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Plant leaf segmentation, especially leaf edge accurate recognition, is the data support

for automatically measuring plant phenotypic parameters. However, adjusting the

backbone in the current cutting-edge segmentation model for cotton leaf

segmentation applications requires various trial and error costs (e.g., expert

experience and computing costs). Thus, a simple and effective semantic

segmentation architecture (our model) based on the composite backbone was

proposed, considering the computational requirements of the mainstream

Transformer backbone integrating attention mechanism. The composite backbone

was composed of CoAtNet and Xception. CoAtNet integrated the attention

mechanism of the Transformers into the convolution operation. The experimental

results showed that our model outperformed the benchmark segmentation models

PSPNet, DANet, CPNet, andDeepLab v3+on the cotton leaf dataset, especially on the

leaf edge segmentation (MIoU: 0.940, BIoU: 0.608). The composite backbone of our

model integrated the convolution of the convolutional neural networks and the

attention of the Transformers, which alleviated the computing power requirements

of the Transformers under excellent performance. Our model reduces the trial and

error cost of adjusting the segmentation model architecture for specific agricultural

applications and provides a potential scheme for high-throughput phenotypic feature

detection of plants.

KEYWORDS

cotton leaf segmentation, composite backbone, convolutional neural network, attention
mechanism, transformer
1 Introduction

Cotton, the second largest crop after grain, is the primary raw material for daily

necessities and the textile industry (Feng et al., 2022). However, biotic stress and abiotic

stress existing in cotton production affect the yield and quality (Zhang et al., 2022). To ensure

sustainable cotton production, breeders must identify quality varieties through continuous
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monitoring of cotton phenotypic traits (Ye, 2014). Budding,

flowering, and boll periods are significant growth stages of cotton,

which are directly reflected in cotton leaves due to the influence of

nutrition, diseases, and insect pests, and thus determine the

subsequent growth and yield of cotton (Mubarik et al., 2020).

Breeders screen the appropriate cotton varieties during the

budding, flowering, and boll period, based on estimates of plant

disease resistance and yield reflected by closely related leaf phenotypic

traits (e.g., Leaf Length, Leaf Area Index) (Saeed et al., 2021). Manual

sampling in complex field environments is a natural way to measure

cotton leaf phenotypic parameters. However, manual sampling is a

labor-intensive, time-consuming, and disruptive process (Bao et al.,

2021). Image segmentation of computer vision is a standard approach

for non-destructive sampling samples in complex field environments.

The image segmentation algorithm can automatically separate the

processed samples to be processed. Therefore, image segmentation

has gradually become a potential preprocessing approach of sample

separation for rapidly measuring plant phenotypic parameters.

With advances in computing power (e.g., GPU), deep learning

with powerful nonlinear and robust generalization ability replaces the

traditional image segmentation algorithm, which highly relies on

expert experience (Taghanaki et al., 2020). Generally speaking, the

segmentation models based on deep learning are composed of

encoders and decoders, such as PSPNet (Zhao et al., 2017), DANet

(Fu et al., 2019), CPNet (Yu et al., 2020), DeepLab v3+ (Chen et al.,

2018). Specifically, the backbones of the segmentation models in the

encoder are used to extract features (Miao et al., 2020). The feature

diversity of backbone extraction determines the performance of the

segmentation model (Minaee et al., 2022). Currently, convolutional

neural networks (CNNs, e.g., ResNet-101, Xception) with deep

stacked convolution structures to represent powerful features have

gradually become mainstream feature extractors. PSPNet utilizes

ResNet-101 as a backbone to achieve an elegant expression in the

complex field environment of grape segmentation (Chen et al., 2021).

DeepLab v3+ employs ResNet-101/Xception as a backbone to

segment fruit plaques (Li et al., 2022b; Yuan et al., 2022), and also

attempts to segment cotton roots (Kang et al., 2021).

CNNs have been widely used in plant phenotype, especially

phenotype segmentation. However, CNNs have apparent

disadvantages, such as poor learning ability of low-level features of

images and partial neglect of global information, which limit the

accurate segmentation of object edges in complex field environments

(Liu et al., 2018). Due to the complexity of the leaf environment, the

morphological characteristics (texture, size, and shape) of the leaf

change accordingly, and the segmentation of the leaf edge has the

dilemma of over-segmentation/under-segmentation (Yang et al.,

2020). Transformers, as attention models, achieve powerful

accuracy for large-scale datasets with a robust representation of

global context (Dosovitskiy et al., 2021). In contrast, CNNs with

deep stacked convolution structures embedded in the attention

modules, e.g., Channel Attention Module (Woo et al., 2018), and

Convolution Block Attention Module (Woo et al., 2018), integrate

global information to a limited extent, and improve the power slightly

of object edge segmentation. Thus, with the success of self-attention

models such as Transformers, much previous work has attempted to

bring the power of attention to computer vision (Khan et al., 2022).
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Recently, Transformer-based backbones have shown potential

performance and expanded cutting-edge applications. Li et al.

