-tab 16.2.4 software
FIGURE 1

567 accessions of K-wheat core collection used in this study and country of origin.
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(Minitab, 2021). The phenotype data used for association analysis

was calculated by best linear unbiased prediction (BLUP) using the

phenotype package of the R program (Piepho et al., 2008).
2.5 Association analysis

Association analysis was performed using the FarmCPU

method in the Genome Association and Prediction Integrated

Tool (GAPIT) R package (Lipka et al., 2012). A false discovery

rate (FDR) threshold adjusted -log10 P > 3 was used to state

significant marker-trait associations. Significant SNPs were

annotated using Variant Effect Predictor of Ensembl-plants.

In order to find each trait-associated candidate gene, a gene

region of up- and down-stream of 500 kb flanking sequences was

secured in a significant SNP. For the flanking sequences of significant

SNPs, the Basic Local Alignment Search Tool (BLASTx) analysis was

performed using the National Center for Biotechnology

Information’s (NCBI) nr protein database (confined to

Viridiplantae) as a subject (https://www.ncbi.nlm.nih.gov/genbank/).
2.6 Prediction model for genomic selection

The prediction ability of Bayes A, ridge regression (equivalent to

G-BLUP), least absolute shrinkage and selection operator (LASSO),

random forest regression (RF), support vector machine (SVM), and

reproducing kernel Hilbert space (RKHS) models widely used in

various crops were evaluated and comparatively analyzed. All

models are embedded in the R package Breed Wheat Genomic

Selection Pipeline (BWGS) (Charmet et al., 2020). Bayes A uses a

scaled-t prior distribution of marker effects (Neal, 2012), and

genomic best linear unbiased prediction (GBLUP) uses a marker-

based relationship matrix (Endelman, 2011). LASSO is a penalized

regression method. RF uses a regression model on tree nodes based

on bootstrapping data and assumes that interactions between

markers can be captured (Breiman, 2001). RKHS is based on

genetic distance and kernel function to control the distribution of

marker effects and is effective in detecting non-additive effects

(Pérez and de Los Campos, 2014). For all those models, ten-fold

cross-validation was used to test the credibility of GEBV values.

In order to confirm the prediction ability according to the TP, the

accessions included in the CC were divided into randomly selected

subgroups or subgroups based on genetic backgrounds. First, the

randomly selected subgroups were repeated ten times by selecting as

many individuals as 10% (56 accessions), 30% (170 accessions), 50%

(284 accessions), 70% (397 accessions), and 100% (567 accessions) of

the CC. In order to see the differences according to the genetic

backgrounds, three subgroups divided based on the results of the

population structure analysis were used as training populations.
2.7 Validation of prediction models

Thirty-five Korean wheat cultivars were used to verify the

estimated prediction accuracy. The genotype data of the breeding
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population was obtained with an Axiom® 35k breeders SNP array.

The phenotype data were measured by the NICS (35° 49’ 48.235”N,

127° 2’ 27.183”E) from 2018 to 2019. The prediction ability was

verified through correlation analysis between the GEBV and the

measured values of the breeding population. The bwgs.predict, the

function of the R package BWGS, was used for verification.
3 Results

3.1 Construction of a K-wheat mini-core
collection

SNP genotyping for 576 accessions included in the CC

constructed using SSR markers was performed using the Axiom®

35k breeders SNP array (Affymetrix, CA, USA) to construct the K-

wheat mini CC and to re-analyze subpopulation structures. Since

the original CC was constructed based on 37 SSR markers, the

ability to scan the entire genome would be weak. Instead, the mini

CC may enhance the power of predictive breeding because the 35k

SNP array may efficiently cover the whole genome of bread wheat.

Since SNP calling was not made in nine out of 576 accessions, the

SNP data of 567 accessions was used for downstream analyses. A

total of 35,153 SNPs were obtained through a 35K wheat DNA

array. Across all the wheat chromosomes, an average of

approximately 1,597 SNPs were identified in each chromosome.

In terms of SNP distribution by chromosome, the 4D chromosome

had the smallest number (828), and the 2D chromosome had the

largest number (2,156). When filtering based on the MAF of 0.05,

27,598 SNPs were determined. Even after filtering, the 4D

chromosome had the smallest number of SNPs, and the 2D

chromosome had the largest (Figure 2). 4D chromosome had

smallest number because it has the lowest number of genes

and probes.

