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Root rot of Panax ginseng caused by Cylindrocarpon destructans, a soil-borne

fungus is typically diagnosed by frequently checking the ginseng plants or by

evaluating soil pathogens in a farm, which is a time- and cost-intensive process.

Because this disease causes huge economic losses to ginseng farmers, it is

important to develop reliable and non-destructive techniques for early disease

detection. In this study, we developed a non-destructive method for the early

detection of root rot. For this, we used crop phenotyping and analyzed

biochemical information collected using the HSI technique. Soil infected with

root rot was divided into sterilized and infected groups and seeded with 1-year-old

ginseng plants. HSI data were collected four times during weeks 7–10 after sowing.

The spectral data were analyzed and the main wavelengths were extracted using

partial least squares discriminant analysis. The average model accuracy was 84% in

the visible/near-infrared region (29 main wavelengths) and 95% in the short-wave

infrared (19 main wavelengths). These results indicated that root rot caused a

decrease in nutrient absorption, leading to a decline in photosynthetic activity and

the levels of carotenoids, starch, and sucrose. Wavelengths related to phenolic

compounds can also be utilized for the early prediction of root rot. The technique

presented in this study can be used for the early and timely detection of root rot in

ginseng in a non-destructive manner.

KEYWORDS

near-infrared hyperspectral imaging, non-destructive measurement, spectral analysis,
plant phenomics, ginseng, root rot
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1 Introduction

Ginseng is a medicinal herb whose main active components,

ginsenosides, improve cardiac health, blood circulation, hypoxia, and

stress. Processed ginseng is distributed in dried, steamed, and

powdered forms (Li, 1995). In 2018, 86,223 tons of fresh ginseng

were distributed worldwide, and the market size of ginseng-related

products (which is increasing every year) was approximately 5,900

million USD (Baeg, 2022).

Ginseng is a slow-growing perennial herb with an optimal harvest

age of 4–5 years for maximum marketability. However, the quality

and quantity of ginseng have decreased by 30–60% owing to various

soil-mediated root diseases (Young Sook et al., 2012; Farh et al., 2018).

Root rot caused by Cylindrocarpon destructans is the main soil-

mediated disease affecting ginseng crops in Korea, and repeated

cultivation of ginseng leads to a very high possibility of infection

(Jang et al., 2010).

Cylindrocarpon destructans is a soil-borne fungus that causes

considerable damage to ginseng crops. The causative agent can

overwinter in soil during the resting season, so that existing and

replanted crops can be re-infected each season. A common symptom

of C. destructans infection is a dark brown discolored area at the tip of

the tap root that extends to the crown over time. Occasionally, this rot

affects all parts of the root. As the infection progresses, the outer

surface of the root is damaged and the inside completely decomposes,

leaving a hollow root in the soil. In the final stages of the infection, the

leaves turn yellow and wither, and the tip of the stem can be easily

separated from the crown (Farh et al., 2018).

Soil-borne diseases (such as root rot) are difficult to control during

crop cultivation. Therefore, the causative fungal species and its

distribution in the soil are checked before planting, and its spread

must be managed through biological and chemical control agents.

However, the superficial symptoms of infection typically do not appear

until harvest. As such, the general method of prevention involves

periodically checking and controlling the density of the pathogens in

the soil. This method is skill- and time-intensive and is very inefficient

for frequently monitoring a large area of the field. Therefore, it is

important to develop a technique that enables farmers to detect soil-

borne fungal infection through changes in aboveground plant parts.

Generally, crop phenotyping involves the quantification of

phenotypic changes using RGB images. During the early stages of

infection, root rot is difficult to detect through aboveground changes

based on general RGB imaging technology. Hyperspectral imaging

(HSI) technology is an alternative to RGB imaging that can detect

minute changes in infected ginseng plants. When implemented as an

imaging technique using spectroscopic technology, HSI can be used to

detect chemical changes in an object (Bock et al., 2010). Recently, HSI

technology has been applied for crop phenotyping and remote

sensing in the agricultural field, and it is being used to predict

various abiotic and biotic stresses.