(2022a) proposed an automatic pest recognition method based on

Vision Transformer (ViT) in PlantVillage (a public dataset of plant

pests and diseases) (Hughes and Salathé, 2015). Reedha et al. (2022)

proposed a novel crop recognition model using ViT based on

unmanned aerial vehicles (UAV) remote sensing images. Wu et al.

(2021) proposed a multi-scale feature extraction model based on a

visual converter to identify crop disease types. However, the large

model capacity with huge parameters and high computational power

required by Transformers hinders rapid application to agricultural

tasks (Khan et al., 2022). The attention of Transformers has slight

inductive bias and weak generalization on the relatively small amount

of datasets compared with the convolution of CNNs (Dosovitskiy

et al., 2021).

In relatively small agricultural data sets, plant phenotype

researchers have used the Transformer and CNN cascade model,

incorporating the inductive bias of CNNs and the self-attention

mechanism of Transformers, to study plant phenotype. Wang et al.

(2022) proposed a crop segmentation method of remote sensing

images based on a barely remote sensing dataset by constructing a

novel architecture of coupling CNN and Transformer. Liu et al.

(2022) attempted to propose a CNN-Transformer network with

Multi-Scale Context Aggregation (MSCANet) and realize efficient

and effective farmland change detection. However, Transformer and

CNN cascade models integrate the respective advantages of

Transformers and CNNs, and the computational cost and data

requirements of Transformers are also introduced into the cascade

models, which hinders the rapid promotion of the cascade models in

agriculture. Therefore, for the global learning potential of the self-

attention mechanism of Transformers and the fast application

limitation of Transformers required computing power and large-

scale datasets, the models combining convolution of CNNs and self-

attention of Transformers have become a new research direction.

CoAtNet (Dai et al., 2021), as a novel backbone, incorporates the

global awareness of Transformers and the inductive bias of CNNs.

Different from Transformer and CNN Cascade Models, CoAtNet

introduces CNN convolution and Transformer attention to alleviate

computational power greed. The classification speed and accuracy of

CoAtNet in ImageNet demonstrate the potential of CoAtNet as a

backbone for segmentation models. However, the robust backbone

design of the segmentation models requires substantial trial-and-error

costs (e.g., expert experience and computational costs). As the

backbone architecture of automatic search, neural architecture

search (NAS) (Zoph and Le, 2017) still has the computational cost

of architecture search. Therefore, for backbone design, simple and

effective strategies are urgently needed for rapid application in

agriculture. CBNet (Liu et al., 2020) and CBNetV2 (Liang et al.,

2021) proposed the architectures integrating multiple backbones into

a composite backbone for object detection, which assembles multiple

existing backbones in parallel to represent various features, reducing

the computational cost of architecture design. Inspired by CBNet and

CBNetV2, a leaf segmentation architecture based on composite

backbone architecture was proposed and explored.

To the best of our knowledge, the encoder-decoder architecture

segmentation model has over-segmentation and under-segmentation
frontiersin.org
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in complex field environments. Among the encoders of the

segmentation models, the design of a robust backbone can alleviate

segmentation anomalies, especially the mainstream CNNs and

Transformers. CNNs are highlighted by inductive learning and

generalization, while Transformers are highlighted by global

semantics. However, Transformers and cotton-leaf segmentation

architecture design is power consumption. Therefore, this work

aims to explore the application of the composite backbone

architecture combined with the convolution of CNNs and the

attention of Transformers in cotton leaf segmentation without

significantly introducing the computational power requirements of

Transformers. The specific objectives achieved herein are as follows:
Fron
(1) Eight hundred images of budding, flowering, and boll period

cotton leaves in five typical complex field environments

(normal, spotted lesions, regional lesions, occluded blades,

uneven illumination) were collected and labeled.

(2) CoAtNet, which incorporates the attention mechanism of

Transformers into the convolution, was explored as the

backbone of the encoder in the cotton leaf segmentation

architecture.