Two software packages, Core Hunter and Genocore, were used

to establish the mini CC, resulting in 113 and 216 accessions,

respectively. Among them, 82 accessions were selected by both

programs. Therefore, the mini CC consisting of 247 accessions was

finally determined (Supplementary Table 1).
3.2 Genetic diversity and population
structure

Population structure and phylogeny tree analysis were

performed to investigate the genetic diversity of the CC with

SNPs. The number of subgroups in the CC was determined by

model-based structure analysis with model parameters k from 2 to 9

(Supplementary Figure 1). The maximum likelihood values of the

CC showed a typical curvilinear response to increasing k, such that

k = 3 was defined to provide the optimal structure for further

analysis (Supplementary Figure 1A). CC-sub 1 comprised 125

accessions with the genetic diversity index of 0.405 based on the

fixation index (Fst). CC-sub 2 comprised 269 accessions with the

genetic diversity index of 0.397, and CC-sub 3 comprised 173

accessions with the genetic diversity index of 0.41. A phylogeny
frontiersin.org
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B C

A

FIGURE 3

Population structure analysis of K-wheat mini-core collection using SNP markers. (A) Results of Evanno test and population structure of the mini-
core collection. (B) Principal component analysis (PCA) of a mini-core collection based on SNP markers. Based on the subpopulation structures, the
red, yellow, green, blue, and purple dots represent mini-sub 1, mini-sub 2, mini-sub 3, mini-sub 4, and mini-sub 5, respectively. (C) Molecular
phylogenetic analysis by Maximum Likelihood method using the mini-core collection. Phylogenetic analysis was inferred by the Maximum Likelihood
method based on the Tamura-Nei model. Phylogeny tree analyses were conducted by MEGA7 (Kumar et al., 2016). Based on the subpopulation
structures, the red, yellow, green, blue, and purple lines indicate mini-sub 1, 2, 3, 4, and 5, respectively.
B

A

FIGURE 2

(A) SNP distribution by chromosome. (B) SNP distribution by subgenomes.
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tree was built using the common SNPs markers of CC to better

detail the kinship among the accessions. The phylogeny tree of the

CC showed two main clusters with a robust separation between

them (Supplementary Figure 1B). Within each cluster, accessions

were mainly grouped in agreement with the groups obtained

previously by the population structure analysis. However, the

three subgroups were mixed without forming a cluster when the

PCA analysis results were divided by the population structure

(Supplementary Figure 1C).

For the mini CC, Evanno test showed 6 clusters with K=6.

(Figure 3A). However, there was no significant difference in the

value in one cluster among the six clusters. Therefore, they were not

differentiated into distinct groups and were divided into five groups.

Mini CC-sub 1 comprised 104 accessions with the genetic diversity of

0.411 based on the fixation index (Fst). Mini CC-sub 2 consisted of

seven accessions with the genetic diversity index of 0.389, andmini CC-

sub 3 comprised 82 accessions with the genetic diversity index of 0.371.

Mini CC-sub 4 consisted of 49 accessions with the genetic diversity

index of 0.399, and mini CC-sub 5 consisted offive accessions with the

genetic diversity index of 0.383. The phylogeny tree of the mini CC

showed three main clusters with a robust separation from each other

(Figure 3B). Within each cluster, accessions were mainly grouped in

agreement with the groups obtained previously by the population

structure analysis. The PCA analysis clearly distinguished three

subgroups (mini-subs 1, 3, and 4) (Figure 3C).
3.3 Correlation analysis of phenotype

The frequency distribution of ten agricultural phenotypic data of

567 accessions included in the CCL is shown in Figure 4A. As a result
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of correlation analysis between each trait by Pearson correlation

coefficient analysis (Figure 4B), a significant and strong positive

correlation (0.913) was found between EC and AC. There was also

a significant strong positive correlation (0.8854) between HD and

MD. In addition, weak positive correlations between many traits were

observed. For the LW example, a weak negative correlation was

observed with the AC, AL, CCL, CL, and EC traits (-0.1 ~ -0.039).
3.4 Marker-trait association analysis

