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The 3D point cloud data are used to analyze plant morphological structure. Organ

segmentation of a single plant can be directly used to determine the accuracy and

reliability of organ-level phenotypic estimation in a point-cloud study. However, it

is difficult to achieve a high-precision, automatic, and fast plant point cloud

segmentation. Besides, a few methods can easily integrate the global structural

features and local morphological features of point clouds relatively at a reduced

cost. In this paper, a distance field-based segmentation pipeline (DFSP) which

could code the global spatial structure and local connection of a plant was

developed to realize rapid organ location and segmentation. The terminal point

clouds of different plant organs were first extracted via DFSP during the stem-leaf

segmentation, followed by the identification of the low-end point cloud of maize

stem based on the local geometric features. The regional growth was then

combined to obtain a stem point cloud. Finally, the instance segmentation of

the leaf point cloud was realized using DFSP. The segmentationmethod was tested

on 420 maize and compared with the manually obtained ground truth. Notably,

DFSP had an average processing time of 1.52 s for about 15,000 points of maize

plant data. The mean precision, recall, and micro F1 score of the DFSP

segmentation algorithm were 0.905, 0.899, and 0.902, respectively. These

findings suggest that DFSP can accurately, rapidly, and automatically achieve

maize stem-leaf segmentation tasks and could be effective in maize phenotype

research. The source code can be found at https://github.com/syau-miao/

DFSP.git.

KEYWORDS

point cloud, segmentation, maize, distance field, quickshift++
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2023.1109314/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1109314/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1109314/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1109314/full
https://github.com/syau-miao/DFSP.git
https://github.com/syau-miao/DFSP.git
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2023.1109314&domain=pdf&date_stamp=2023-01-31
mailto:miaoteng@syau.edu.cn
mailto:xutongyu@syau.edu.cn
https://doi.org/10.3389/fpls.2023.1109314
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2023.1109314
https://www.frontiersin.org/journals/plant-science


Wang et al. 10.3389/fpls.2023.1109314
1 Introduction

Maize is one of the most important food crops in the world.

Therefore, its production is essential in ensuring global food supplies.

High-throughput phenotypic measurement is crucial for future maize

variety improvement. The 3D sensing technologies, such as 3D laser

scanners (Rist et al., 2018), multi-view images (Wu et al., 2020), and

lidar (Jin et al., 2021), have been recently used for plant phenotype

parameter measurements based on 3D point clouds. The organ-level

segmentation of plant point clouds is necessary if the measurements

of the organ-level phenotype indicators, such as leaf length and width,

are involved. Numerous studies have evaluated point cloud

segmentation at the organ level.

Plant organs are mainly classified and segmented using the local

geometric features of point clouds. Tensor based features are simple

features formed by combining the eigenvalues of neighborhood points.

However, these features can only be used for simple stem and leaf

segmentation tasks (Elnashef et al., 2019). The Point Feature Histogram

(Rusu and Cousins, 2011) has been widely used in the segmentation of

grapes (Paulus et al., 2013; Wahabzada et al., 2015), sorghum

(Vijayarangan et al., 2018), and tomato (Ziamtsov and Navlakha,

2019) through integration with machine learning, clustering, and

regional growth methods. The traditional point cloud feature

extraction methods should be improved to enhance the segmentation

accuracy and reduce computational time in the extraction of

neighborhood point cloud features for each point in the plant.

Geometric features of organs can also be used for segmentation.

The stem segmentation step is crucial in organ segmentation process.

Stem point cloud removal weakens the connection between the

remaining organs, allowing clustering methods to achieve instant

segmentation. Although early methods mostly used the cylindrical

fitting strategy to identify stems (Paproki et al., 2012; Gelard et al.,

2017), the methods relied on appropriate parameter selection and

required high resolution and point cloud quality.

The global topological structure of plant point cloud is also widely

used for organ segmentation. Currently, most studies use point cloud

skeletons to describe the topology of plants and segment the stems

and leaves according to the topological relationship. This method is

extremely dependent on the quality of the extracted skeleton.

Currently, slice-based (Xiang et al., 2019; Zermas et al., 2020) and

Laplacian-based methods (Wu et al., 2019; Miao et al., 2021b) are

commonly used to extract plant point cloud skeletons. However, the

slice-based method requires that the point cloud is aligned with the

coordinate axis, which limits its application. Meanwhile, Laplacian-

based method does not need point cloud alignment, but it is often

incomplete or wrong when applied to plants, resulting in reduced

segmentation accuracy. As a result, certain interactive corrections are

usually made to ensure the segmentation accuracy of the Laplacian-

based method. Notably, the Laplacian-based method has low

computational efficiency.

Numerous studies have recently used deep learning network data

to abstract point cloud features for semantic and instance

segmentation of the organs (Griffiths and Boehm, 2019; Jin et al.,

2019; Li et al., 2022a; Li et al., 2022b; Li et al., 2022c). Deep learning

can learn local geometric features and global structural features of

plant point clouds from data. Although deep learning has high
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segmentation effectiveness and efficiency, it requires a lot of data

for training. Manual labeling of these data is time-consuming, labor-

intensive, and expensive. Moreover, the current deep learning

technology requires a down-sampling of the point cloud to a very

low resolution (4096 or less), leading to the loss of numerous potential

geometric features of small organs and plants.