(3) A simple and effective composite backbone (Xception and

CoAtNet) leaf segmentation architecture combining

convolution and attention was designed to fully learn the

edge information and global context of cotton leaves.
An outline is employed to show the detailed steps of this work in

Figure 1. Our model is based on the encoder-decoder architecture of

DeepLab v3+, and the composite backbone is introduced into our

model. In step 1, Xception and CoAtNet are used as the lead backbone

and assisting backbone in the composite backbone, and the features of

the input image are first extracted by assisting backbone. In step 2, the

output features of each stage of the assisting backbone flow to parallel

and lower stages of the lead backbone. Xception learns the richer

multi-level features of the assisting backbone. In step 3, the fusion
tiers in Plant Science 03
mechanism of weight contribution factors is adopted to suppress

unimportant features from different backbones. The fused features

flow to the lead backbone under the batch-normalized channel weight

contribution factor. Finally, the output of the composite backbone is

applied to the encoder and decoder.
2 Materials and methods

In this section, Section 2.1 introduced the subdivision of the

cotton dataset into acquisition and preprocessing. Then, Section 2.2

illustrated the design of the segmentation model, including the model

framework and the composite backbone. Finally, Section 2.3

introduced the experimental details, including the experimental

structure, training, and testing strategy.
2.1 Data description

2.1.1 Acquisition
Cotton crops were grown in the field at the experimental station

(85°9′51.231 00′′E, 44°35′47.720 00′′N) of the Agricultural College of
Shihezi University, Shihezi, China. The cotton variety “Xinluzao 54”

was trial-planted on April 7, 2021, and the sowing density was ten

seeds/square meter. Specifically, the column spacing was 0.2 m, and

the row spacing was 0.3 m. The images were acquired along the rows

over the entire field on six experimental dates in the budding,

flowering and boll period (June 11, June 18, June 23, July 7, July 13,

and July 22). Multiple smartphones were selected to capture images

and verify the generality of the subsequent segmentation models. The

smartphone cameras were set to manual operation mode, with a

distance of about 0.3 m from the target leaves. Specifically, the target

leaves were photographed in natural light (9:00-12:00 a.m., Beijing

Time). The following five types of cotton leaves were typical research

objects, as shown in Figure 2.
FIGURE 1

The outline of the composite backbone and segmentation architecture in our model. In step 1, the composite backbone (Xception and CoAtNet) is
selected, and the features of the input image are extracted by CoAtNet. In step 2, multi-scale features are interacted in the composite backbone. In step
3, features from the composite backbone are fused using weight contribution factors.
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Fron
• Normal leaves;

• Leaves with spotted lesions;

• Leaves with regional lesions;

• Leaves with occluded blades;

• Leaves with uneven illumination.
2.1.2 Preprocess
The median filtering algorithm was applied to image

preprocessing since a certain amount of image noise caused by

external factors would negatively impact the training of

segmentation models. Moreover, the image resolution was adjusted

to 512×512 pixels before annotation, saving computational resources

and labor handling time. Subsequently, the polygons pattern in

Labelme-3.3.6 (Torralba et al., 2010) provided labels for two

semantic classes of the dataset, including foreground (target leaves)

and background (i.e., soil, weeds, other leaves). The image annotation

process is shown in Figure 3. The diversity of leaf images under

different growth periods was considered, and at least 100 images were

labeled from five typical cotton leaves in the budding, flowering, and

boll period.

The size and diversity of the dataset affect the segmentation model

performance (Barbedo, 2018). Specifically, large-scale datasets are a

prerequisite for building reliable segmentation models, while limited

datasets easily lead to model overfitting. Therefore, a series of

operations was adopted to expand the cotton leaf dataset: rotation

and mirror flip. The final cotton leaf dataset containing 800 images

and segmentation labels was divided into 80% training dataset and

20% testing dataset for training and testing subsequent

segmentation models.
2.2 Model design

2.2.1 Framework
Currently, the performing segmentation models rely heavily on

the backbones. Intuitively, the rich feature maps extracted by the

backbones and the vast receptive fields sensed by the backbones

determine the segmentation model performance (Ma et al., 2020).

However, designing and pre-training a new backbone consumes

various computing resources, and requires a large number of

training samples (Bao et al., 2022). Recently, the application of

composite backbone in object detection has inspired our model

(Liang et al., 2021). A composite backbone combines several
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existing networks and then integrates the rich features of multiple

scales. In addition, previous studies have shown that the feature

pyramid network (FPN) is more effective than simple network

deepening or broadening. Top-down paths of FPN introduce

spatially richer and semantically more powerful high-level features

and enhance low-level features in bottom-up paths of FPN. Thus, in

our model, multiple backbones are composited and called assisting

backbone and lead backbone, respectively. The composite backbone

of our model extended FPN (Lin et al., 2017) idea combines high-level

and low-level features from multiple networks.

