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Introduction: Remote sensing using unmanned aerial systems (UAS) are

prevalent for phenomics and precision agricultural applications. The high-

resolution data for these applications can provide useful spectral

characteristics of crops associated with performance traits such as seed yield.

With the recent availability of high-resolution satellite imagery, there has been

growing interest in using this technology for plot-scale remote sensing

applications, particularly those related to breeding programs. This study

compared the features extracted from high-resolution satellite and UAS

multispectral imagery (visible and near-infrared) to predict the seed yield from

two diverse plot-scale field pea yield trials (advanced breeding and variety

testing) using the random forest model.

Methods: The multi-modal (spectral and textural features) and multi-scale

(satellite and UAS) data fusion approaches were evaluated to improve seed

yield prediction accuracy across trials and time points. These approaches

included both image fusion, such as pan-sharpening of satellite imagery with

UAS imagery using intensity-hue-saturation transformation and additive wavelet

luminance proportional approaches, and feature fusion, which involved

integrating extracted spectral features. In addition, we also compared the

image fusion approach to high-definition satellite data with a resolution of 0.15

m/pixel. The effectiveness of each approach was evaluated with data at both

individual and combined time points.

Results and discussion: Themajor findings can be summarized as follows: (1) the

inclusion of the texture features did not improve the model performance, (2) the

performance of the model using spectral features from satellite imagery at its

original resolution can provide similar results as UAS imagery, with variation

depending on the field pea yield trial under study and the growth stage, (3) the

model performance improved after applying multi-scale, multiple time point
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feature fusion, (4) the features extracted from the pan-sharpened satellite

imagery using intensity-hue-saturation transformation (image fusion) showed

better model performance than those with original satellite imagery or high

definition imagery, and (5) the green normalized difference vegetation index and

transformed triangular vegetation index were identified as key features

contributing to high model performance across trials and time points. These

findings demonstrate the potential of high-resolution satellite imagery and data

fusion approaches for plot-scale phenomics applications.
KEYWORDS

high-resolution satellite, unmanned aerial system, multispectral, yield prediction, pan-
sharpening, high-throughput field phenotyping, plant breeding
1 Introduction
Crop improvement efforts focus on developing new cultivars

with increased yield potential, stable agronomic traits, and better

environmental adaptability. Genomic tools and technologies have

played a major role in advancing plant breeding programs by

enabling “accurate” quantitative trait loci mapping and genome-

wide association studies (Varshney et al., 2021). However, locating

associated genes depends on the accuracy of the phenotypic data

(Pratap et al., 2019). The acquisition of phenotypic data needs

accurate, rapid, and efficient tools to bridge the relationship between

the genotype and phenotype and the interactions of the genotype

with the environment and management practices. Phenomics or

high-throughput plant phenotyping technologies have enabled

accurate and rapid phenotyping at different scales and resolutions

(Yang et al., 2020).

The rise of field phenomics is driven by the advances in sensing

technologies that can be deployed using drones or unmanned aerial

systems (UAS) (Sankaran et al., 2015; Pieruschka and Schurr, 2019;

Zhao et al., 2019a; Yang et al., 2020; Guo et al., 2021). Such systems

have been used for various phenomics applications – from spotting

ideotypes (Roth et al., 2022) to studying latent heat flux (Tauro

et al., 2022) in crops. The success of UAS-based sensing techniques

for measuring crop phenotypes in breeding trials is contributed to

the following: (i) low altitude flights enable acquisition of high

spatial resolution data (Zhang et al., 2020; Jin et al., 2021), ideal for

imaging the small-size plots; (ii) UAS equipment and cameras are

small, light, and easily portable (Zhao et al., 2019a; Zhang et al.,

2020); (iii) the flexibility of UAS in selecting the date and time for

data acquisition (Zhang et al., 2020) or collecting data at different

times within a day (Valencia-Ortiz et al., 2021); and (iv) the ability

of the system to be integrated with single or multiple on-board

sensors such as RGB, multispectral, hyperspectral, thermal, and/or

light detection and ranging (LiDAR) sensing systems, which

facilitates the measurements of a wide range of crop traits (Yang

et al., 2017; Zhao et al., 2019a; Jin et al., 2021).

One of the key performance traits in crop breeding programs is

yield and its components. As these traits are complex and influenced by
02
the environment, there is a continuous and ongoing effort to identify

novel approaches, including remote sensing applications, to predict

yield and yield-associated traits. These applications rely on retrieving

image-based features that can be indirectly associated with yield. A

large body of literature reports the accuracy of vegetation indices (VIs)

in predicting yield and other important agronomic and stress-tolerant

traits at breeding plot level for multiple crops such as wheat (Kyratzis

et al., 2017; Hassan et al., 2018; Hassan et al., 2019; Li et al., 2019; Fu

et al., 2020; Shafiee et al., 2021; Zeng et al., 2021), soybean (Zhang et al.,

2019; Maimaitijiang et al., 2020a; Maimaitijiang et al., 2020b; Roth

et al., 2022; Santana et al., 2022), maize (Buchaillot et al., 2019; Adak

et al., 2021; Sankaran et al., 2021), and pulse crops (Sankaran et al.,

2018; Marzougui et al., 2019; Vargas et al., 2019; Valencia-Ortiz et al.,

2021; Zhang et al., 2021; Tefera et al., 2022). While yield prediction

using UAS-based sensing approaches has shown promising results,

scaling up the application to cover large areas and/or multi-

environment trials is still a major challenge (Zhang et al., 2020; Jin

et al., 2021; Smith et al., 2021). To determine yield stability, crop

breeders need to evaluate the breeding plant materials at different

geographical locations and assess genotype to environment and

management (G x E x M) interactions. In addition, it is important to

note that the breeding cycle may require 10 or more years from the first

genetic cross to commercial release of new varieties (Tracy et al., 2020;

Kholová et al., 2021). This factor strongly depends on the crop type and

environments (Watt et al., 2020). For instance, in the United States

Department of Agriculture Agricultural Research Services’ (USDA-

ARS) pea breeding program in the Pacific Northwest USA, the total

number of locations that each breeding plant material is evaluated in a

given season can range from 4-15 (Supplementary Materials Figure 1)

depending on whether it is entered in local, state-wide, or regional trials

within the USA. Thus, scaling up the UAS-based phenomics is not only

limited by the spatial coverage, and depends on several factors such as

personnel, equipment, and travel time. In addition, other limitations

could result from the airspace regulations, especially if trials are within

a short distance of an airport (Yang et al., 2020; Zhang et al., 2020),

limited access to remote locations (Zhang et al., 2020), and finite

battery capacity and flight time (Guo et al., 2021). Therefore, to address

some of these limitations, in this research, our major focus is towards

exploring the potential of low-orbiting high-resolution satellite imagery
frontiersin.org
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as a tool and its capacity for multi-scale, multi-sensor (with UAS data)

and multi-modal (spectral and texture) data integration to improve the

scalability of field phenomics applications.