The success of deep learning proves that the combination of

global features and local features of point clouds can improve

segmentation accuracy. However, getting enough data for training

models in many application scenarios is difficult. In this study, an

unsupervised segmentation method, which could easily integrate the

global and local features of the plant was developed to achieve fast and

accurate stem and leaf segmentation of maize. Like most crops, maize

plants have many branching structures. This global structure makes

the end areas of organs (leaf tip and the lowest end of the stem) more

dispersed in 3D space, facilitating the positioning of these areas. The

local connection between maize organs is also fixed. These global and

local spatial morphological structures can be used to improve the

efficiency of plant point cloud segmentation. A distance field-based

segmentation pipeline (DFSP) was developed to integrate these

features. The Minkowski distance field of maize point cloud was

constructed to code these structures. Quickshift++ can theoretically

operate on the distance field to realize rapid organ location and

segmentation. The maize stem and leaf segmentation method

combined with DFSP obtained the following characteristics: 1) The

method encoded the global morphological structure information of

maize plants and the local connection relationship of organs; 2) The

method could limit time-consuming geometric feature calculation to

a few organ end point clouds, thus effectively integrating local features

and enhancing the efficiency of organ semantic recognition; 3) This

method could automatically find the organ position, thus automating

the whole segmentation process; 4) The method could segment the

leaves from the tip, and deal with a situation where multiple new

leaves are close to each other, and larger new leaves surround smaller

leaves. In summary, the method provides an effective unsupervised

automatic segmentation scheme for maize stems and leaves,

enhancing organ segmentation efficiency equivalent to that of a

deep learning model without additional data training.
2 Materials and methods

This paper is organized into three main sections: the

methodology, results, and discussion, excluding the introduction

and abstract. The methodology introduces the data acquisition

process and preprocessing method (2.1). Section 2.2 introduces the

distance field-based segmentation pipeline (DFSP). The segmentation

process was conducted for the subsequent stem and leaf segmentation

tasks. Section 2.3 of the methodology introduces the stem extraction

method. DFSP was used to automatically extract the low-end point

cloud of the stem (2.3.1), quickly estimate the growth direction (2.3.2)

on this basis and perform the median normalized-vectors growth

segmentation (2.3.3). Section 2.4 outlines how the DFSP was used to

segment the remaining leaf point cloud instances. The results of the

study are presented in section 3 and then discussed in section 4. The

flowchart of the entire process is shown in Figure 1.
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2.1 Data acquisition and preprocessing

Field experiments were conducted in the experimental maize field

of Shenyang Agricultural University (41.83 N, 123.56E) between May

and July of 2019, 2020, and 2021. Five maize varieties (XianYu 335,

LD145, LD502, LD586, and LD 1281) were planted in plots with an

area of 666 m² with a row-row and plant-plant distances of 60 cm and

25 cm, respectively. Maize samples (420) were randomly chosen and

transplanted into pots in an indoor laboratory. The raw point clouds

were then obtained using a 3D laser scanner (FreeScan X3, Tianyuan

Inc, Beijing, China). The raw data included the pot and other

surrounding object point clouds. We used the CloudCompareStereo

software to manually remove these points, leaving only the plant

point cloud. The number of point cloud data from the different

numbers of leaves in the various maize varieties is shown in Table 1. A

more detailed description of the FreeScan X3 scanner and data

acquisition environment is shown in Table 2.

The pass-through and statistical outlier removal filters were used

to denoise the point cloud and manually segment the original point
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cloud to obtain the ground truth. Too much data significantly reduces

the segmentation efficiency when performing point-cloud

segmentation. In this study, the segmentation process was

improved using the method described by Miao et al. (2021a). The

number of point clouds was first down-sampled to about 15,000

points while maintaining the local geometric characteristics of maize.

The sampled point clouds were then segmented. Notably, the

segmentation results of the subsampled point clouds could be up-

sampled to the original point clouds through the sample-based

segmentation method if the segmentation results in the original

point cloud were needed.

Besides maintaining the original geometry of the point cloud, the

down-sampling process also reduced the number to a fixed 15,000

points. The fixed number of point clouds enables a better

generalization of the parameter setting of the segmentation

algorithm. Although farthest point sampling (FPS) is a suitable

down-sampling method, it lasts longer because of the excessive

number of original point clouds in the hundreds, thousands, and

millions of levels. Moreover, the voxel-grid filter (Rusu and Cousins,

2011) was integrated with FPS to enhance efficiency. Although

the voxel-grid filter is highly efficient and can maintain the original

point cloud form, it does not guarantee the number of point

clouds. As a result, the point clouds were down-sampled to

slightly above 15,000 points using the voxel-grid filter. An excessive

strategy from high sampling interval to low sampling interval was

adopted because of differences in the number of point clouds for each

raw data, which makes it difficult to obtain a suitable number of point

clouds by sampling all the files once. A maximal sampling interval was

first set to allow the point cloud to directly down-sample to fewer

points. The result was used directly in the subsequent FPS and down-

sampled to 15,000 points if higher. In many cases, large sampling

intervals make the down-sampled point cloud have less than 15,000

points. In such cases, the sampling interval was gradually reduced

until the number of point clouds was more than 15,000 points and

then sampled using FPS. The down-sampling results of a plant with

1,383,494 points are shown in Figure 2. Notably, although the

sampling results obtained herein (Figure 2) were similar to those

obtained by directly using FPS, the operation efficiency was

greatly improved.
TABLE 1 Number of plant samples from different numbers of leaves in the various maize varieties.