In the field of plant pathology, HSI systems are widely used to

develop technologies that can detect fungal diseases at the scale of the

tissue, leaf, single plant, and canopy (Thomas et al., 2018b). In

particular, several recent studies have investigated disease detection
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at the plant and canopy scales. For example, one study investigating

aboveground infection used a deep convolutional neural network

(CNN) to identify the differences between soybean crops resistant to

charcoal rot (Macrophomina phaseolina) (Nagasubramanian et al.,

2019). Another study used generative adversarial nets to facilitate the

early detection of tomato spotted wilt virus infection (Wang et al.,

2019a). Drones have been used for the early detection of bacterial spot

(Xanthomonas perforans) in tomato plants (Abdulridha et al., 2020a);

early prediction of powdery mildew in barley at the canopy scale

(Thomas et al., 2018a); detection of powdery mildew disease in

squash; detection and prediction of the severity level (disease stage)

of powdery mildew disease in wild pumpkin (Abdulridha et al.,

2020b); and prediction of early blight (Alternaria solani) in potato

plants in farmlands (van de Vijver et al., 2020). Researchers have

developed the means to detect Fusarium head blight (FHB) in wheat,

compare the resistance of wheat plants to FHB (Alisaac et al., 2018),

and automatically detect yellow rust disease in wheat in farmlands

(Zhang et al., 2019). Research has also been conducted on the

detection and disease indexing of leaf spot disease in peanut (Chen

et al., 2019) using HSI.

In a study on the prediction of root infection using aboveground

data, the researchers utilized recursive feature elimination (RFE)

based on the HSI of the visible/near-infrared (Vis/NIR) region

(400–1000 nm) to facilitate the early detection of Rhizoctonia solani

infection in sugar beets (Reynolds et al., 2012; Barreto et al., 2020).

Infection was mainly predicted based on changes in the levels of

carotenoids (513 nm), nitrogen (637, 700 nm), and soluble solids (584

nm); peroxidase activity (593 nm) in the roots; and peroxidase-related

changes in chlorophyll (656 nm). Another study used the CNNmodel

to detect clubroot infection in cabbage (Feng et al., 2022) and reported

the possibility of predicting soil-borne infections in crops through the

HSI of aboveground plant parts. In other cases for trees, multispectral

imaging technique was used to observe Phellinus weirii (laminated

root rot) in the forest (Leckie et al., 2004) and predict the white root

rot of avocado trees (Pérez-Bueno et al., 2019), and hyperspectral

imaging technique was applied to detect Armillaria genus (root rot) in

vines (Calamita et al., 2021) and Verticillium wilt in olive trees

(Calderón et al., 2013). Most of the current studies have focused on

image-based detection for the obvious symptoms of biotic stress in

plants. However, the comprehensive study on developing spectral

imaging method for the detection of early symptom of plant biotic

stress has not been investigated.

In this study, we developed a technique for the early detection of

root rot in ginseng using HSI, which can sensitively identify

biochemical changes in crops. We performed laboratory

experiments to identify phenotypic factors (such as biochemical

information) related to root rot in ginseng. Soil samples infected

with root rot disease were collected from the field and divided into

sterile and non-sterile groups. Following this, 1-year-old ginseng

plants were transplanted into the soil samples and divided into two

groups: normal and infected. The hyperspectral data of ginseng leaves

were obtained periodically (through HSI in the 400–1800 nm range)

and were used to investigate the possibility of predicting root rot

infection in ginseng.
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2 Materials and methods

2.1 Plant materials, environmental
conditions, and experimental treatments

One-year-old ginseng seedlings (Panax ginseng variety

‘Chunpoong’) harvested in mid-March 2020 were provided by the

R&D headquarters of the Korea Ginseng Corporation in Daejeon. Soil

samples infected with root rot were collected from a ginseng garden in

Goesan (Chungcheongbuk-do, Republic of Korea) and divided into a

control group (120 °C, autoclaved for 20 min, 2 times) and an infected

group (not autoclaved). The seedlings were planted in these soil

samples. Each seedling was transplanted into a small pot and grown

in a growth room chamber for 5 weeks (22 ± 2 °C, 60–70% humidity,

16:8 photoperiod with 15000 Lx light intensity). At the end of the

growth period, a real-time PCR test was performed to confirm the

active state of pathogens in the soil and ginseng tissue samples Lee S.