As a classical semantic segmentation model, DeepLab v3+ (Chen

et al., 2018) is used as the benchmark for segmentation models.

Therefore, DeepLab v3+ is regarded as the prototype of our model,

and the lead backbone is the Xception applicable to segmentation in the

raw DeepLab v3+. However, DeepLab v3+ still does not fully show

excellent potential performance and only tries mature convolutional

neural networks (CNN) as a backbone. As a Backbone, simple CNN has

the problems of missing global information and tiny local receptive fields,

which cannot meet the requirements of DeepLab v3+ for featuremaps. In

addition, CoAtNet (Dai et al., 2021) integrates the attention mechanism

of Transformers into the convolution operation of CNN, maintaining the

optimal tradeoff between model generalization capability and model

capacity. Therefore, the hybrid family of CoAtNet is used as the assisting

backbone of our model (based on DeepLab v3+).

As shown in Figure 1, our model is based on the encoder-decoder

architecture of DeepLab v3+. Our model uses Xception (Chen et al.,

2018) and CoAtNet (Dai et al., 2021) as the lead backbone and

assisting backbone. In addition, our model is inspired by FPN and

contains long-skip connections from the encoding path to the

decoding path and short-skip connections between the composite

backbone. Long-skip connections transmit low-level features and

high-level features. Short-skip connections fuse assisting backbone

and lead backbone features, and transmit to the lead backbone.

The remaining parts retain the original architecture of DeepLab

v3+. The encoder of the atrous spatial pyramid pool (Chen et al.,

2017) module processes the lead backbone output features with five

different operations, namely 1×1 convolution, 3×3 convolution at

dilation rate 6, 3×3 convolution at dilation rate 12, 3×3 convolution at

dilation rate 18, and Image Pooling. The output features of five

different operations are downsampled to 1/16 of the input image

size and then combined to form multi-scale features. The multi-scale

features are then subjected to 1×1 convolution operation to form

high-level features. The low-level features output by the assisting

backbone A1 are combined and fused with the high-level features four
DA B EC

FIGURE 2

Images of the Cotton Leaf dataset. The dataset is divided into five representative leaves: (A) a normal cotton leaf, (B) a cotton leaf with spotted lesions,
(C) a cotton leaf with regional lesions, (D) a cotton leaf with occluded blades, and (E) a cotton leaf with uneven illumination.
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times up-sampled after the 1×1 convolution operation. The low and

high-level fusion features are restored to the input image size by 3×3

convolution and four times upsampling. In our model, two dropout

layers are added before the last four times upsampling layers to avoid

overfitting. The softmax function finally activates our model. Each

channel value of the activation output represents the category

probability, and the maximum probability value determines the

pixel category.

2.2.2 Backbone
Our model is based on CoAtNet and Xception as the composite

backbone. As shown in Figure 4, the official Xception backbone for

segmentation is retained as the lead backbone. In our model, the lead

backbone and assisting backbone are divided into five standard

blocks, which are L0, L1, L2, L3, and L4 of the lead backbone, and

A0, A1, A2, A3, and A4 of the assisting backbone in turn. Concretely,

our model divides Xception into five modules, L0, L1, L2, L3, and L4,

according to the remaining residual connection after the first residual

connection. Modules L0, L1, L2, L3, and L4 are composed of only 3×3

separable convolution to reduce computational power requirements.

The L3 module is repeated 16 times to learn the image features fully.

The rest consists of 3×3 convolution and 3×3 separable convolution.

1×1 convolution achieves feature channel rise and residual transfer. In

Xception, the number of channels of the feature map increases

successively, and the partial convolution step is set to 2 to fully
Frontiers in Plant Science 05
capture the spatial information of the feature map and reduce the

spatial resolution.

As shown in Figure 5, in our model, the assisting backbone

consists of three convolution modules, A0, A1, and A2, and two self-

attention modules, A3 and A4. The A0 module consists only of 3×3

convolution, which reduces the feature spatial resolution. Modules A1

and A2 are expanded by the attention mechanism of MobileNet

consisting of 1×1 convolution and 3×3 separable convolution

(MBConv module with inverted bottleneck structure) (Sandler

et al., 2018). 1×1 convolution is used to increase and reduce the

dimension of the feature. A3 and A4 modules contain a Relative-

Attention (Rel-Attention) layer and a Feed-Forward Network (FFN)

layer for learning global feature information. The modules A1, A2,

A3, and A4, are successively repeated 2, 4, 8, and 2 times to explore

the features fully. The rest consists of global pooling and a fully

connected (FC) layer. The residual connection is guaranteed to reduce

the model complexity to reduce overfitting, while the residual

connection prevents the gradient from disappearing. Specifically,

1×1 convolution carries out feature channel dimension raising and

completes the residual transfer.