The number of
leaves

Number of plant
samples

XY335 data
bulk

LD145 data
bulk

LD502 data
bulk

LD586 data
bulk

LD1281 data
bulk

3 17 17 0 0 0 0

4 39 32 3 0 1 3

5 100 87 2 3 4 4

6 100 86 4 3 5 2

7 60 46 3 3 4 4

8 36 33 1 0 1 1

9 28 22 1 4 1 0

10 24 13 3 4 3 1

11 10 5 1 2 0 2

12 6 2 0 0 2 1
FIGURE 1

Flow chart of this article method.
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2.2 Distance field-based segmentation
pipeline

In this study, the global morphological structure of corn plant

point cloud and the connection relationship of local point cloud were

used to segment organs. The end areas of organs (the tip of leaves and

the bottom of stems) were sparsely distributed in space, making it

easy for positioning. The number of organs on the maize plant and

the general position of each organ were determined if the point clouds

at the end of these organs were successfully extracted. The rest of the

point clouds were divided into corresponding organs based on the

connection between the point clouds.

Determining the point cloud at the end of organs is crucial for

segmentation. In this study, a special base point was set in 3D space.

The Minkowski distance was then calculated from each point of the

plant to the base point to form a Minkowski distance field. The

location of the base point should be carefully designed to ensure that

the Minkowski distance between the point cloud at the end of the

organ and the base point is relatively large in the local regions of

the plant. Finally, some local regions with large distance values in the

distance field were extracted as the end-point clouds of organs.

If P[n]={p1⋯pn} represents the set of plant point clouds to

be treated, and p represents a point in the set, the Minkowski
Frontiers in Plant Science 04
distance was defined as the function F over the Lebesgue measure

on R3 as follows:

F pið Þ = ‖ pi − pB‖2a , i = 1⋯ n,  a ≥ 1:0, pB ∉ P n½ � (1)

where ‖∙‖ represents L2 normal, and a represents a parameter

adjusted by the user to increase the contrast of the distance value. PB
represents the base point. Different base point locations should be

selected for different tasks. However, it is necessary to ensure that the

distance value of the point cloud at the end of the organ should be

large in local areas. Herein, each point cloud was given a distance

value to form the plant Minkowski distance field. The position of the

point cloud at the end of the organ was determined using the distance

value. Locating the end of the point cloud by extracting local maxima

may obtain multiple maxima at the end of an organ due to the noise

and missing of the point cloud, resulting in over-segmentation.

Therefore, the locally high-distance regions in the distance field

should be identified. In this study, Quickshift++ was introduced to

extract the locally high-distance regions.

Quickshift++ (Jiang et al., 2018) is a new density-based clustering

procedure based on the latest development in topological data

analysis (Stuetzle and Nugent, 2010; Rinaldo et al., 2012).

Quickshift++ consists of two algorithms (1 and 2). Algorithm 1

first works by traversing some k-NN graphs, which encode the level
FIGURE 2

A comparison plot of plant point cloud down-sampling methods.
TABLE 2 General specification of FreeScan laser scanner.

Specification Value

Price 120000 yuan

Scanning range 280×250 mm

Scanning accuracy 0.030 mm

Working distance 300 mm

Depth of field 250 mm

Range 0.1-6 m (scalable)

Resolution 0.100 mm

Data acquisition time All day

Data acquisition efficiency 7~15 min/plan

Environment Indoor/Calm/Normal temperature/Artificial illumination
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set of k-NN density estimation and form several cluster-cores of the

density. Each cluster core represents a data set in which the data are

clustered into the same category. The data have a large density value

in the local range. Algorithm 2 assigns the remaining data to their

appropriate cluster-cores using a hill-climbing procedure based on

Quick Shift (Vedaldi and Soatto, 2008).

Quickshift++ was originally used to operate on the k-NN density

estimator of data to achieve clustering.In this study, Quickshift++

operates on the Minkowski distance field. We showed that the

Minkowski distance function (Formula 1) satisfies the regularity

mathematical assumptions of Quickshift++ for input data to

theoretically explain why Quickshift++ can perform cluster core

recovery and point cloud segmentation in the Minkowski distance

field of plant point cloud. The Minkowski distance function has the

condition that pB∉P[n], and thus it is easy to see that it has a

continuous partial derivative and to know that formula (1) is

continuous and differentiable. Meanwhile, the function is

continuously differentiable and lower bound since it is always

greater than 01. Therefore, the function can converge to the local

maximum in the gradient direction with local attraction regions2.