H. (2021).
2.2 HSI system and image acquisition

In this study, two HSI systems were used in reflectance mode to

collect hyperspectral images of ginseng plants in different ranges: Vis/

NIR (400–1,000 nm) and short-wave infrared (SWIR; 1,000–2,500

nm). The other settings were the same as those used in a previous

study (Park et al., 2021).
2.3 Data extraction

The Vis/NIR and SWIR images of 96 samples (control, 53;

infected, 43) were obtained. HSI spectral data were extracted from

the leaves of ginseng plants and averaged for each leaf. The control

data consisted of 1272 (Vis/NIR) and 1326 (SWIR) images extracted

from each leaf area of ginseng leaves in the control group. The data for

the infected group included 949 (Vis/NIR) and 861 (SWIR) images.

For calibration, we included 843 (879) and 628 (558) sample images

in the Vis/NIR (SWIR) regions for the control and infected groups,

respectively. For validation, we included 429 (447) and 321 (303)

sample images in the Vis/NIR (SWIR) regions for the control and

infected groups, respectively. MATLAB (Version R2019a,

Mathworks, Natick, MA, USA) was used for data processing.
2.4 Multivariate analysis for classification

2.4.1 Partial least squares discriminant analysis
Partial least squares regression (PLSR) is a type of regression

analysis that identifies the model with the most significant

correlation between latent variables (LVs) of the input

(hyperspectral data) and output data (reference values for ginseng

plants based on exposure to control or infected soil). PLS-DA is a

modified version of PLSR and is mainly used for classification

purposes. Here, we used PLS-DA to develop a classification model

for the control and infected groups.
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2.4.2 Selection of main wavebands for
classification

The variable importance in projection (VIP) and successive

projection algorithm (SPA) methods were applied to extract the

main wavebands related to root rot infection. We applied the

combined VIP and SPA methods as an ensemble filtering

algorithm. The VIP represents the contribution of each waveband—

as determined by the optimal LVs in the PLS-DA—as a VIP score.

Wavebands with a VIP score ≥1 were determined to be the main

wavebands (Chong and Jun, 2005). The SPA was obtained in the PLS-

DA-based model, in which the main wavebands were determined

based on the VIP score. The SPA algorithm prevents collinearity and

extracts the main wavebands with minimum overlap in a multiple

linear regression model (such as PLS-DA) using reduced data

resources (Araújo et al., 2001; Soares et al., 2013).
2.5 Image processing

2.5.1 Data classification
A PLS model based on averaged spectral data is often not

applicable to the HSI threshold. This happens when there is a large

deviation between the average values and the original HSI data, when

there is some level of noise in the model (owing to a weak spectral

signal), or when there is a large deviation in the weighted values in the

PLS-DA model. To resolve this, we first applied the PLS-DA model to

the original HSI data and investigated the resultant values which are

distributed in the rage from -0.5 to 1.5 based on the frequency

distribution. The distribution of the entire classification values had

a shape similar to that of a normal distribution. Therefore, data in the

region encompassing ±2s (approximately 95.5%, based on the

median) were used in subsequent analysis, and data in the

remaining region were considered noise.