The Rel-Attention layer expands the attention mechanism of

Transformers. The Rel-Attention layer stretches the input features

from three-dimensional to two-dimensional, that is, h×w×c to

(h×w)×c, and then gets the Input Embeddings. The trainable

weight matrices of Queries, Keys, and Values are calculated by the
FIGURE 4

Xception. C represents the number of feature output channels.
FIGURE 3

Image annotation process. The left is the input image, and the right is the labeled image.
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Input Embeddings with the full connection. Intuitively, the two-

dimensional matrix Queries, Keys, and Values all contain feature

global information. The Score matrix is computed by the scalar

product of Queries and Keys. The Score matrix represents the

correlation between each one-dimensional vector in Keys and each

one-dimensional vector in Queries. Further, the Score matrix is scaled

and activated by the softmax function. Then, the Attention Matrix is

obtained by calculating the scalar product between the Score matrix

and Values, which contain relative global attention features of each

one-dimensional vector in the three matrices of Queries, Keys, and

Values. Finally, the Attention Matrix is reconverted into three

dimensions to obtain the output features.

The FFN layer learns advanced image features from the MBConv

block. The Input Embeddings are expanded by an FFN layer

consisting of multiple FC layers with an n- time expansion rate and

then resized to the original size. In our model, the number of feature

channels in the FFN layer inflation factor was set to 4.
2.2.3 Composite
Backbone, or feature extractor, as the initial stage of the semantic

segmentation network, plays a significant role in model segmentation

performance (Fan et al., 2018). Backbone provides the basic features

of the segmentation target for the semantic segmentation model. Our

model draws on the ideas of FPN (Lin et al., 2017) and CBNetV2

(Liang et al., 2021) architecture to construct the connection structure

between the lead backbone and the assisting backbone. As shown in

Figure 6, the output features of modules A0, A1, A2, A3, and A4 of

CoAtNet flow to parallel and lower-level jump connections of

Xception. Xception both preserves the original residual connection

and learns the richer multi-level features of the assisting backbone.

Specifically, the output feature maps of modules A0, A1, A2, A3, and

A4 are consistent with the dimension of the output feature maps of

Xception and skip-connections of lower stages by 1×1 convolution.

Subsequently, linear interpolation keeps the output feature maps of

A0, A1, A2, A3, and A4 modules consistent with the spatial resolution

of the output feature maps at parallel and lower skip-connections of
Frontiers in Plant Science 06
Xception. Finally, the output feature maps of modules A0, A1, A2, A3,

and A4 are element-summed with the output feature maps at parallel

and lower-level skip-connections of Xception.

The output of each stage of the assisting backbone flows to parallel

and lower stages of the lead backbone. The output of the lead backbone

is applied to downstream tasks. Different from the simple network

deepening or broadening, the composite backbone, which integrates

the high and low-level features of the composite backbone, gradually

expands the receiving field and provides richer target information. Due
FIGURE 5

CoAtNet. CoAtNet is divided into five modules: three convolution modules, A0, A1, A2, and two self-attention modules, A3 and A4. C represents the
number of feature output channels. E is the n-time expansion rate of the Feed-Forward Network (FFN) layer.
FIGURE 6

Our composite backbone architecture with CoAtNet as
assisting backbone.
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to the different response values of the multi-level features integrating

the composite backbone, the model is prone to convergence dilemmas.

Inspired by the accelerated convergence of normalization (Yan et al.,

2020), our model adopts the fusion mechanism of weight contribution

factors to suppress unimportant features, as shown in Figure 7. The

fused features flow to the lead backbone of Xception under the batch-

normalized channel weight contribution factor.
2.3 Experiment

2.3.1 Experimental detail
2.3.1.1 Hardware

Experiments were conducted with the following hardware

configurations: Intel(R) Core(TM) i7-11700 K CPU, 128GB

memory, and NVIDIA GeForce RTX3090 graphics card.

2.3.1.2 Software

The deep learning framework PyTorch installed in Windows 10

(Microsoft, United States) was adopted to build neural

network models.

2.3.1.3 Loss function

Models were optimized by the cross-entropy loss (cost) function

(Huang et al., 2016). As shown in Equation (1), yi represents the label

of the pixel, pi represents the predicted value of the pixel, and m

represents the number of pixels in the image.