This ensures that the function has cluster cores (locally high-value

regions). The points in the attraction regions cluster to these cluster

cores along the gradient direction. The corn point cloud is bounded in

3D space. As a result, formula (1) is continuous on the closed interval.

Formula (1) is uniform continuity based on the cantor theorem 3.

This ensures that there is no approximately flat area in the distance

field and that Quickshift++ will not get stuck in such a flat area.

The effect of the entire segmentation pipeline is determined based

on three parameters: the K parameter, the b parameter, and a
parameter. The K and the b parameters mainly affect the

QuickShift++ algorithm. The K parameter is used to construct the

k-NN graph in the QuickShift++ algorithm. The larger the value of K,

the fewer the number of clusters. The parameter b, where 0 < b < 1,

can be used to adjust the number of cluster-cores in the QuickShift++

algorithm. The smaller the b parameter value, the more the cluster-

cores are extracted, and the fewer the number of point clouds in each

cluster core, causing over-segmentation in the final segmentation

category. A larger value of a causes a higher sensitivity to the distance

change of the local area, yielding more refined segmentation results

and more segmented categories. Over-segmentation occurs in such

cases. In contrast, the distance contrast of the local areas is not

significant when the value of a is smaller, yielding fewer

segmentation categories.

In this study, DFSP was used to locate point clouds at the end of

plant organs and segment the point cloud in the leaf.
2.3 Stem segmentation

The median normalized-vectors growth segmentation (MNVG)

algorithm (Jin et al., 2018b) was used to segment the stem point cloud,
1 Satisfying assumption 1 of Jiang et al. (2018)

2 Satisfying assumption 2 of Jiang et al. (2018)

3 Satisfying assumption 3 of Jiang et al. (2018)
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starting with a point at the lower end of the stem as the initial seed

point. Jin et al. (2018b) obtained the point cloud through

human interaction.

In this study, two strategies were used to automatically obtain the

initial seed point. The initial seed point was easily obtained when the

point cloud of the plant was aligned, making the growth direction

consistent with a certain coordinate axis (assuming Z-axis). Several

point clouds at the bottom were first selected based on the z-axis

coordinates of the point cloud, followed by a calculation of their

median point as the seed point. When using Kinect or lidar to obtain

point clouds, we can align the obtained point clouds with the

coordinate axis by adjusting the position and direction of the sensor.

It is difficult to automatically obtain initial seed points from point

clouds that are not aligned. In this study, the plant point cloud

obtained by a hand-held scanner was not aligned, and DFSP was used

to find the initial seed point.

2.3.1 Extraction of the lowest end of the stem
A base point pB was set to make the distance value of the point

cloud at the end of the organ belong to the local high-distance regions

as far as possible, as follows:

pB =
1
no

n
i=1pi     :   pi ∈ P n½ � (2)

A small random disturbance was made to the coordinates of pB if

the coordinates of pB were exactly equal to a point in P[n], to ensure

that pB and the points in P[n] are not equal. The point cloud at the end

of plant organs was then extracted via DFSP. In this step, DFSP only

needs to find the locally high-distance regions of the distance field,

indicating that it only needs to execute algorithm 1 in Quickshift++.

Furthermore, the K, b, and a parameters in DFSP are represented by

K1, b1 and a1 respectively, to distinguish the parameter settings when

DFSP is subsequently used.

The thermodynamic diagram of the distance function is shown in

Figure 3A. The terminal point clouds of each organ had higher

distance values. QuickShift + + was used to extract these organ

terminal point clouds, which were then clustered into several

cluster cores (Figure 3B). In this step, DFSP needs to find the stem

area to ensure the correct operation of the subsequent algorithm.

DFSP does not need to correctly find all the leaf tip regions. As long as

most of the tip regions can be found, the geometric features can be

used to identify the stem region.

The local geometric feature of each cluster-core was calculated to

determine the stem region. The m-th cluster core was set as Am. The

set of k nearest neighbors of the i-th point pi
A
m in Am is Bi (the

number of k nearest neighbors was controlled by the variable Kf).

Principal component analysis (PCA) was used to calculate the first,

second, and third principal component vectors of Bi set point cloud,

and the corresponding eigenvalues are l1i, l2i, and l3i{l1i ≥ l2i ≥ l3i}.
The local geometric feature of Am was then calculated using formula

(3) below:

f Amð Þ = 1
Moi∈Am

li
3 li

1 − li
2

� �

li
1

, (3)

whereM represents the number of point clouds in Am. l3i is used
to distinguish the planar features of local point clouds. The smaller

the l3i, the stronger the planar features. (l1i−l2i)/l1i describes the
frontiersin.org
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linearity of the local point cloud. The larger this value, the stronger

the linearity. Notably, the stem area presents a weak planarity and a

strong linear shape compared with the leaf area. Herein, a cluster core

with the largest f(Am) was selected as the stem area, while the rest was

the leaf area. Formula validation tests suggested that 98% of the test

plant data (420 plants) could correctly get the point cloud at the stem

base when Kf, K1, b1, a1 were set at 64, 32, 0.85 and 5, respectively.