2.5.2 Image enhancement
When the sensor emits a weak signal for a specific wavelength or

when the measured intensity is weak, the HSI data may contain latent

(invisible) noise that can be visualized and removed. During image

registration using the PLS-DA model, the image for each wavelength

was multiplied by the weights of the model, following which all

images of all wavelengths were added (Mo et al., 2014). At this time,

the latent noise in the image was visualized. Most of the noise

appeared in a linear shape (similar to a notch). In addition, most of

these data points were outliers (very low or very high values) that were

unrelated to the target object and had a negative effect on identifying

patterns in the image. To resolve this, the images were improved

through selective filtering using a notch rejection filter to remove

noise generated in the SWIR region (Aizenberg and Butakoff, 2008;

Park et al., 2019).
3 Results

3.1 Root rot infection and pathogen activity

Pathogen activity was investigated to determine whether plants in

the control and infected groups were infected with Cylindrocarpon
frontiersin.org

https://doi.org/10.3389/fpls.2023.1109060
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Park et al. 10.3389/fpls.2023.1109060
destructans. Pathogen density was evaluated based on gene expression

levels using real-time PCR. Samples of infected and sterilized soil and

of ginseng root samples from plants grown in each soil type were used

for real-time PCR analysis (Table 1). The number of gene copies (SQ,

representing pathogen density) was significantly different between the

control and infected groups. This indicated a difference in pathogen

activity and confirmed that the pathogenic treatment was successful.

According to the Rural Development Administration of Korea, the

possibility of root rot infection is very high when the SQ value of the

soil is >100 Lee S. H. (2021). Our results confirmed that the

experimental treatment was effective according to this threshold.

The actual state of the root is shown in Figure 1. In the control

group, the average length of the major axis of the roots was

approximately 15 cm (Figure 1A), and the plants showed good fine

root development. However, in the infected group, the average length

of the major axis was approximately 10 cm (Figure 1B), and the plants

showed poor fine root development. Therefore, it was possible to

confirm the status of root development based on the treatment

applied to infected soil.
3.2 Spectral profile of ginseng leaves

Figure 2 shows the averaged spectral data in the Vis/NIR and

SWIR regions for ginseng leaves in the control and infected groups.

Overall, spectral intensity in the Vis/NIR and SWIR regions was

higher in the control group than in the infected group. Significant

differences appeared in the 700–900 nm range (Vis/NIR region) and

in the 1000–1300 and 1600–1700 nm ranges (SWIR region).
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3.3 Results of the PLS-DA model and
coefficients of the main wavebands

3.3.1 Vis/NIR data analysis
The main wavelengths were extracted by applying the VIP–SPA

filtering to PLS-DA, and the accuracy was summarized for total and

time series data (Table 2). The performance was evaluated based on

the classification model developed with the spectral data of the entire

period. In the VIP–SPA analysis, the Vis/NIR region showed a total

accuracy of 81.1% (Table 2a). In the weekly time series analysis

(Table 2b and Figure 3A), the Vis/NIR region showed a

discrimination accuracy of 76%, 80%, 85%, and 87% at weeks 7–10,

respectively. These results indicated a pattern of increasing accuracy

over time. The weighted area of the main wavelength included the

following 29 wavelengths (Figure 3B): 417, 502, 512, 517, 522, 526,

531, 536, 541, 550, 555, 560, 622, 627, 657, 650, 665, 674, 684, 693,

698, 708, 713, 717, 732, 736, 741, 961, and 1004 nm.

3.3.2 SWIR data analysis
In the VIP–SPA analysis, the SWIR region showed a total

accuracy of 95.3% (Table 2a). In the weekly time series analysis

(Table 2b and Figure 3C), the SWIR regions showed discrimination

accuracies of 99%, 92%, 97%, and 94% at weeks 7–10, respectively.

These results indicated that the SWIR region showed better predictive

performance than the Vis/NIR region, with >90% accuracy across

weeks. The weighted area of the main wavelength included 19

wavelengths (Figure 3D): 1001, 1012, 1018, 1036, 1112, 1118, 1159,

1194, 1200, 1217, 1277, 1288, 1300, 1359, 1371, 1412, 1417, 1441, and

1723 nm.
FIGURE 1

Comparison of root development in control and infected ginseng plants (unit: cm).
TABLE 1 SQ values in ginseng roots and soil samples infected with Cylindrocarpon destructans.