The availability of low-orbiting high-resolution satellite imagery

offers a great opportunity to measure phenotypic traits at the breeding

plot scale. Suchapplicationwasnotpreviouslypossibledue tospatial and

temporal resolution constraints. For example, in the Pacific Northwest

region of the USA, the size of breeding plots in spring wheat, pea, and

chickpea breeding programs is about 1.5 x 6 m (Sangjan et al., 2021;

Zhang et al., 2021). Segmenting eachplotwith coarse resolution imagery

data was not possible. Nevertheless, as described in Zhang et al. (2020),

there is a potential to leverage the very high-resolution satellite imagery

for field phenomics applications, particularly utilizing the available

commercial imagery with a spatial resolution of 0.30-0.50 m/pixel. In

addition, these sources have a high temporal resolution, and the image

acquisitiontimepointscanbetaskedtothedesiredtimewindowwithina

short period (less than aweek), as long as cloud cover is not a limitation.

The applications are particularly promising for crop breeding programs

in the semi-arid agricultural production areas due to the preponderance

of cloud-free days.

Combining multi-modal, multi-scale, multi-sensor data from

satellite and UAS sources can also offer a more robust solution,

especially for agricultural monitoring. Alvarez-Vanhard et al. (2021)

reviewed the different scenarios of satellite-UAS information synergies

for agricultural and non-agricultural applications and proposed four

strategies that will benefit from satellite-UAS integration. These

strategies include data comparison, multi-scale explanation, model

calibration, and data fusion. In terms of data comparison, Sankaran

et al. (2021) demonstrated that satellite-based vegetation indices were

significantly correlated with those fromUAS imagery and seed yield in

a maize breeding trial. Multi-scale explanation in agriculture may

include anomaly detection using satellite data, with deeper and precise

assessment of underlying anomaly usingUAS imagery. In Selvaraj et al.

(2020), banana plantations were identified using machine learning

approaches applied to satellite imagery (Planet and WorldView2),

while UAS data were used to identify the major diseases in the canopy

within those satellite imageries identified banana plantations.

Examples of model calibration are the integration of satellite (with

mixed pixels) and UAS data (with unmixed pixels) to develop a

spectral un-mixing approach for improving the mapping of different

plant communities (Alvarez-Vanhard et al., 2020), and improving the

classification accuracies (irrigated area mapping) of the satellite-based

data using the labeled dataset acquired with the UAS imagery (Nhamo

et al., 2018). For the data fusion, both image and feature-based fusion

can be explored. For example, Malamiri et al. (2021) enhanced the

accuracy in classifying six pistachio cultivars (with precise weed and

soil separation) using pan-sharpened Landsat 8 imagery with a UAS

RGB image, which increased the spatial resolution of satellite imagery

to 20 cm/pixel. Similarly, Zhao et al. (2019b) fused UAS RGB images

with Sentinel-2A to improve the accuracy of crop mapping with an

enhanced spatial resolution of 10 cm/pixel.Maimaitijiang et al. (2020a)

found that the combination of canopy structure features extracted

from UAS RGB data and canopy spectral features extracted from

satellite multispectral data improved the estimation of soybean above

ground biomass, leaf area index, and leaf nitrogen content compared to

just a single sensor approach. Even if such studies in the literature that
Frontiers in Plant Science 03
investigate the integration of satellite and UAS data are increasing, the

studies exploring such synergies in the context of field phenomics

involving small plot applications, especially in field pea, with low-

orbiting high-resolution satellite imagery are limited.

Therefore, to help bridge this gap, in this study, we evaluated

multiple approaches involving the integration of UAS and high-

resolution satellite imagery to predict seed yield of field pea entries in

breeding trials. We hypothesize that: (i) the quality of satellite-based

features will be comparable to UAS-based features (to determine the

suitability of satellite imagery for phenotyping applications in small

plot research), (ii) the feature fusion from both sensing approaches will

capture the temporal change of crop growth, and (iii) the fusion of

satellite and UAS imagery will improve satellite image spatial

resolution and thus the accuracy of the extracted features. The

aspects mentioned above were evaluated by developing machine

learning models for seed yield prediction and assessing information

gains utilizing data from multiple sensors (versus a single sensor), and

single andmultiple time points.We explored the integration of satellite

and UAS vegetation metrics extracted from multispectral imagery to

enhance the seed yield estimation at both feature and image levels.
2 Materials, data acquisition, and
pre-processing

2.1 Study site and experimental design

This study evaluated two field pea-breeding trials in two

consecutive years (Figure 1). The advanced breeding trial, which

we denote as ‘Site 1’ hereafter in this text, refers to the USDA-ARS

replicated advanced yield trial at the end of the crop breeding cycle,

prior to releasing a new cultivar. This trial was evaluated in 2019 near

Pullman,Washington, USA. The variety testing trial (termed ‘Site 2’)

was evaluated in 2020 at Johnson, Washington, USA. This trial

comprises plant materials from both private and public breeding

programs, including some commercial varieties. Both trials were

planted using a randomized complete block design with three and

four replications for Site 1 and Site 2, respectively. The advanced yield

trial at Site 1 contained three adjacent trials – one in which all entries

had green seeds, one in which all entries had yellow seeds, and one in

which the entries had either yellow or green seeds. There were 65

entries total. The Site 2 trial included 33 entries with a 24% overlap

with the Site 1 trial (8 common entries). The entries had either green

or yellow seeds. In this trial, all seeds were inoculated withRhizobium

bacteria before sowing. For both trials, seeds of each entry were

planted in separate plots. Each plot was 6.1 m long and 1.5 m width

and had 6 rows. There was 0.75 m between plots.
2.2 Ground reference data

The seed yield (kg/ha)was collected from each plot at physiological

maturity in August 2019 and 2020. The seed yield for both trials (Site 1

and Site 2) had a normal distribution (Supplementary Materials

Figure 2). The summary statistics of seed yield collected across the

two years are presented in Table 1. Plots without yield data points and
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plots recognized as outliers (low yield) were excluded from further

analysis. Moreover, some check varieties had more than three or four

replicates. The 2020 field season was a longer season, with favorable

weather conditions resulting in high yields and lower yield variance

than the 2019 field season.
2.3 Satellite and UAS data acquisition

Multispectral images were collected using a quadcopter UAS

(AgBot, ATI Inc., Oregon City, Oregon, USA), equipped with a five-

band multispectral camera (RedEdge MX, Micasense Inc., Seattle,

Washington, USA; Figure 2A and Supplementary Materials

Tables 1, 2). Images were acquired with a resolution of 1.2 MP

and dynamic range of 12-bit, at flying altitude of 25 m in 2019

(ground sampling distance (GSD) = 0.02 m/pixel) and 30 m in 2020

(GSD = 0.03 m/pixel). The flying speed was set to 2.5 m/s and the

forward and side overlap to 80% in 2019 and 70% in 2020. Images

covering the area of interest were stitched to generate an
Frontiers in Plant Science 04
orthomosaic using Pix4Dmapper (Pix4D Inc., Lausanne,