2.3.2 Estimation of growth direction
The growth direction of the maize plant was estimated after

obtaining the stem and leaf cluster cores (Figure 3C). The plant was

aligned with the coordinate axis based on the growth direction

(Figure 3D). Notably, the maize plants presented certain

symmetrical characteristics along the stem. The spatial distribution

of cluster cores was used to estimate the plant growth direction Sdir.

Supposing that the median point of stem-cluster core was ps and the

median point of the i -th leaf cluster-core was pl
i the plant growth

direction was calculated using formula (4)below:

Sdir = median pil − ps)= jj pil − ps jj2
� �

, i = 1⋯ nl , (4)

where {∙}, ‖∙‖2 and nl represent the median operation, L2 normal,

and the number of leaf cluster-cores, respectively.

The coordinates of the point cloud of the plant were transformed

after obtaining the growth direction of the plant to ensure that the

growth direction Sdir coincides with the Z axis and ps coincides with

the original coordinate point. The z-axis was used as the normal

vector to project the point cloud onto the plane. PCA assigned the

first and second principal component vectors as the x- and y-axes,

respectively, of the new coordinate system. The original point cloud

coordinates were then transformed into a new plant coordinate

system. The coordinates of their z-value were used to judge the

height of points in the plant. The height of points increased with

greater z-values
Frontiers in Plant Science 06
2.3.3 Median normalized growth segmentation of
the stem

The MNVG algorithm was adopted to iteratively segment the

stem point cloud (Figure 3E). The coordinate origin was used as the

initial seed point s1 after the plants were aligned, followed by updating

the seed point position through multiple iterations and dividing the

point cloud around the seed point into the stem point cloud.

Assuming that the algorithm was in the j-th iteration and the seed

point of this iteration was sk, the specific process of stem segmentation

was as follows:

1) Taking sj as the center of the sphere, the point set A within its

radius r was added to stem point cloud.

2) The growth direction vj was calculated using formula (5) below:

vj = median pA − sj
� �

= jj pA − sjjj2
� �

, pA ∈ A

vj = vj + vj−1
� �

= jj vj + vj−1 jj2
(5)

3) The position of the seed point sj+1 in the next iteration was

calculated using formula (6) below:

sj+1 = sj + rvj ; (6)

4) The end condition of regional growth was then determined

when the maximum coordinate of the z-axis of the plant point cloud

was h. The growth stopped if the z-coordinate of sj+1 was greater than

mh; otherwise, the next iteration occured, and step 1 was executed.

Notably, vj is affected by vj−1 at each iteration, playing a corrective

role in ensuring that the growth direction of the stem is not

significantly curved. Herein, v0 was set as zero vector, while r was

an adjustable parameter, which was set as the euclidean distance

between the farthest two points in the stem cluster core. m(0 ≤ m ≤ 1)

was a user-adjusted parameter. The larger its value, the longer the

segmented stem. The stem segmentation of different plant types of

maize was processed by adjusting the value of m. Herein, maize plants
B C

D E

A

FIGURE 3

Flow chart of the stem segmentation process. (A) A thermodynamic diagram of distance function; (B) Stem region extraction based on DFSP; (C)
Estimation of plant growth direction; (D) Plant point cloud alignment; (E) Median normalized growth segmentation of the stem point cloud.
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before the jointing stage were the main test data, and thus m=0.30
yielded better results.
2.4 Leaf segmentation

The point cloud of maize shoots was spatially divided into several

relatively discrete point clouds (excluding the stem) after stem

segmentation. However, the end-point clouds of the leaves

(adjacent to the stem) were still mixed, making it difficult to

segment each leaf. Notably, the tip regions of different leaves of

maize were scattered and far away from the lower end of the stem.

Therefore, different leaves were separated by extracting the tip point

cloud of each leaf to determine the general position and distribution

to realize the instance segmentation of the leaves. In the new plant

coordinate system, the coordinate of point ps in the stem base point

cloud was the origin of the coordinate system, and thus pB was set as

zero vector. The leaf point cloud was segmented using DFSP. DFSP

simultaneously executed algorithms 1 and 2 in Quickshift++. In this

step, the K parameter in QuickShift++ was represented by K2, while

the b parameter was represented by b2 during the segmentation. K2,

b2, and a2 were set at 32, 0.85, and 9, respectively, through the test

when processing the plant data of 15,000 points to obtain a better leaf

segmentation effect. The whole process of leaf segmentation and the

final visualization result of stem-leaf segmentation are shown in

Figure 4. In this study, the new leaves wrapped by each other could

be separated, thus enhancing segmentation from the tip.
2.5 Statistical analyses

The segmentation results were compared with the ground truth.

The precision Po, recall ;Ro, and F1 score Fo for each organ instance

were calculated using formula (7). In the formula, TP denoted the true

positive points, indicating the number of points that were segmented

correctly into instance A; FN represented the false negative points,

which were the points originally belonging to instance A but wrongly

divided into another instance; and FP represented the number of false

positive points in an organ, representing the points of other instances

that were wrongly assigned to instance A.