Loss =o
m

i=1
− yi log pið Þ + 1 − yið Þ log 1 − pið Þð Þ (1)

The composite backbone was applied in our model to train the

original cross-entropy loss. The assisting backbone, which inherited the

assistant loss concept of CPNet, was also used to produce assistant

supervision. In other words, original cross-entropy loss bears the greatest

responsibility, and assistant supervision helps to optimize the learning

process. Meanwhile, super parameter weight was added to balance the

assistant supervision. The loss defined in our model is as Equation (2).

L = LComp + l · LAssist (2)

Where LComp is the loss of the composite backbone from input to

output,is the loss of assisting backbone from the input only through

the low-feature path to the output, and l is the super parameter
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weight for the assistant supervision. In our model, l was set to 0.3

according to our empirical experiments.

2.3.2 Training strategy
Two training strategies were used on the cotton leaf dataset for our

model. In the first strategy, our model was trained from scratch. In the

second strategy, to use the leaf information of the source domain and

effectively transfer knowledge to the target domain, the PlantVillage

(Hughes and Salathé , 2015) dataset consisting of crop leaf images was

first used to pre-train the lead backbone and the assisting backbone.

The composite backbone with pre-trained weights in a fine-tuning

paradigm of the training process to achieve fast learning on the cotton

leaf dataset. In particular, in the fine-tuning paradigm, the composite

backbones were frozen to train the encoder-decoder part of our model

fully. Then, the composite backbones were unfrozen to complete the

rest after the model was trained for a certain epoch.

The parameter setting in training from scratch is shown in Table 1,

and the parameter setting in fine-tuning is shown in Table 2. The

optimizer of our model was the adaptive moment estimation optimizer

(Adam) (Kingma and Ba, 2015). In Adam, the first and second

moments of the gradient were used to update and correct the current

learning rate (Dong et al., 2017). More importantly, if the loss did not

improve for more than five epochs during the training, the minimum

learning rate was set to 0. Otherwise, the learning rate would drop by 1/

2, and the model would continue to train at that learning rate. The

model would stop training until the loss no longer changes significantly

or until the maximum number of iterations was reached.
2.3.3 Testing strategy
Pixel Accuracy (PA), Mean Pixel Accuracy (MPA), and Mean

Intersection over Union (MIoU) (Shelhamer et al., 2015) are used to

evaluate the effect of our model, as shown in Equation (3), (4) and (5).

PA = ok
i=0pii

ok
i=0ok

j=0pij
(3)

MPA =
1

k + 1o
k

i=0

pii

ok
j=0pij

(4)

MIoU =
1

k + 1o
k

i=0

pii

ok
j=0pij +ok

j=0pji − pii
(5)
FIGURE 7

Fusion mechanism of weight contribution factors based on batch normalization. Where, gi represents the weight value of the i-th channel calculated in batch
normalization, gj represents the weight value of the j-th channel calculated in batch normalization, wi represents the importance degree of the i-th channel.
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Where, k represents the number of classes, i represents the true

value, j represents the predicted value, and pij represents the pixels

that predict class i as class j . Generally, pii represents real samples

(TP), pij represents false negative samples (FN), and pji represents

false-positive samples (FP).

However, the MIoU score is higher than the true value when

measuring the boundary quality, which cannot gracefully evaluate the

segmentation results of our model. Accordingly, Boundary

Intersection over Union (BIoU) is introduced as an additional

evaluation metric to compare the segmentation fineness better

(Cheng et al., 2021). BIoU is used to evaluate the boundary quality

of segmented objects based on the sensitivity of boundary error. BIoU

is defined as Equation (6).

BIoU =
Gd∩ Gð Þ∩ Pd∩ Pð Þj j
Gd∩ Gð Þ∪ Pd∩ Pð Þj j (6)

Where G denotes the ground truth binary mask, P denotes the

prediction binary mask, and d denotes the pixel width of the

boundary region. Boundary regions Gd and Pd are the sets of all

pixels within d pixels distance from the ground truth and prediction

contours, respectively.
3 Results and discussion

3.1 Segmentation model comparison
experiment

Segmentation models adopt the experimental setting in Section

2.3.2 for training to make the comparison fair. The performance of

segmentation models in training from scratch is shown in Table 3,

and the implementation of segmentation models in fine-tuning is

shown in Table 4.
Frontiers in Plant Science 08
Compared with the encouragement success of training from

scratch, the evaluation indexes (BIoU and MIoU) of each

segmentation model in fine-tuning training were improved

accordingly. In addition, among the two training strategies,

PSPNet fused multi-scale features to obtain the baseline effect in

the cotton leaf segmentation task under complex background.