Switzerland). The description of the UAS image pre-processing

technique can be found in Zhang et al. (2021). The UAS data

collection was conducted twice at each season (17 June 2019 and 16

July 2019 at Site 1, 02 June 2020 and 06 July 2020 at Site 2). These

time points coincided with two different growth stages of field pea

(flowering and pod development at Site 1, vegetative stage and pod

development at Site 2, Figure 2B). The orthomosaic bands [5 bands

x 2 time points (TP 1 and TP 2) x 2 locations (Site 1 and Site 2)]

were radiometrically calibrated by converting the raw imagery

values (digital numbers) to surface reflectance using a Spectralon

reflectance panel (99% reflectance; Spectralon, SRS-99-120,

Labsphere Inc., North Sutton, NH, USA).

Satellite imagery from WorldView (-2 or -3) were obtained at

the closest time to the UAS acquisition dates (11 June 2019 and 19

July 2019 at Site 1, 04 June 2020 and 24 July 2020 at Site 2, Figure 2B

and Supplementary Materials Tables 1, 2). The satellite revisit

frequency at a specific location is determined by factors such as

the satellite’s altitude, orbit, desired coverage area and location, as
TABLE 1 Summary statistics of field pea seed yield (kg/ha) from two locations.

Trials No. of entries No. of plots Median Mean Max Min SD CV (%)

Site 1 65 203 1964 1938 3195 662 498 26

Site 2 33 131 4476 4514 6395 2442 783 17
Site 1, advanced yield trial; Site 2, variety testing trial; SD, standard deviation; CV, coefficient of variation. One plot with low yield was considered as outlier and was removed from each trial.
FIGURE 1

Location of the pea breeding field trials located in the Pacific Northwest region of USA in the state of Washington, USA: advanced yield trial grown in
Pullman, Washington (including check varieties used as reference) evaluated in 2019 season (Site 1) and variety test trial grown in Johnson,
Washington (including check varieties used as reference) evaluated in 2020 season (Site 2).
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well as weather conditions. On average, the revisit time for

WorldView satellites is approximately one day at 1 m GSD. The

data were delivered by Maxar Technologies (Westminster,

Colorado, USA) as standard level 2A with atmospheric

compensation, which accounts for atmospheric scattering effects

on the data. The imagery products were delivered as surface

reflectance and comprised eight spectral bands in the visible near-

infrared region (Figure 2A). The spatial resolution of the eight

spectral bands in WorldView-2 or -3 ranges from ~1.8 to 1.2 m,

while the panchromatic band has a resolution of ~ 0.50 or 0.30 m,

respectively, depending on the sensor. The high-resolution

panchromatic bands were then combined with the lower

resolution multispectral bands to create a pan-sharpened image

with improved spatial resolution and the final products were

acquired with a GSD of about 0.30-0.50 m/pixel. In this study,

the coastal bands were not included, resulting in [7 bands x 2 time

points (TP 1 and TP 2) x 2 locations (Site 1 and Site 2)].

The images fromboth satellite andUAS sourceswere co-registered

and aligned using the Georeferencer tool in QGIS (QGIS.org, 2021,

version 3.10.16). The images were then cropped to the same region of

interest covering the breeding trials. At each site, two shapefiles were

manually created using the Digitizing tool in QGIS to delineate the

boundaries of each plot. The alignment of satellite and UAS imagery

facilitated the segmentation of plot boundaries.
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3 Data processing and analysis

3.1 Overview of data analysis

The study explored the impact of different spatial resolutions

and data fusion techniques on field pea seed yield estimation using

remote sensing data. The analysis workflow was structured into

three levels, as depicted in Figure 3.

The first level (Level 1) involved utilizing the surface reflectance

imagery at its original spatial resolution. The GSD of satellite

imagery was 0.30-0.50 m/pixel and the UAS imagery had a GSD

of 0.02-0.03 m/pixel. The multispectral imagery was further

processed to extract features that describe the spectral and texture

information. Using these features as input, random forest models

were trained to predict field pea seed yield. The performance of the

models was evaluated using features extracted from multi-scale data

(satellite and UAS), as well as features from single- and multi-time

points. The assessment of the models incorporating features from

multi-time points refers to the fusion of multi-modal (spectral and

textural) and multi-scale vegetation features, extracted from both

satellite and UAS imagery at combined time points.

The second level (Level 2) focused on evaluating the impact of

image fusion on field pea seed yield estimation. This was achieved

by enhancing the spatial resolution of satellite imagery using two
A B

FIGURE 2

Spectral range of satellite and UAS multispectral imagery acquired in this study (A). The data acquisition time points of remote sensing data (B).
Details about spectral resolution and acquisition dates are summarized in Supplementary Materials Table 1. DAS refers to days after sowing.
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pan-sharpening techniques with UAS data to reach a satellite image

GSD of 0.02-0.03 m/pixel. The panchromatic bands were simulated

by averaging the five UAS spectral bands. The quality of the

resulting synthesized pan-sharpened satellite imagery was

evaluated using five image evaluation metrics, which are

described in more detail in the next section. Additionally, the

spectral quality of the pan-sharpened imagery was assessed by

training random forest models to predict seed yield using spectral

features (vegetation indices) derived from these pan-sharpened

satellite imagery. These evaluations were conducted for both Site

1 and Site 2 data.