Marker-trait association (MTA) of ten traits was conducted using

FarmCPU models (Figure 5). The SNPs with FDR adjusted -log10

(P) > 3 were designated as significant. Significant SNPs detected for

each trait using the FarmCPU model are detailed in Table 1. A total of

18 significant SNPs were identified for eight traits. For the AC trait, one

significantly associated SNPs were distributed in chr1B. For the AL

trait, two significant SNPs were identified in chr4D and chr2D, and

four significant SNPs were identified in four chromosomes for the CCL

trait. Two significant SNPs were identified for the CL trait in chr1B and

chr2D. For the EC trait, two significant SNPs were detected in chr1B

and chr2D. For the HD trait, one significant SNP was detected in

chr3D, and six SNPs were detected in six chromosomes for the MD

trait. SNP AX-94454667, located in chr1B, was identified in both AC

and EC traits. The differences in the phenotypes of individuals

according to the alleles of the identified significant SNP markers

were confirmed. In the case of AC, the average phenotypic value of

accessions with the A allele was 2.27, ranging from yellow to yellow-

brown, whereas the average phenotypic value of accessions with the C

allele was 4.47, ranging from brown to reddish-brown. In the MTA

results of AL, the mean phenotypic value of accessions with the T allele
B

A

FIGURE 4

Correlation analysis and frequency distribution of the phenotypes in the K-wheat core collection. AC, awn color; AL, awn length; CCL, culm color;
CL, culm length; EC, ear color; EL, ear length; LL, leaf length; LW, leaf width; HD, days to heading; MD, days to maturity. (A) It means the distribution
of phenotypes of all accessions. (B) Shows the correlation of each phenotype. All correlation analyzes are expressed as Pearson's correlation
coefficient.
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of SNP AX-94613491 was 5.9 cm, while that of accessions with the C

allele was 3.1 cm. Based on the relationships between the phenotypic

values and alleles listed above, one can select a wheat plant with about

2.8 cm of awn length. It could have an A allele in the designated locus.

Likewise, the mean phenotypic value of accessions with the A allele of

SNP AX-94937575 was 5.43 cm, while that of accessions with the G

allele was 4.9 cm. Accessions with the T allele of SNP AX-94613491

and the A allele of AX-94937575 had an average length of 6.41 cm.

Accessions with the T allele of SNP AX-94613491 and the G allele of

AX-94937575 had an average length of 5.7 cm. Accessions with the C

allele of SNP AX-94613491 and the A allele of AX-94937575 had an

average length of 3.02 cm. Accessions with the C allele of SNP AX-

94613491 and the G allele of AX-94937575 had an average length of

3.55 cm. Therefore, the allele of SNP AX-94613491 is more likely to be

related to length than SNP AX-94937575. In the MTA results of CL,

the mean length of accessions with the A allele of SNP AX-94638909

was 90 cm, whereas the mean length of accessions with the G allele was

61 cm. In the MTA results of ear color, the average phenotypic value of

accessions with the A allele was 1.79, ranging from yellow-white to

yellow. In contrast, the average phenotypic value of accessions with the

C allele was 4.5, ranging from brown to reddish-brown. In the MTA

results of days to heading, accessions with the A allele of SNP AX-

94881841 had an average of 19 days, and those with the G allele had an

average of 21. The information can be utilized for developing selection

markers for wheat breeding programs.
3.5 Identification of putative candidate
genes

Candidate genes were identified for the significant SNPs

associated with eight traits (Table 1). SNP AX-94454667 was

associated with the AC trait and the EC trait was marked with
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cytochrome P450. One significant SNP of unknown function was

additionally identified in the ear color trait. In the significant SNP of

the culm color trait, the potassium channel kat2 gene was

annotated, and in the culm length, the amp gene and glb3 gene

were annotated. As for the leaf width, the NAC domain-containing

protein involved in growth and development was identified. For

significant SNPs related to the days to maturity trait, the pp1 gene

and the tet gene were annotated. All the genes were somehow

related to traits, which will be discussed further in the next section.
3.6 Heritability of ten agricultural trait

The narrow-sense heritabilities (H2) of ten agricultural traits

used for genomic selection are shown in Table 2. The heritability of

the traits measured in the CCL ranged from 0.004 to 0.8. The

highest heritability estimates were for HD (0.8), while the

heritabilities of EC and CL were low (less than 0.1).
3.7 Prediction accuracy comparison

To compare the prediction accuracy of each model, we compared

six models commonly used in the GS procedure (Figure 6). The entire

CC was used as an initial TP to calculate the prediction accuracy. The

SVM model showed the lowest prediction accuracy for all traits, and

RF confirmed the best prediction accuracy for all traits. For the culm

color trait, the prediction accuracy of less than 0.4 was determined.