Po ¼ TP
TPþFP

Ro ¼ TP
TPþFN

Fo¼ 2� Ro�Po
RoþPo

, (7)

The precision Pp, recall Rp, and micro-F1 score Fp were also

calculated for the individual maize using formula (8). In the formula,
Frontiers in Plant Science 07
No denoted the number of organ instances of individual maize.

Pp ¼o
No

1
Po

No
Rp ¼o

No

1
Ro

No
Fp¼ 2� Rp�Pp

RpþPp
, (8)
3 Results

3.1 Precision/visualization effects

The 420 maize plant point clouds were used to evaluate the

segmentation accuracy. Visualization is the most intuitive and

effective way to evaluate the accuracy of 3D digital results (Room

et al., 1996). The representative segmentation results with different

leaf numbers are shown in Figure 5. The segmentation results of the

leaves had little difference at different leaf positions, indicating that

our method was effective for both fully expanded leaves and

undeveloped leaves. However, there was a false segmentation at the

organ boundary. The numerical accuracy evaluation results for the

plant point clouds with different leaf numbers further quantitatively

evaluated the segmentation results (Table 3). The precision, recall,

and F1-score values of each organ instance point cloud were

calculated based on the results of the manual segmentation, which

were taken as the ground truth.
3.2 Comparison with the existing methods

The developed algorithm was compared with skeleton-based

segmentation algorithm (SSA) (Miao et al., 2021a) based on plant

data of 15000 point clouds and 4096 point clouds. It was also

compared with PointNet++ (Qi et al., 2017) based on plant data of

4096 point clouds. When processing data of 4096 points, Kf, K1 and K2

were set at 16, 8 and 8, respectively, while the other parameters were set

the same as when processing data of 15000 points. A computer with a

Core i7 processor and 32 GB memory was used to test our algorithm

and SSA. A computer with a Core i9 processor, 64 GB memory, and

RTX 3090Ti GPU was used to train and test PointNet++.

The segmentation accuracy and the average running time of the

three algorithms are shown in Table 3. The developed segmentation

algorithm had good segmentation accuracy and efficiency compared

with the other two algorithms. However, its accuracy (F1 score)

slightly decreased when dealing with multi-leaf by less than 2%.

Moreover, the average running efficiency of the algorithm reached
B C DA

FIGURE 4

The process of leaf segmentation: (A) A thermodynamic diagram of the distance function. (B) Extraction results of leaf Cluster-cores. (C) Result of leaf
instance segmentation. (D) Result of stem and leaf segmentation.
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B C D E

F G H I J

A

FIGURE 5

Visualization results of stem and leaf segmentation. The top image in each figure represents the result of our method, while the bottom image
represents the ground truth. (A) Three leaves; (B) Four leaves; (C) Five leaves; (D) Six leaves; (E) Seven leaves; (F) Eight leaves; (G) Nine leaves; (H) Ten
leaves; (I) Eleven leaves; (J) Twelve leaves.
TABLE 3 The numerical accuracy evaluation results of plant point clouds with different leaf numbers.

Leaf number 3 4 5 6 7 8 9 10 11 12 AVG

Ours
(15000 points)

Precision 0.912 0.903 0.908 0.914 0.924 0.914 0.874 0.892 0.903 0.910 0.905

Recall 0.903 0.916 0.919 0.919 0.920 0.906 0.867 0.876 0.885 0.882 0.899

F1-score 0.907 0.909 0.913 0.916 0.921 0.910 0.870 0.884 0.893 0.896 0.902

Time per plant 1.520 s

SSA
(15000 points)

Precision 0.810 0.877 0.906 0.899 0.864 0.753 0.762 0.741 0.706 0.705 0.802

Recall 0.810 0.881 0.933 0.925 0.884 0.774 0.780 0.759 0.707 0.678 0.813

F1-score 0.809 0.879 0.919 0.911 0.873 0.763 0.770 0.749 0.706 0.690 0.807

Time per plant 57.814 s

Ours
(4096 points)

Precision 0.944 0.898 0.887 0.891 0.891 0.878 0.866 0.834 0.839 0.873 0.880

Recall 0.924 0.907 0.907 0.899 0.894 0.870 0.856 0.816 0.837 0.838 0.875

F1-score 0.934 0.902 0.896 0.895 0.892 0.874 0.861 0.824 0.838 0.855 0.877

Time per plant 0.135 s

SSA
(4096 points)

Precision 0.910 0.868 0.876 0.851 0.805 0.790 0.744 0.651 0.762 0.836 0.809

Recall 0.917 0.887 0.912 0.885 0.840 0.811 0.765 0.671 0.752 0.791 0.823

F1-score 0.913 0.877 0.893 0.867 0.822 0.800 0.754 0.660 0.757 0.812 0.816

PointNet++
(4096 points)

Time per plant 14.169 s

Precision 0.852 0.891 0.866 0.873 0.854 0.835 0.806 0.820 0.767 0.693 0.826

Recall 0.835 0.881 0.851 0.858 0.826 0.822 0.797 0.802 0.755 0.690 0.812

F1-score 0.826 0.878 0.847 0.855 0.827 0.819 0.788 0.799 0.747 0.678 0.806

Time per plant 0.081s
F
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0.135 s when the algorithm was used to segment plants with 4096

points, which was 100 times faster than SSA and twice slower than

PointNet++. However, its average segmentation speed per plant when

processing 15000 points was only 1.52 s. Notably, PointNet++ had

good accuracy when segmenting plants with four, five, and six leaves

(more data). However, its accuracy was significantly reduced when

segmenting plants with more than seven leaves. Although the

PointNet++ model was limited by its weak generalization ability

caused by the data imbalance, it had a good running efficiency.