The final analysis level (Level 3) focused on comparing between

two techniques of satellite image spatial resolution enhancement for
Frontiers in Plant Science 06
seed yield estimation. The two techniques for enhancing satellite image

spatial resolution were super-resolution and pan-sharpening. The

super-resolution images were acquired as “High-Definition”

products (HD) with a GSD of 0.15 m/pixel from Maxar

Technologies. The HD products were generated using their

proprietary super-resolution technique, which enhances the spatial

details of the satellite image during post-processing using a machine

learning approach. Since the HD satellite imagery was only available

for Site 2 (two–time points), this aspect was assessed only for this

location. These images were compared to the pan-sharpened satellite

imagery (similar to those described in Level 2) but with a spatial

resolution of 0.15 m/pixel and four spectral bands – RGB and NIR to

match the HD image spatial resolution.
FIGURE 3

Image processing workflow for analyzing data extracted from satellite and UAS imagery. The top, middle and lower boxes refer to the evaluations in
Level 1, Level 2, and Level 3, respectively. Level 1, 2, and 3 included feature extraction and yield prediction using extracted features from original
resolution of the satellite and UAS imagery, pan-sharpening of satellite imagery using UAS imagery and feature extraction from the pan-sharpened
imagery for yield prediction, and comparison of yield prediction using pan-sharpened image-based features and HD image features, respectively.
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3.2 Satellite pan-sharpening

Image fusion is the process of combining multiple images taken at

different times or with different sensors to create a single image that

contains more information than the original imagery. Pan-sharpening

is a type of image fusion approach, which combines the high spatial

resolution of the panchromatic band (having a high spatial resolution)

with a lower resolution multispectral imagery (RGB or multispectral

images) to enhance the spatial resolution of the latter. The result is a

single image that with usually a high spatial and spectral resolution.

This technique is commonly used to enhance the quality and

resolution of the satellite imagery. There are multiple approaches

that have been developed for image fusion, each with varied

performance efficiencies (Ehlers et al., 2010; Yokoya et al., 2017;

Gasp̌arović et al., 2019; Ghamisi et al., 2019; Dadrass Javan et al.,

2021). In general, image fusion can be broadly characterized into

component substitution, multi-resolution analysis, variational

optimization-based techniques, and machine learning-based

approaches (Vivone et al., 2019; Vivone et al., 2021). This study

selected a technique representing the component substitution and

the multi-resolution approaches. These techniques were adopted from

the MATLAB Pan Sharpening toolbox (Vivone et al., 2015).

The intensity-hue-saturation (IHS) transformation is a

component substitution approach, where the bands of the low-

resolution multispectral imagery are converted to IHS components.

The intensity component is replaced by the panchromatic band

after histogram matching (Al-Wassai et al., 2011; Johnson et al.,

2014). In general, the extraction of the intensity component is

performed by averaging the bands in the visible region (red, green,

blue). In this study, we computed the intensity component by

averaging all the spectral bands from the low-resolution satellite

imagery (Yilmaz et al., 2019), excluding the coastal band. Similarly,

additive wavelet luminance proportional (AWLP) pan-sharpening,

which is a multi-resolution analysis approach, was utilized for

image spatial enhancement. In the AWLP approach, a low-spatial

resolution image is decomposed into scale levels while injecting the

panchromatic band matched by each decomposed layer and

applying an inverse transformation (Dadrass Javan et al., 2021).

The ideal pan-sharpened imagery should have the same spatial

properties as the high-resolution panchromatic band and the same

spectral properties as themultispectral input bands, though the process

can lead to spectral and/or spatial distortions (Siok et al., 2020). The

assessment of the quality of the resulting pan-sharpened imagery can

be conducted using Wald’s protocol, which states that the pan-

sharpening process is reversible, and that the original multispectral

imagery can be obtained by degrading the pan-sharpened imagery

(Wald et al., 1997; Vivone et al., 2015). In this study, the spectral and

spatial qualities of the pan-sharpened imagery were assessed using five

statistical metrics (correlation coefficient CC, structural similarity

index measure SSIM, spectral angle mapper SAM, erreur relative

globale adimensionnelle de synthese ERGAS, and peak signal to

noise ratio PSNR), after degrading their spatial resolution to match

that of the original satellitemultispectral imagery (Borra-Serrano et al.,

2015; Luo et al., 2018; Li et al., 2020; Siok et al., 2020).
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3.3 Background removal and
feature extraction

Background segmentation and soil removal were conducted prior

to feature extraction. A threshold based on the soil adjusted vegetation

index (SAVI) pixel values was utilized for UAS imagery. However, for

satellite imagery, segmentation was based on histogram distribution of

SAVI pixel intensity. Thresholdswere set as 15% for satellite imagery at

spatial resolution of 0.15, 0.30, and 0.50 m/pixel and 25% for the pan-

sharpened satellite imagery at 0.02 and 0.03 m/pixel. These thresholds

were selected based on visual observations of the SAVI intensity

distribution and implemented to eliminate spectrally mixed pixels.

Median reflectance values from each vegetation index (normalized

difference vegetation index NDVI, green normalized difference

vegetation index GNDVI, normalized difference red-edge index

NDREI, soil adjusted vegetation index SAVI, atmospherically

resistant vegetation index ARVI, transformed triangular vegetation

index TVI, infrared percentage vegetation index IPVI, renormalized

difference vegetation index RDVI, two-band enhanced vegetation

index EVI2, normalized difference red-edge index – with yellow

band NDRE2, and normalized difference vegetation index – with

NIR2 band NDVI2) were extracted as canopy spectral features.

Additionally, texture features were extracted from the individual

spectral bands (5 bands for UAS data and 7 bands for satellite data)

using the GLCM (grey level co-occurrence matrix) approach. These

features included contrast (CO), homogeneity (HO), correlation (CR),

and energy (EN). A detailed summary of extracted features is provided

in Supplementary Materials Table 3. All image-related analyses were

conducted using a customized script in MATLAB (Matlab, 2021b;

MathWorks Inc., Natick, Massachusetts, USA).

3.4 Statistical analysis, yield prediction, and
feature importance

The statistical analysis, model development and validation,

feature assessment, and visualization were performed in R (http://

www.r-project.org/; release 4.0.5). The correlation analysis was

performed to evaluate the similarity between the extracted

imagery-based features and harvested seed yield at each time point

and for each type of imagery data (satellite and UAS). Moreover,

machine learning algorithms were applied to estimate harvested seed

yield and evaluate the importance of the extracted features. Random

forest models were constructed using randomForest implementation

in caret (Kuhn, 2008). The models were trained using non-scaled

data. The coefficients of determination (R2) and root mean square

error (RMSE) were computed to evaluate the performance of the

yield prediction model. The mean ± standard deviation computed

from multiple runs was reported for both R2 and RMSE.