DANet inherited the attention mechanism to improve the cotton

leaf segmentation task. CPNet had achieved moderate results

without multi-scale feature fusion and attention mechanism,

considering assistant supervision strategy. DeepLab v3+ took a

mature CNN (Xception) as a backbone, which was the benchmark

level in several standard segmentation models, both in MIoU,

which represented the overall segmentation quality of the cotton

leaf, and in BIoU, which meant the segmentation quality of the

leaf edge.

Our model had significant progress compared with DeepLab v3+.

Specifically, among MIoU with already high ratings, our model

increased by about 1%, due to data limitations or task bottlenecks

with an inconspicuous rise. However, in BIoU, our model

improvement was quite noticeable, with an increase of around 5%.

Without loss of generality, the BIoU was enhanced due to the

composite backbone (Xception + CoAtNet). The introduction of

our composite backbone not only guaranteed the generalization

ability and convergence ability based on Xception, but also had the

global receptive field of the self-attention layer based on CoAtNet.

The global information ensured that our model worked more

accurately in cotton leaf edge segmentation. Due to the structure of

the composite backbone, multi-level features were obtained by the

encoder and decoder of our model, thus enabling the edge pixel

predictor to get a rich feature map. In addition, our model considered

the progress of CPNet, which also increased the weight of our

assisting loss. At the same time, the composite backbone

architecture retained the conventional training mode of the
TABLE 2 The parameter setting in fine-tuning training.

Training Stage Optimizer Learning rate Batch size Epochs

Backbone freezing Adam 1e-4 8 100

Fine-tuning Adam 5e-5 4 100
fron
TABLE 3 The performance of segmentation Models in training from scratch.

Method Backbone Multi-scale Fusion Attention Assistant Supervision BIoU MIoU MPA PA

PSPNet ResNet-101 ◯ × × 0.415 0.826 0.869 0.877

DANet ResNet-101 × ◯ × 0.488 0.883 0.917 0.933

CPNet ResNet-101 × × ◯ 0.497 0.896 0.927 0.941

DeepLabv3+ Xception ◯ × × 0.522 0.911 0.951 0.967

Ours
Composite
(Xception + CoAtNet)

◯ ◯ ◯ 0.583 0.924 0.964 0.972
tier
The bold values indicate the maximum value in their columns.
TABLE 1 The parameter setting in training from scratch.

Optimizer Learning rate Batch size Epochs

Adam 5e-4 4 200
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backbone in essence. Decoupling the composite backbone and then

pre-training the weight of the individual backbones independently

was low-cost.
3.2 Segmentation model robust experiment

To make the comparison concrete, various images from the test

set of the cotton leaf dataset were selected to visualize the results of the

pre-trained segmentation models, and the types of cotton leaf images

were described in Section 2.1.1. The comparison results are shown in

Figure 8. The segmentation models effectively detect normal and

diseased cotton leaves (spotted and regional lesions), especially in

detecting cotton leaf edges. The texture features and shape parameters

of the cotton leaves during training were simple to learn. Under the

condition of shadow occlusion, the overall segmentation of our model

and DeepLab v3+ was satisfactory. At the same time, CPNet had the

under-segmentation phenomenon, DANet and PSPNet had the over-

segmentation and under-segmentation phenomenon. DeepLab v3+,

CPNet, DANet, and PSPNet over-segmented cotton leaves compared

with the segmentation acceptable to our model under uneven

illumination conditions.

The PSPNet, with ResNet-101 as the backbone, incorporated

multi-scale features. The segmentation of normal and diseased

cotton leaves (spotted and regional lesions) was consistent with the

further determination of cotton phenotypic traits. DANet integrated

with the attention mechanism, similar to PSPNet, and both had

under-segmentation under the condition of shadow occlusion and

uneven illumination. CPNet and DeepLab v3+, in turn, due to the

backbone update and the introduction of assistant losses, the overall

segmentation level was moderately acceptable except for under-

segmentation in shadows and over-segmentation in uneven

illumination. Since the conventional segmentation models only

contained the convolution module and lacked the global receptive

field, the conventional segmentation models could not learn the subtle

differences between pixels. The processing effects of leaf edges were

poor in the complex filed environment.