Furthermore, its average processing time was less than 0.1 ms, due

to the parallel computing capability of GPU. Although SSA achieved

good segmentation accuracy when segmenting point clouds with few

leaves, its segmentation accuracy significantly decreased when

segmenting plants with more leaves. Obviously, SSA was more

limited to the seedling stage. Besides, SSA algorithm had poor

running efficiency. Its average running times when processing 4096

points and 15000 points were 14.2 s and 57.8 s, respectively, with most

time being spent on skeleton extraction. These results show that the

developed segmentation algorithm is effective for maize plant

segmentation, especially when there is insufficient data to train a

deep-learning network.

DFSP used two algorithms (1 and 2) in Quickshift++for organ

segmentation. However, it should be noted that using Quickshift+

+directly instead of DFSP cannot perform stem-leaf segmentation.

Figure 6 shows the visualization difference in organ terminal area

recognition and leaf segmentation using DFSP and Quickshift++. The

reason for this difference is that their inputs were different. DFSP takes
Frontiers in Plant Science 09
the distance field encoding the global structure information of the

plant as the input, while Quickshifit++ takes the density field of the

point cloud as the input. For organ segmentation tasks, point cloud

density is not a useful prior knowledge. This proves that the success of

DFSP is not only due to the role of Quickshifit++, but also due to the

encoding of plant global features using Minkowski distance fields.

Clustering algorithms are often used in point cloud segmentation

of maize plants, such as density-based clustering algorithm (Elnashef

et al., 2019) and the Eucliden distance-based clustering method

(Zermas et al., 2020). We compared the results of our DFSP, two

density- based clustering algorithms (DBSCAN and Quickshift++) and

Eucliden distance-based clustering algorithm for leaf segmentation (as

shown in Figure 7). The leaf base parts of new leaves are very close to

each other, and the leaf base of a larger leaf covers that of a smaller leaf.

None of the three clustering methods can segment such leaves

correctly. The fully expanded leaves at the lower part of the plant

are far away from each other, and the three clustering methods can

successfully segment them. Compared with the three clustering

methods, our DFSP is better in the segmentation of new leaves.
4 Discussion

4.1 Algorithm augmentability

In this study, all data were processed using similar parameters

when validating the algorithm, leading to poor segmentation results
B C

D E F

A

FIGURE 6

Visualization differences between DFSP and Quickshift++ for organ terminal region extraction and leaf segmentation. The same K and b parameters are
used with DFSP and Quickshift++. (A) Organ terminal region extraction using DFSP; (B) Leaf tip region extraction using DFSP; (C) Leaf segmentation
using DFSP. (D) Organ end region extraction directly with Quickshift++ under multiple sets of parameters. (E) Leaf tip region extraction directly with
Quickshift++ under multiple sets of parameters. (F) Leaf segmentation directly with Quickshift++ under multiple sets of parameters.
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for some plants. Notably, the segmentation algorithm was adjustable,

providing flexibility for plant segmentation in different plant types

and growth periods of maize. A case where the top new leaf was too

small, wrapped, and almost stuck to other leaves is shown in Figure 8.

The general parameters used in leaf segmentation step were invalid

for such new leaves. However, small leaves can be extracted to obtain

more refined results by reducing the K2 parameter.

Plants have different heights at different stages. Herein, the data at

the seedling stage accounted for the largest percentage, suggesting

that the set parameters were more suitable for the point cloud at the

seedling stage. Therefore, stem segmentation of higher plants can be

under-segmented at m=0.3. However, a better stem segmentation

effect can be obtained if m is increased. The effect of different m
values when processing point clouds of higher plants is shown in

Figure 9. Notably, the stem length increased with increasing (m =0.53)

value, thus obtaining more refined segmentation results.

Besides maize plant segmentation, DFSP has also been used to

segment other plants. The segmentation results of mature maize,

potted wheat, mimosa, and eggplant using DFSP are shown in

Figure 10. Notably, the developed method can only apply to stem
Frontiers in Plant Science 10
segmentation of plants with single-branch structures and not to

plants with multi-branch structures because it adopts the regional

growth method for stem segmentation. However, DFSP has a very

good generalization ability and segmentation effect for the

segmentation of non-stem organs with different geometric

characteristics. For instance, it has a good segmentation effect in

mimosa leaves with strong planar characteristics, maize ears with

cylindrical characteristics, split tomato leaves, and slender curly wheat

leaves, among other characteristics. Therefore, DFSP can be

integrated into other segmentation methods and applied to other

plant species.
4.2 Advantages

The developed method achieved great segmentation accuracy due

to the integration of global structural features and local geometric

features of the plant. DFSP was used as the core segmentation

technology. The Minkowski distance function was used to code the

global spatial structure and local connections of the plant. Herein, the
B C DA

FIGURE 7

Comparison of leaves segmentation results of DFSP, Quickshift++,DBSCAN clustering method and Euclidean distance-based clustering method. (A–D)
represents the results of segmentation using the DFSP, Quickshift++, DBSCAN and Euclidean distance-based clustering method, respectively.
B CA