Each type of data was divided into training and testing sets (80/20).

At the beginning of our analysis, two training frameworks were tested:

random holdout plot and random holdout entry. For the random

holdout plot (plots were held back for testing irrespective of entry), 80%

of the data were randomly chosen. For the random holdout entry (all

replicates from an entry were held back for testing), 80% of the entries
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were randomly chosen. Themodels trained with random holdout entry

showed stable performance with lower variation in the testing set than

those trained with random holdout plot (Supplementary Materials

Tables 4, 5). Therefore, we selected the random holdout entry as a data

resampling technique.

The random forest hyperparameters were kept at the default

level, and only the number of variables at each split was tuned using

3-fold internal cross-validation repeated 15 times. The data split

was repeated 10 times by setting 10 random seeds in each run

(referred to as 10 random runs henceforth) to assess the variability

of model performance with different data splits. The input spectral

features used to train the models are summarized in Supplementary

Materials Table 6. In addition to spectral features extracted from

individual sensor UAS and satellite at original spatial resolution at

each time point and combined time points, integrating spectral and

texture features was also evaluated. Before training the model for

each random run, feature selection was conducted on the training

dataset to remove highly correlated features with a correlation

coefficient threshold of 0.99.

Feature importance was evaluated using a permutation-based

method (increased mean squared error IncMSE after removing one

feature). Three ranks were created based on three factors to create a

new metric reflecting feature importance across all experiments.

This new metric was denoted as the adjusted rank (%) hereafter in

the text. The first factor (R1, ranking of the numeric score) was the

minimum value of feature importance computed by extracting the

minimum values of IncMSE from 10 random runs, which was

ranked such that a lower rank would indicate high importance of

the feature across multiple runs. The second factor was based on the

coefficient of variation (CV) of the feature importance across 10

random runs, where the factor was also ranked (R2, ranking of the

CV percentage). A high CV indicates that the variability of feature

importance score is high. The third factor (R3, ranking of the

frequency) was the occurrence of the feature during 10 random

runs after feature selection using a correlation filter. The third factor

was ranked so that the lowest rank indicates consistent selection of

the feature (for example, rank 1 would indicate the presence of the

feature in all 10 random runs). In summary, a lower rank of the first

factor would indicate a higher feature importance, a lower rank of

the second factor would indicate a lower CV of feature importance

across multiple random runs, and a lower rank of the third factor

would indicate a higher frequency of feature occurrence used to

train the models. The ranks were converted to adjusted rank by

dividing the sum of the ranks (all factors) for each feature by the

sum of maximum ranks within each category (all factors) and

subtracting this ratio from one (Eq. 1).

RA
F = 1 −  

(R1
F + R2

F + R3
F)

(maxR1
F +maxR2

F +maxR3
F)

(1)

where, RA
F is the adjusted rank for each feature; R1

F ,  R
2
F ,  and R

3
F

are the ranks of each factors; andmax refers tomaximum rankwithin

each category. This equation holds only when the specific feature was

selected more than once within multiple runs. The adjusted rank was

normalized (normRF
A) and presented as a percent (Eq. 2).
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normRF
A( % ) =  

RA
F

(max  RA
F )

�   100 (2)

Feature comparison was performed by observing the

normalized adjusted rank data.
4 Results

4.1 Spectral features from remote sensing
data and seed yield

The satellite-based features were comparable to UAS-based

features in both trials, where the vegetation indices from both

sources were significantly and positively correlated (Pearson

correlation coefficient, 0.14 ≤ |r| ≤ 0.78, p< 0.05) (Figure 4A).

This relationship (Pearson correlation coefficient = 0.50 ≤ r ≤ 0.78

and p< 0.0001) was consistent across time points and sites for eight

VIs (except NDREI for Site 1).

The seed yield varied between the two sites as a function of the

environment, location, and the evaluated entries. The yield

recorded at Site 2 in 2020 (4514 ± 783 kg/ha, n = 131) was higher

than at Site 1 in 2019 (1938 ± 489 kg/ha, n = 203). It was

encouraging to note that the correlation between the extracted

spectral features from satellite and UAS imagery and seed yield data

showed similar patterns (Figure 4B). Satellite- and UAS-based VIs

with the combination of red and NIR bands (e.g., EVI2, RDVI,

IPVI, ARVI, SAVI, and NDVI) were significantly and positively

correlated with yield data (satellite: 0.38 ≤ r ≤ 0.80, UAS: 0.20 ≤ r ≤

0.72, and p< 0.05). Correlation between other spectral features with

yield data varied depending on time point (~ crop growth stage)

and location. On the other hand, the correlation analysis between

texture features extracted from both sensing platforms and seed

yield data showed a weak to no correlation (Supplementary

Materials Figure 3). The relation between these features and seed

yield were further assessed in training random forest models to

predict the final seed yield in the following sections.
4.2 Yield estimation using remote sensing
data (Level 1)

4.2.1 Yield estimation using multi-modal data at
separate time points

During the analysis of individual time points, the satellite- and

UAS-based features were evaluated based on the performance of

random forest models, trained with these features, to predict

harvested seed yield (Figure 5; training results and spatial

distribution of yield differences in Supplementary Materials Table 7

and Figure 4, respectively). On average, UAS data-based models

performed better (higher R2, lower RMSE) compared to satellite

data-based models (R2 = 0.36 ± 0.23; RMSE=523 ± 197 kg/ha for

satellite, R2 = 0.46 ± 0.16; RMSE=486 ± 173 kg/ha for UAS). However,

the difference between the results from the two sensing approaches

(two image scales) varied with the crop growth stage during data
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acquisition (individual time point or combined time points), the

breeding trial and its yield variability (Site 1 and Site 2), and the type

of features (spectral or spectral + texture) used as input in the models.

Models trained on features extracted from imagery acquired at TP

1 (crop growth stage around flowering at Site 1 and early vegetative

growth at Site 2) had weaker performance than TP 2 (pod

development). For instance, models developed with features

extracted from UAS imagery at TP 2 showed better performance

compared to those extracted at TP 1 (R2 = 0.25 ± 0.15; RMSE=570 ±

180 kg/ha for TP 1, R2 = 0.45 ± 0.17; RMSE=489 ± 189 kg/ha for TP 2).

At this growth stage at Site 1 (TP 2), satellite data-basedmodels showed

an improved performance compared to UAS data-based models (R2 =

0.63 ± 0.09; RMSE=295 ± 37 kg/ha for satellite, R2 = 0.53 ± 0.11;

RMSE=335 ± 58 kg/ha for UAS). However, at Site 2, satellite data-

based models did not outperform UAS data-based models.