In contrast, our model based on DeepLab v3+ accurately

segmented cotton leaves in typical scenes, especially the edge of

cotton leaves. Due to the proper coordination of convolution and

self-attention module of assisting backbone CoAtNet and the penalty

of assisting loss, our composite model could effectively learn the local

and global context of complex background. The excellent
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performance of our model cannot be achieved without the self-

attention module in the assisting backbone. In addition, our model

inherited the idea of the various benchmark models to ensure that the

encoder had full access to the information from the multi-

layer features.
3.3 Ablation experiment

The assistant supervision in our model ensured that the assisting

backbone contributed to the segmentation. Therefore, the penalty of

assisting loss enables the model to learn more cotton leaf features, as

CPNet achieved satisfactory improvement by only considering

assistant loss. In addition, to fairly compare the progress of our

model with DeepLab v3+, the results of decoupled assistant

supervision are shown in Figure 9. Figure 9 shows the

improvement effect of assistant supervision in training from scratch

and fine-tuning training strategies. In the training-from-scratch

strategy, MIoU and BIoU improved from 0.915 to 0.924, and 0.553

to 0.583, respectively. Accordingly, in the fine-tuning training

strategy, MIoU and BIoU improved from 0.929, and 0.585 to 0.940

and 0.608, respectively.

In training from scratch and fine-tuning training strategies, the

trajectory occasionally shows sudden declines. One of the reasons for

the decline phenomenon may be the random loading of batch

samples in the training data set to train our model. The

randomness of training samples led to significant fluctuations in the

parameters of our model, which further affected the performance of

our model on the test dataset. Besides, to prevent the model from

overfitting, two dropout layers were added before the upsampling

layer of the decoder. Although the dropout layers can improve the

robustness of our model, the dropout layers cause important neurons

to be randomly deactivated, which would be the reason for the sudden

declines of the trajectory. However, the introduction of assisted

supervision promoted the segmentation power of our model, and

the training was smoother than that of the non-assisted supervision

strategy. The trajectory can recover and rise in fewer epochs after a

sudden decline with assisted supervision. The segmentation effect of

our model was suboptimal without adopting the assisted supervision

strategy. Generally, the attention mechanism of Transformers

integrated into the composite backbone of our model achieved

remarkable results. Due to the limitation of computing resources,

the computational requirements of the Transformer cannot be met.
TABLE 4 The performance of segmentation Models in fine-tuning training.

Method Backbone Multi-scale Fusion Attention Assistant Supervision BIoU MIoU MPA PA

PSPNet ResNet-101 ◯ × × 0.438 0.866 0.893 0.901

DANet ResNet-101 × ◯ × 0.513 0.899 0.925 0.943

CPNet ResNet-101 × × ◯ 0.533 0.911 0.937 0.953

DeepLabv3+ Xception ◯ × × 0.565 0.923 0.957 0.972

Ours
Composite
(Xception + CoAtNet)

◯ ◯ ◯ 0.608 0.940 0.975 0.979
frontier
The bold values indicate the maximum value in their columns.
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Further, in the ablation experiment, the assisting backbone is replaced

by the Transformer for comparison with our model. However, our

model incorporated the attention mechanism for the broad success of

Transformers, which provides a feasible strategy for overcoming the

computational power requirements of Transformers and applying

Transformers elegantly to agricultural tasks.
4 Conclusion

In this work, from five typical cotton leaves (normal, spotted

lesions, regional lesions, occluded blades, uneven illumination), a

total of 800 images were labeled at the budding, flowering, and

bolling stages. The composite backbone-based encoder and decoder

semantic segmentation architecture (our model) was used for cotton

leaf segmentation in complex field environments. The composite

backbone consisted of the lead backbone Xception and the assisting

backbone CoAtNet, saving the computational cost of architecture

search for cotton-leaf segmentation. Xception represented the biased
Frontiers in Plant Science 10
learning and generalization of CNN, CoAtNet was integrated into our

model with the global context inherited from Transformers. Due to the

slight computational power and data requirements of CoAtNet

compared with Transformers, our model not only maintained the

fast convergence of convolution but also maintained the global

receptive field of attention under the constraint of a certain

computational cost. At the same time, the introduction of the multi-

scale feature fusion mechanism and assistant supervision strategy

effectively improved the performance of our model. The

experimental results showed that the cotton leaf segmentation

performance of our model, especially under complex filed

environments, was significantly better than that of the PSPNet,

DANet, CPNet and DeepLab v3+ benchmark models, and the

under-segmentation and over-segmentation of five typical cotton

leaves were encouraging. In addition, different backbones can be

trained offline and reassembled into composite backbones with

limited computing resources. In the future, more types and numbers

of pre-trained backbones can be combined to achieve faster and better

plant high-throughput phenotypic tasks.
FIGURE 8

Pre-trained segmentation models results on five types of cotton leaf images.
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