FIGURE 8

The new leaf segmentation results. (A) Ground truth; (B) K2 set at 32; (C). K2 set at 8.
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sparse distribution of the end positions of various organs of maize in

the 3D space was coded into Minkowski distance, which was extracted

and recognized with Quickshift++. The point cloud tensor feature, a

local geometric feature, in stem recognition was also used. Some few

point clouds at the end of organs were first extracted through DFSP to

improve the algorithm speed. The stem bottom region could be

identified because of the different features on these point clouds. In

general, the global and local features of the plant point cloud were

integrated via DFSP to achieve good segmentation accuracy and avoid

introducing complex machine learning technology.
Frontiers in Plant Science 11
Phenotypic parameters, such as leaf length, width, inclination,

stem diameter, and other organ-level parameters, can be calculated

through organ-level segmentation. In this study, The algorithm could

quickly locate the lower end of the stem and the leaf tip by only one

step of cluster-core extraction, thus enabling the extraction of the

stem diameter and leaf number parameters without organ level

segmentation. Moreover, it enables the calculation of plant height

and width after point cloud alignment.

The identification of the lower end of the stem by DFSP also

makes the method fully automated, which is crucial for high-
B C DA

FIGURE 10

The segmentation effect of the median normalized growth segmentation method on different plants. (A) Mature maize (B) Potted wheat (C) Mimosa (D)
Eggplant plant.
B CA

FIGURE 9

Segmentation results of stems with different m values. (A) Ground truth; (B) m=0.3; (C) m=0.53.
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throughput phenotype detection. This also ensures that the entire

data processing process is non-interactive and less time-consuming.

Compared with machine learning and deep learning technologies, the

developed method avoids numerous manual annotation work and

training processes. Compared with SSA and other methods that use

skeleton extraction technology to locate stems, the method also has

significant computational efficiency.

Like SSA (Miao et al., 2021b), the developed method can also

segment new emerging leaves that are close and wrapped through

DFSP. DFSP can be used to identify the leaf tip and segment the blade

from tip to base. Jin et al. (2018b) segmented the leaf from the leaf

base to leaf tip using the MNVG algorithm. However, this strategy is

unsuitable for new emerging leaves (Miao et al., 2021b). Similar to the

role of point cloud skeleton in SSA, DFSP can also represent the

global topology information of maize plants with significantly

reduced time.

A recent work developed Label3DMaize software (Miao et al.,

2021a) to label maize point clouds. The software could be used to

segment non-stem organs by interactively obtaining the key points of

each organ. However, the process of obtaining the key points of each

organ is the most time-consuming and labor-intensive step in the

whole software. Notably, the developed DFSP segmentation strategy

could automatically extract the key area points of each organ,

reducing the operational complexity of the entire software.

This study expands the application scope of QuickShift++ in plant

point cloud processing from group segmentation (Nelson and

Papanikolopoulos, 2021) to single plant segmentation scale.

Therefore, the two methods can be easily integrated to develop an

organ-level group segmentation tool for the maize. Besides, the

relevant existing technologies are mostly implemented by

integrating different methods. For example, Jin et al. (2018a) first

located the point cloud at the lower end of the stem through the fast

RCNN (Girshick, 2015) and then used the regional growth algorithm

to achieve single plant segmentation. They finally employed a 3D

deep learning network (Jin et al., 2019) to segment the stem and leaf.

Ao et al. (2022) first performed stem and leaf semantic recognition

through PointCNN (Li et al., 2018) and then used DBSCAN

clustering to cluster the stems and leaves into single plants through

connection relationships for organ segmentation. DFSP enables group

segmentation and organ segmentation through a unified
Frontiers in Plant Science 12
segmentation process, thereby reducing the complexity of

developing a maize point cloud segmentation tool.
4.3 Limitations and future works

The proposed method has the following limitations: First, the

method used the regional growth method when extracting stems and

height when judging how to stop growth, thereby introducing

subjectivity despite the increased flexibility. Therefore, future

studies should focus on using geometric features to accurately find

the junction area between the stem and the top leaf. However, this

limitation can be solved using deep learning for semantic

segmentation. Second, DFSP is associated with over-segmentation

in leaf segmentation (Figure 11A). However, when the tip point cloud

of one leaf is mixed with another leaf, DFSP will mistakenly segment

the two leaves into one instance, resulting in under segmentation

(Figure 11B). Therefore, post-processing methods should be added in

the subsequent works to optimize the segmentation results. Finally,

the geometric features (formula 3) used in the identification of stem

cluster cores are sensitive to the missing point clouds. The lowest end

of the stem can be misidentified if the stem point cloud is seriously

missing and its cylindrical feature disappears (Figure 11C). Therefore,

future studies should introduce more robust geometric features for

semantic recognition.
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