The prediction accuracy of 0.4 or more was determined for the other

nine traits except for the SVM model.

In order to compare the prediction accuracy according to the

composition of the TPs, eight TP sets were constructed (Figure 7). It

was divided into five TP types (RD10, RD30, RD50, RD70, RD100)
FIGURE 5

Q-Q plots and Manhattan plots of genome-wide association study (GWAS) for ten agronomic traits of the K-wheat mini-core collection. The x-axis
represents the wheat chromosomes, and the y-axis indicates statistical significance according to -log10 (p-value). AC, awn color; AL, awn length;
CCL, culm color; CL, culm length; EC, ear color; LW, leaf width; HD, days to heading; MD, days to maturity.
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TABLE 1 Significant SNPs identified for 8 agricultural traits of mini-core collection.

SNP Chr allelea Positionb Mafc effectd P-valuese Consequence Gene IDf

Awn color

AX-94454667 chr1B A/C 1942165 1.5E-01 0.98 24.85 Synonymous TraesCS1B02G002900

Awn length

AX-94613491 chr4D T/C 509666570
3.4E-01 1.76 29.94

Synonymous TraesCS4D02G365800

Upstream TraesCS4D02G365800

AX-94937575 chr2D A/G 648547627 3.0E-01 0.84 5.13 Intergenic

Culm color

AX-94445918 chr3D A/T 113799234 5.0E-01 0.98 4.00 3’ UTR TraesCS2B02G541300

AX-94428945 chr2B T/G 737635801 3.5E-01 0.14 3.26 Intron TraesCS3D02G148600

AX-95005487 chr4A A/G 614244697
7.1E-02 -0.27 3.26

Upstream TraesCS4A02G328900

3’ UTR TraesCS4A02G329000

AX-94921816 chr5A A/G 462808499 6.7E-02 -0.26 3.22 3’ UTR TraesCS5A02G248500

Culm length

AX-94816988 chr3D T/G 547625708
3.6E-01 24.49 5.70

Downstream TraesCS3D02G435300

3’ UTR TraesCS3D02G435400

AX-94638909 chr7A A/G 542708859 9.9E-02 -6.46 4.34 Synonymous TraesCS7A02G369100

Ear color

AX-94454667 chr1B A/C 1942165 1.5E-01 1.35 29.11 Synonymous TraesCS1B02G002900

AX-94508473 chr2D A/G 567967948 1.8E-01 0.54 3.05 Intergenic

Days to heading

AX-94881841 chr3D A/G 136402016

3.6E-01 3.06 3.01

Synonymous TraesCS3D02G164700

Downstream TraesCS3D02G164800

Downstream TraesCS3D02G164800

Leaf width

AX-94756234 chr5A A/G 481901482

4.9E-01 -0.05 4.39

Upstream TraesCS5A02G271400

Intron TraesCS5A02G271500

Missense TraesCS5A02G271500

Days to maturity

AX-94509831 chr3B A/C 317628294 1.9E-01 -2.29 8.50 Upstream TraesCS3B02G226800

AX-94954171 chr3A A/G 159839248 1.2E-01 1.82 3.35 Intron TraesCS3A02G159900

AX-94841333 chr1B T/C 334681540 1.6E-01 -1.42 3.27 Missense TraesCS1B02G187300

AX-95186852 chr1A T/C 27362485
1.7E-01 1.28 3.27

Missense TraesCS1A02G046100

Missense TraesCS1A02G046100

AX-94442558 chr1D A/C 43124061 4.8E-01 -0.92 3.24 Synonymous TraesCS1D02G063000

AX-95222044 chr4B A/G 598261950 2.8E-01 -0.84 3.09 Stop gained TraesCS4B02G307900
F
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a) major allele/minor allele.
b) Position in IWGSC RefSeq v1.0.
c) Minor allele frequency.
d) the estimated effect of replacing minor allele by major allele.
e) FDR-corrected p values after Bonferroni correlation.
f) Genes annotated with high confidence by IWGSC.
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by randomly selected accessions based on the proportions of the

entire CC and three TP types (CC-sub1, CC-sub2, CC-sub3)