Satellite and UAS data-based models performed similarly even

when texture features or the two unique bands, yellow (~ 585 – 625

nm) and NIR2 (~ 860 – 1040 nm), were added to the common nine
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VIs. In both cases (satellite and UAS), the model performances did

not improve significantly, although small increases or decreases were

occasionally observed (Figure 5 and Supplementary Materials

Table 7). Overall, for satellite data-based models, adding texture

information reduced the accuracy of models, particularly for the

dataset at TP 1. This could be due to the spectral mixing and

additional noise. The sample size with respect to the increasing

feature space could also contribute to these results.

When the time points were combined, the accuracy of random

forest models in predicting seed yield increased in most cases at both

sites and for both types of datasets (satellite and UAS). At Site 1, the

accuracy of satellite data-based models was slightly better than UAS

data-based models (R2 = 0.65 ± 0.10; RMSE=284 ± 45 kg/ha for

satellite, R2 = 0.64 ± 0.06; RMSE=296 ± 55 kg/ha for UAS) when

using the combined dataset (TP 1 + TP 2). In fact, combining features

from the two time points extracted from satellite or UAS imagery

improved the model performance regardless of the image scale

(Figure 5 and Supplementary Materials Table 7).
A

B

FIGURE 4

Correlation coefficient between spectral features extracted from satellite and UAS imagery (A), and with seed yield (B). White cells indicate non-
significant correlation (p ≥ 0.05), *(0.01< p ≤ 0.05), **(0.001< p ≤ 0.01), and ***(p ≤ 0.001).
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In summary, the satellite data-based models performed poorly

compared to UAS-based models, especially at early pea growth stages

(prior to canopy closure). The gap in performance was reduced at the

later TP 2 and was further improved with combining the data from

two time points (especially for Site 1, which could be associated with

the crop growth stage). Moreover, the texture information did not

improve the performance of the model. Since texture data did not

improve the model performance, only spectral data was used for

evaluating image and feature fusion henceforth.
Frontiers in Plant Science 10
4.2.2 Yield estimation using
fused features datasets

Table 2 summarizes the performance of the random forest models

resulting from data fusion (three scenarios) of spectral features

extracted from satellite and UAS imagery (spatial distribution of

yield differences in Supplementary Materials Figure 5). The overall

trend depicts that combining information from the two sensing

approaches improved the prediction accuracy compared to individual

time points and/or individual sensors. Particularly, at Site 1, combining
FIGURE 5

Model performance based on data source (satellite and UAS), type of features used in model (spectral and spectral + texture), and time points
(individual and combined time points). The number of input features represented as labels of the x-axis indicates the number of features before the
correlation filter. The colored numbers above the x-axis represent the total number of features retained after the correlation filter, which were used
to build the random forest models.
TABLE 2 Performance evaluation of models using multi-scale/sensor input features.

Site Scenario Input/Selected
features

Train Test

R2 RMSE (kg/ha) R2 RMSE (kg/ha)

1 UASTP1 + SatelliteTP2 18/11 0.69 ± 0.03 284 ± 19 0.69 ± 0.09 272 ± 53

SatelliteTP1 + UASTP2 18/10 0.57 ± 0.04 331 ± 21 0.58 ± 0.11 316 ± 62

UASTP1+TP2 + SatelliteTP1+TP2 36/21 0.72 ± 0.02 272 ± 13 0.72 ± 0.08 259 ± 53

2 UASTP1 + SatelliteTP2 18/12 0.35 ± 0.07 661 ± 44 0.41 ± 0.14 621 ± 75

SatelliteTP1 + UASTP2 18/11 0.32 ± 0.04 673 ± 24 0.44 ± 0.07 603 ± 55

UASTP1+TP2 + SatelliteTP1+TP2 36/23 0.37 ± 0.05 638 ± 33 0.50 ± 0.11 575 ± 70
The values reported are mean±standard deviation.
Bold values indicate the best-performing models.
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features extracted from UASTP1 and SatelliteTP2 improved the

performance of random forest models by a mean increase of R2

ranging between 3–50% (decrease in RMSE by 1–26%) compared to

the single sensor approach. However, for Site 2, the performance of the

random forest models did not improve with integrated features from

UASTP1 and SatelliteTP2 imagery. When compared with the model

performance of UASTP1+TP2 dataset, combining the features extracted

from the scenario of UASTP1 and SatelliteTP2 decreased the prediction

accuracy (R2 = 0.47 ± 0.08; RMSE=587 ± 57 kg/ha for UASTP1+TP2, R
2

= 0.41 ± 0.14; RMSE=621 ± 75 kg/ha for UASTP1 + SatelliteTP2).

Nevertheless, when all the features extracted from both sources (satellite

and UAS) and both time points were integrated, the prediction

accuracy surpassed the best result acquired from the individual

sensor (UASTP1+TP2) with an increase in R2 and a decrease in RMSE.

This increase in performance could be attributed to the addition of

features extracted from UASTP2.
Frontiers in Plant Science 11
4.3 Evaluation of multi-scale image
fusion (Level 2)

4.3.1 Qualitative and quantitative spectral
evaluation of pan-sharpened imagery

Qualitative evaluation of the pan-sharpening methods was

based on visual inspection of the resulting images. Figures 6 and

7 illustrate image fusion results using UAS as a panchromatic band

at their original resolution for each time point at Site 1 and Site 2,

respectively (correlation with yield presented in Supplementary

Materials Figure 6).

Spectral distortion (based on color) can be noted in images

obtained using the IHS technique, while the AWLP technique

preserved the spectral quality of the satellite imagery in most

cases. On the other hand, the spatial quality and resolution of the

IHS technique were visually better than the AWLP technique.
A

B

FIGURE 6

Visual comparison of RGB from the original satellite and UAS imagery, and pan-sharpened satellite imagery generated using IHS and AWLP
approaches from Site 1 at TP 1 (A) and TP 2 (B).
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A

B

FIGURE 7

Visual comparison of RGB from the original satellite and UAS imagery, and pan-sharpened satellite imagery generated using intensity-hue-saturation
(IHS) and additive wavelet luminance proportional (AWLP) approaches from Site 2 at TP 1 (A) and TP 2 (B).
TABLE 3 Image comparison metrics correlation coefficient (CC), the structural similarity index measure (SSIM), the peak signal to noise ratio (PSNR),
the erreur relative globale adimensionnelle de synthese (ERGAS), and the spectral angle mapper (SAM) comparing different pan-sharpened imagery
(GSD = 0.02-0.03 cm/pixel) generated using intensity-hue-saturation (IHS) and additive wavelet luminance proportional (AWLP) approaches with
original satellite imagery.