according to the subpopulation structure divided by the genetic

background. When the TP was randomly selected from all traits,

prediction accuracies increased as the size increased. However, in

the subgroup based on the population structure, CC-sub2 had the

largest number of accessions (269), but it did not always show the
Frontiers in Plant Science 09
best prediction accuracy. The AC, CCL, and EC traits had the

highest prediction accuracy in CC-sub 3. In particular, the

prediction accuracy of CC-sub 2 was 0.87 for the AC, and

the accuracy of CC-sub 3 was 0.89 for the EC. For the AC, EC,

HD, and MD traits, the prediction accuracy was above 0.6 using any

TP. The AL, LL, and EL traits had similar patterns of prediction

accuracy in most TPs.
FIGURE 6

Comparison of prediction accuracy according to different predictive models. The y-axis is the prediction accuracy, and the x-axis is each model. The
entire K-wheat core collection was used as a training population. AC, awn color; AL, awn length; CCL, culm color; CL, culm length; EC, ear color;
LW, leaf width; HD, days to heading; MD, days to maturity.
TABLE 2 Variance components and heritability of 10 agronomic traits in 567 core collection.

Traits Genetic Variance Residual variance Phenotypic variance Heritability

AC 1.01 2.92 3.92 0.26

AL 1.01 4.67 5.68 0.18

CL 3.27 30.52 33.79 0.10

EC 0.02 4.34 4.36 0.00

EL 1.01 5.91 6.92 0.15

CC 1.01 6.07 7.08 0.14

LL 1.01 6.80 7.82 0.13

LW 1.00 1.66 2.67 0.38

HD 44.39 10.46 54.85 0.81

MD 1.00 1.31 2.31 0.43
AC, awn color; AL, awn length; CC, culm color; CL, culm length; EC, ear color; EL, ear length; LL, leaf length; LW, leaf width; HD, days to heading; MD, days to maturity.
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3.8 Validation of breeding populations

A further validation was conducted to confirm the predictive

ability of the TP of the CC. Thirty-five Korean wheat cultivars with
Frontiers in Plant Science 10
HD data were used as a validation population (VP). The prediction

ability was determined by correlating GEBVs with phenotypic data,

which is an actual observed value. For the TP for verification, the

case where the whole CC was used as a TP and three subgroups

based on the subpopulation structure were used. The prediction

ability of CC-sub 3 was the highest. A comparison between the

models confirmed the prediction ability of 0.49, 0.52, and 0.47 in

GBLUP, RKHS, and RF, respectively (Figure 8). As a result of using

4 TPs, CC-sub 3 TP had the highest prediction ability. Next, when

the CC was used as the TP, the prediction ability of 0.4 was

confirmed for the GBLUP and Bayes models.

The GEBV of the RKHS model to CC-sub 3, with the highest

prediction accuracy, and BLUP of the actual phenotype were

compared (Table 3). The 20 cultivars shown in Table 3 were

selected based on GEBVs. Of the ten individuals presumed to

have early HD based on the GS procedure, seven individuals were

identified as having an early HD per actual phenotypic data. Seven

of the ten individuals presumed to have late HD were identified as

having a late HD in the actual phenotype. The validation process

indicated that the GS was very efficient in selecting desired

individuals for breeding with the HD trait
4 Discussion

Wheat is a major crop, and various varieties are grown in many

countries. Breeding requires the development of varieties with

characteristics that breeders value as necessary, such as increased
FIGURE 8

Prediction ability of validation population for days to heading. The
predictive ability of six predictive models was verified using four TPs.
The X-axis means the prediction model, and the y-axis means the
predictive ability confirmed through the comparison between GEBV
and BLUP. The black line indicates CC, the red dotted line indicates
CC-sub1, the green dotted line indicates CC-sub2, and the blue
dotted line indicates CC-sub3.
FIGURE 7

Comparison of prediction accuracy according to compartmentalized training populations. The y-axis is the prediction accuracy, and the x-axis is
each training population. The predictive model used for this analyses is RF. AC, awn color; AL, awn length; CCL, culm color; CL, culm length; EC, ear
color; LW, leaf width; HD, days to heading; MD, days to maturity.
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grain yield, adaptation to climate change, and disease resistance.

The first step in developing these breeds is to secure diverse

individuals. Wheat diversity panels, such as core collections, were

developed to understand populations’ genetics and structure. A

variety of phenotypic variations offered by those panels could be

used as breeding resources to develop markers or be directly applied

for conventional selective breeding. Recently, various populations

with phenotypic variations have been used for predictive breeding

with advanced statistical models and computational resources to

deal with big genomic data.

According to the Balfourier et al. (Balfourier et al., 2007), a core

collection of global bread wheat was built using 38 SSR markers

from 3,942 accessions collected from 73 countries. The National

Institute of Agrobiological Sciences (NIAS), Japan wheat core

collection was created using GBS-based SNPs, but this was

limited to varieties in Japan (Takeya et al., 2013). In the current

study, 567 core collections generated using 37 SSR markers from the

previous studies were reconstructed by genotyping with the

Axiom® 35k breeders SNP array (Affymetrix, CA, USA) for the

SNPs to cover the entire wheat chromosomes, building the K-wheat

mini CC with 247 accessions. A CC corresponds to about 30% of the
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total, and a mini CC to about 12% of the total. When the CC and the

mini CC were divided by geographic origins, it was confirmed that

they were composed of a certain percentage (Supplementary

Table 2). Accessions originating from the African continent

accounted for about 5% of the CC and mini CC, and accessions

from Asia accounted for about 37–39%. Accessions from Europe

accounted for 16–18%, South America for 17–19%, and North

America for 8–12%.

To obtain useful information about the genetic diversity and

population structure of the CC and mini CC, we divided them into

three and six subgroups based on the population structure analysis

(Supplementary Figure 1; Figure 3). The PCA and phylogeny trees

of the mini CC were clustered similarly to the subpopulations

identified in the population structure analysis. Accessions

originating from Korea tended to cluster in Asian countries,

including Japan, America, and the majority. Accessions from

China tended to be clustered into individual groups. Accessions

from Europe tended to be clustered into subgroups. Even in similar

regions, there are differences among varieties according to breeding

programs for improvement. Therefore, the exchange and utilization

of diverse accessions worldwide effectively expanded the genetic

basis of wheat breeding (Yang et al., 2020). It is costly and time-

consuming to describe agricultural traits or quality characteristics

with large-scale wheat accessions due to duplications in terms of

their genetic backgrounds. This occurs because some traits or

characteristics are present in more than one wheat accession,

making the process of describing each one individually produce

considerable redundancy in terms of the data collected. In addition,

it is difficult to accurately compare the traits of different accessions

when their genetic backgrounds are similar. The miniCC was

constructed based on SNP markers across Korean wheat. Genetic

diversity revealed six subgroups and one admixture group (k=6),

which is less than the K-wheat core collection (k=7). The miniCC

does not appear to have covered the genetic background of the

accessions in the same manner as the K-wheat core collection. As a

result, the traits of the accessions in the miniCC may require further

investigation in comparison to those of the accessions in the core

collection of K-wheat. However, miniCCs with decent genetic

diversity can facilitate the identification of trait-related markers or

individuals through GWAS since A mini core collection (miniCC)

is a smaller, more manageable collection of plant genetic resources

that are representative of a larger collection.

We obtained phenotypic data of ten agronomically important

traits. First, association analysis using the FarmCPU model was

conducted, resulting in 19 SNPs significantly associated with those

traits. Significant SNPs associated with traits were selected based on

-log 10 P > 3. The Bonferroni correction and FDR correction to

avoid false positive or false negative results are very strict.

Therefore, it is difficult to select complex traits and quantitative

traits based on the existing P-value threshold of 5 × 10-8.However,

candidate SNPs estimated to be significant in our study require

additional validation (Gao et al., 2016). A high positive correlation

of 0.913 was shown for the awn color and ear color traits, and in the

GWAS results, one significant SNP located on chromosome 1B was

shared. SNP AX-94454667, shared by the awn color and ear color

traits, was annotated as cytochrome P450, which plays an important
TABLE 3 Comparison of BLUP and GEBV in breeding population.

Cultivar BLUP GEBV

Jokyung -0.88 0.69

Hanbaek -0.42 1.06

Sukang 0.04 1.27

Joeun -2.72 1.59

Johan -1.80 1.63

KG -0.88 2.01

Jonong -2.72 2.07

Yeonbaek -0.42 2.13

Jojung -1.34 2.13

Jeokjung -1.34 2.13

. . .

. . .

. . .