Site Original imagery Technique CC SSIM PSNR ERGAS SAM

1 UASTP1 + SatelliteTP1 IHS 0.82 0.77 23.47 2.75 0.87

AWLP 0.81 0.77 23.21 2.83 0.21

UASTP2 + SatelliteTP2 IHS 0.87 0.81 28.27 3.84 1.96

AWLP 0.88 0.85 28.43 3.72 0.88

2 UASTP1 + SatelliteTP1 IHS 0.84 0.84 25.46 6.92 1.80

AWLP 0.84 0.85 25.57 6.81 0.43

UASTP2 + SatelliteTP2 IHS 0.83 0.77 25.53 7.20 2.90

AWLP 0.89 0.85 26.72 5.94 0.70
F
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Overall, we notice that the IHS technique generated images that

were very similar to the panchromatic bands (UAS imagery).

Table 3 summarizes the results of the evaluation metrics of the

pan-sharpened imagery. The AWLP method showed comparable

image evaluation metrics (CC, SSIM, PSNR, and ERGAS) to the

IHS method. The major difference was observed in SAM values,

where images pan-sharpened with the AWLP approach had 1.33

times lower SAM values compared to the images pan-sharpened

with the IHS approach (averaged over all case studies). This

indicates better spectral quality comparison between the pan-

sharpened image and reference image (original satellite imagery).

4.3.2 Yield estimation using satellite
pan-sharpened imagery

In terms of image evaluation metrics, especially SAM, the

AWLP approach was better than the IHS approach. However,

models trained with features extracted from satellite imagery pan-

sharpened with the IHS approach were more accurate in predicting

seed yield than models trained with features extracted from satellite

imagery pan-sharpened with the AWLP approach (Figure 8 and

Supplementary Materials Table 8).

The potential reasons for this observation could include the

following: (i) image spatial quality was critical in addition to

spectral quality for yield prediction (IHS approach displayed

higher spatial quality than AWLP approach), (ii) the image
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evaluation metrics do not necessarily indicate statistical

quantitative assessment (Yokoya et al., 2017, specified in reference

to component substitution approach such as IHS transformation),

which in this case is yield prediction, (iii) the image evaluation

metrics were mainly developed for satellite to satellite image

comparisons, and (iv) it was observed that the AWLP approach

produced small anomalies during image pan-sharpening that may

have affected the results. It should be noted that at Site 1 and with

TP 2 and TP 1 + TP 2 datasets, the performance of models built

with the features extracted from pan-sharpened imagery with the

two approaches did not differ.

When the models were trained with satellite-based features

extracted at original resolutions, model performance with features

extracted from SatelliteIHS increased, particularly at TP 1. For

example, the mean increase in R2 ranged between 67% at Site 1

(R2 = 0.21 ± 0.09; RMSE=442 ± 62 kg/ha for SatelliteTP1 at GSD =

0.50 m/pixel, R2 = 0.35 ± 0.07; RMSE=397 ± 49 kg/ha for

SatelliteTP1 at GSD = 0.02 m/pixel) to 92% at Site 2 (R2 = 0.12 ±

0.06; RMSE=747 ± 47 kg/ha for SatelliteTP1 at GSD = 0.30 m/pixel,

R2 = 0.23 ± 0.08; RMSE=702 ± 43 kg/ha for SatelliteTP1 at GSD =

0.03 m/pixel). Our results show that although the models with pan-

sharpened imagery had weaker performance than those obtained

from UAS-based models at original resolution, the performance of

satellite-derived features, in general, improved after pan-sharpening

(spatial enhancement).
FIGURE 8

Model performance based on spectral data (pan-sharpened imagery developed using integration of satellite and UAS imagery using AWLP and IHS
approaches), and time points (individual and combined time points). The number of input features represented as labels of the x-axis indicates the
number of features before the correlation filter. The colored numbers above the x-axis represent the total number of features retained after the
correlation filter, which were used to build the random forest models.
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4.4 Comparison of high definition and
pan-sharpened imagery (Level 3)

The pan-sharpened imagery was developed by fusing the

satellite and UAS images to a resolution (GSD = 15 cm) similar

to HD imagery (correlation with yield presented in Supplementary

Materials Figure 7) for Site 2 datasets. Figure 9 and Supplementary

Materials Table 9 present the visual representation and spectral and

spatial quality metrics variation upon image fusion, respectively. On

average, all spectral metrics were comparable between IHS and

AWLP approaches, although IHS or AWLP approach may be better

in some cases depending on the time points. Nevertheless, in terms

of SAM values, the AWLP approach resulted in better results than

the IHS approach, similar to the previous section (Table 3).

Comparing image evaluation metrics (with original satellite

imagery as reference image) of HD images with pan-sharpened

images developed using IHS and AWLP approaches, the CC, SSIM,

PSNR, and ERGAS values were better, while SAM values were

higher. The yield prediction accuracy (Figure 10) varied based on

the image fusion approach. The random forest model developed

with features extracted from SatelliteIHS showed the highest mean

accuracy (especially TP 2 and TP 1 + TP 2) in comparison to the
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model developed using features extracted from SatelliteAWLP and

SatelliteHD images.

As previously discussed, all models evaluated with features

extracted from TP 1 imagery performed poorly and are probably

associated with the early growth stage. For the combined time

points dataset, the model developed with features extracted from

the SatelliteHD image performed poorly (Supplementary Materials

Table 10). The models trained with features extracted from the

SatelliteIHS approach gave a comparable performance to those

trained with UAS-features (original resolution retrained using the

same number of features); with an average increase in R2 of only 3%

for UAS data-based models. These models outperformed the

satellite-based features (original resolution retrained with the

same number of features) by 57%.

4.5 Feature importance

The evaluation of feature importance based on the adjusted rank

takes into account different sources of variability that might influence

the assessment instead of relying solely on the feature importance

scores (permutation feature importance). These ranks (presented as

percentages) reflected feature importance scores, consistency across 10
A

B

FIGURE 9

Visual comparison of the high definition (HD) and pan-sharpened satellite imagery generated using intensity-hue-saturation (IHS) and additive
wavelet luminance proportional (AWLP) approaches from Site 2 at TP 1 (A) and TP 2 (B).
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random runs, and the correlation between features (which was

translated as the frequency of occurrence). Therefore, in this section,

we focus on reporting the variation of adjusted rank as a metric to

capture the stability of these features (Figure 11).

Both satellite- and UAS-based models indicate that VIs with

NIR and G spectral bands (e.g., GNDVI and TVI; Supplementary

Materials Figure 8) are the most relevant and consistent features in

this study. We found that VIs that are computed with the NIR and

R spectral bands are more likely to be collinear (highly correlated

with each other) in at least one of the random runs and, as a result,

were eliminated before the random forest model training step. With

a correlation coefficient threshold of 0.99, SAVI, ARVI, NDVI,
Frontiers in Plant Science 15
RDVI, and EVI2 were found to be highly correlated with each other.

When combining features extracted from imagery acquired at both

time points, features from TP 2 were selected more frequently

during model training, which indicates the importance of early pod

development stages for capturing differences in crop performance

between entries (Zhang et al., 2021).

5 Discussion

UAS-based phenomics is an accurate and efficient tool for

providing quality features that supplement traditional field

phenotyping. This study demonstrates that high-resolution satellite
FIGURE 10

Model performance based on spectral data (pan-sharpened imagery developed using integration of satellite and UAS imagery using AWLP and IHS
approaches with GSD = 0.15 m), and time points (individual and combined time points). The number of input features represented as labels of the x-
axis indicates the number of features before the correlation filter. The colored numbers above the x-axis represent the total number of features
retained after the correlation filter, which were used to build the random forest models.
FIGURE 11

Adjusted rank (%) extracted to evaluate the feature importance from random forest models developed using different datasets. The comparison was
made with respect to original (satellite and UAS) and pan-sharpened imagery across multiple time points and trials. In each square, there are two
numbers, the top one indicates adjusted rank (%) and bottom one in, italics, is indicative of mean importance (%IncMSE).
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imagery with a spatial resolution of 0.30 m/pixel can provide quality

features as good as UAS-based imagery when evaluating the

harvested seed yield of field pea genotypes in small (~9 m2)

breeding plots at later growth stage. The vegetation indices

extracted from satellite imagery can be associated with seed yield at

the breeding plot level. These results are in agreement with other

studies (Tattaris et al., 2016; Sankaran et al., 2021). However, at

earlier growth stages, there was no association between canopy

reflectance extracted using satellite imagery and the harvested seed

yield, which could be explained by the spatial resolution (pixel size)

and the problem of spectral mixing. During this stage, ~50 DAS at

Site 2, the pea plants are still in vegetative stage. Spectral mixing with

soil adds noise and may reduce the quality of vegetation indices

extracted from satellite imagery. Dalla Marta et al. (2015) found

similar results when evaluating satellite-based features to estimate the

nitrogen concentration of durum wheat at an early stage. In our

study, the accuracy of predicting harvested seed yield can be related

to the data acquisition time and the crop’s growth stage for breeding

plots of 9 m2 (25 to 50 pixels per plot) compared to >1000 pixels per

plot, as is the case for the UAS imagery. However, another factor that

might have played a role in the low model accuracies at Site 2 is the

data size. We hypothesized that the features extracted from images

are proxies of the plant traits, which follow a non-linear trend with

field pea seed yield. The choice of random forest models stems from

the fact that this model was extensively used for seed yield prediction

in remote sensing applications. The R2 during prediction at Site 1 was

up to 0.60, with a total number of observations or plots of 203 (data

from ~164 plots used to train the models). The lower accuracy at Site

2 can be attributed to small data size (data from ~103 plots used to

train the models). Mkhabela et al. (2011) found that the R2 between

NDVI (extracted from satellite MODIS) and field pea grain yield on

the Canadian Prairies was ranging between 0.53 and 0.89, depending

on the agro-climatic zone.

When we enhanced the spatial resolution of satellite imagery

through pan-sharpening techniques, the accuracy of seed yield

prediction increased at both sites compared to the results obtained

from models trained with satellite based-features at original

resolution. However, it is important to note that it was challenging

to separate the soil from the canopy, even with enhanced spatial

resolution. Thus, the satellite may be a better option after canopy

closure than early growth stages. In future work, we can also explore

better approaches to segment the pan-sharpened satellite imagery,

such as spectral un-mixing with the assistance of UAS imagery, as

reported in Alvarez-Vanhard et al. (2020).

The assessment of feature importance revealed that not all

features showed consistency across time points and field pea

breeding trials. Sankaran et al. (2021) reported similar results with

different features selected for maize yield prediction using UAS and

satellite imagery. This change in feature selection between time

points can be associated with changes in canopy structure and the

resulting changes in reflectance properties. For example, at advanced

growth stages, some pea lines develop a taller and denser canopy and,

as a result, become more susceptible to lodging, creating more

shadowed areas or intertwining with adjacent plots. Many studies
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have reported that the association of VIs with yield depends on the

growth stage (Kyratzis et al., 2017; Fu et al., 2020; Adak et al., 2021;

Sankaran et al., 2021; Shafiee et al., 2021). This finding on the

importance of the growth stage was further demonstrated by our

experiment while investigating the feature fusion approach from

multi-scale sensing sources. Even if the integrated features were

extracted from different spatial resolution datasets, adding satellite-

based features at later growth stages provided more information to

capture the change of crop growth dynamics compared to single time

point and growth stagemodels. Fu et al. (2020) andAdak et al. (2021)

also found that temporal phenotyping using UAS-based features was

more accurate in estimating wheat grain yield.

These insights, in turn, may help to scale-up field phenomics

applications. Therefore, to enhance field pea breeding with remote

sensing-assisted procedures, high-resolution satellite and UAS can

be used separately to derive spectral features associated with yield

performance at critical growth stages (flowering and pod filling) or

integrated (feature fusion) to provide additional temporal features.
6 Summary

High-resolution satellite and UAS-based-multispectral features

were evaluated to estimate seed yield using a random forest model

in different breeding lines from two diverse (advanced yield and

variety testing) trials. Satellite and UAS image features and image

fusion approaches were explored in this study. The major potential

implications from the study can be described as: (i) High-resolution

satellite imagery can be used to estimate seed yield at breeding plot

level depending on the growth stage (after canopy closure). (ii)

Multi-time points data fusion can be explored to capture crop

growth patterns with the temporal features. (iii) And pan-

sharpening (multi-source image fusion) is another tool to

improve satellite spatial resolution, which could help plant

breeders to study historical performance with archived satellite

imagery and/or explore satellite hyperspectral imagery (hyper-

sharpening) for field-based phenomics.
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