Ori 1.42 3.14

Milsung 0.04 3.15

Hojung 0.96 3.24

Gobum 1.42 3.25

Eunpa 2.34 3.70

NamH 0.50 4.15

Topdong 2.34 4.35

Grue 3.26 4.60

Jinpum 2.80 4.71

Cheonggey 1.42 4.80
Bold text indicates varieties with matching BLUP and GEBV.
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role in the biosynthesis of flavonoids and anthocyanins, colored

compounds of flavonoids (Tanaka and Brugliera, 2013). Culm

length is annotated with the amp gene, a disease resistance-

related gene that plays an important role in the immune system,

and the glb gene, which is involved in growth development and

stress response by participating in plant oxygen supply. In days to

maturity, the pp1 gene (Máthé et al., 2019) and tet gene (Reimann

et al., 2017) involved in plant development, environment, and stress

signaling pathways were identified. Significant SNP identified in leaf

width was annotated with the NAC gene family, one of the strongest

transcription factor families involved in various processes such as

development, aging, and response to environmental stress (Olsen

et al., 2005). The significant SNPs associated with days to heading

were annotated as the agc gene involved in response to

environmental stress and immunoregulation (Máthé et al., 2019).

In most traits, gene families involved in plant hormones, growth

development, and stress response were annotated.

Significant differences in phenotypes according to alleles of

SNPs were confirmed. Accessions with the A allele of SNP AX-

94454667 had yellow-white to yellow in awn color and ear color. It

was confirmed that accessions with the C allele ranged from brown

to reddish-brown in both traits. In days to heading, it was

confirmed that accessions with the A allele of SNP AX-94881841

were about nine days earlier. The awn length confirmed that the

subjects with the T allele of SNP AX-94613491 were 2 cm longer on

average. We identified significant SNPs associated with eight

previously unknown agronomic traits. However, further studies

are needed to validate the markers detected in this study using other

populations and environments.

Several researchers have reported genomic selection studies in

wheat, but most have used advanced or preliminary breeding lines as

a TP (Zhang et al., 2022). However, it was reported that GS

successfully used the CC in other crops, such as pepper (Hong

et al., 2020). In genomic selection, prediction accuracy is affected

by various factors, such as assumptions of prediction methods,

markers, and training populations. Therefore, we investigated

various genomic prediction methods through 10-fold cross-

validation. Although there were differences between traits

depending on the predictive model, RF showed consistently good

prediction accuracy across all traits. The average culm length

prediction accuracy was lower than that of other traits, indicating

that the genetic structure of the locus is different from other traits. In

particular, awn color-ear color and days to heading-days to maturity,

which are highly correlated characteristics, showed similar patterns of

prediction accuracy. It is consistent with the results of previous

studies showing similar patterns among highly correlated traits

(Hong et al., 2020). Reports show that heritability is one factor that

significantly influences GS (Desta and Ortiz, 2014). However, our

study did not show a correlation between prediction accuracy and

heritability. HD (0.81) showed a high prediction accuracy but also

had a prediction accuracy of 0.6 or higher for most other traits with

low heritability. Therefore, this study did not identify a reliable

correlation between prediction accuracy and heritability.
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Next, the prediction accuracy according to TPs was

investigated. It is known that prediction accuracy increases with a

large number of training populations. However, it was reported that

the genetic diversity of the training population affects prediction

accuracy (Edwards et al., 2019). Therefore, when using as diverse

training populations, we evaluated the prediction accuracy of

clustered accessions according to the population structure. In all

traits, it was confirmed that the prediction accuracy increased as the

size increased. However, subgroups based on population structure,

irrespective of their number, showed different prediction accuracies

for all traits. Also, traits that showed a high positive correlation

between phenotypes showed a similar pattern in prediction

accuracy according to the training population.

Finally, verification was conducted to determine whether the

CC’s GS model applied to the validation population. Validation was

performed only for the days to heading trait. As a result of applying

the validation population consisting of 35 breeding lines to six

models, it was possible to confirm the prediction ability of 0.4 or

more in the CC-sub 3 training population. Based on the results from

previous studies that a prediction accuracy greater than 0.3 would be

sufficient to apply genomic selection (Heffner et al., 2011b), our study

showed the potential for genomic selection in wheat breeding. The

results can potentially provide new molecular marker information

associated with those traits based on allelic differences with opposite

phenotypes. The maker information obtained from this study should

be validated for other breeding populations.
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