Soil Root

Control Infected Control Infected

SQ 1.80 ± 1.35 115.56 ± 61.00 0.10 ± 0.00 14.07 ± 9.54
fr
SQ: starting quantity (number of gene copies) in soil or root samples (1 g).
Controls are intact roots and soil samples without the pathogen.
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3.3.3 PLS-DA-based image analysis for detecting
fungal infection

The beta coefficients obtained from the PLS-DA (Figure 3) were

applied to the hyperspectral image, which was subsequently expressed

as a multispectral image (Figure 4). The color images (Figure 4A)

were significantly different from the multispectral images that

included data from 29 wavelength combinations in the Vis/NIR

region (Figure 4B), thus confirming differences in HSI data between

the control and infected ginseng plants. The control group did not

show any major changes across weeks, whereas the infected group

changed to a red color, indicating gradual damage due to fungal

infection (Figure 4B). These changes were most marked at the tip and

center of each leaf. The multispectral images in the SWIR region

(including 19 wavelength combinations; Figure 4C) showed some

noise. Nevertheless, there was a clear difference in color between the

control and infected groups.
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3.3.4 Biochemical interpretation of selected
wavelengths

Among the main wavelengths in Vis/NIR region, the 417 nm

band is similar to that associated with chlorophyll a content

(Kawamura et al., 2008), and the 512–560 nm bend reflects overall

chlorophyll content. Additionally, 541 and 560 nm are related to

anthocyanin absorbance (Ndisya et al., 2021). The 622–698 nm band

is known as the red region, and the 665, 684, and 708 nm wavelengths

are similar to those associated with chlorophyll a content (Thenkabail

et al., 2000). The 708–741 nm band corresponds to the red edge

region, and the 713 nm band is highly correlated with protein and

nitrogen levels. In addition, the 736 nm wavelength is associated with

OH, and 741 nm is related to CH reactions (Shenk, 1992). The 961

nm wavelength associated with an OH reaction that is close to the

region related to water and starch reactions (970 nm) (Kawamura

et al., 2008). Moreover, 512, 541, 560, 693, 713, and 741 nm are major
A B

FIGURE 2

Average spectra in the (A) Vis/NIR and (B) SWIR regions for ginseng leaves in the control and infected groups.
TABLE 2 Main wavebands in the Vis/NIR and SWIR regions, as identified by the VIP–SPA analysis of (a) all time and (b) weekly time series analysis.

Total Correct Accuracy (%)

All Con** Inf** Con Inf Con Inf Overall

(a)

Vis/NIR
Cal* 1471 843 628 730 475 86.6 75.6 81.1

Val* 750 429 321 374 242 87.2 75.4 81.3

SWIR
Cal 1467 879 558 867 563 98.6 95.7 97.2

Val 750 447 303 436 282 97.5 93.1 95.3

(b)

Vis/NIR

7 Weeks 188 107 81 99 44 92.5 54.3 76.1

8 Weeks 189 109 80 94 58 86.2 72.5 80.4

9 Weeks 190 108 82 95 67 88.0 81.7 85.3

10 Weeks 183 105 78 86 73 81.9 93.6 86.9

SWIR

7 Weeks 180 103 77 103 77 100.0 100.0 100.0

8 Weeks 177 103 74 99 64 96.1 86.5 92.1

9 Weeks 194 119 75 115 73 96.6 94.3 96.9

10 Weeks 199 122 77 119 68 97.5 88.3 94.0
fron
*Calibration and validation.
**Control and infected groups.
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A B

DC

FIGURE 3

PLS-DA results showing 29 spectral bands in the Vis/NIR region and 19 spectral bands in the SWIR region. Classification plots for validation in the (A) Vis/
NIR and (C) SWIR regions. Beta coefficients from the PLS-DA results in the (B) Vis/NIR and (D) SWIR regions.
A B C

FIGURE 4

Comparison of (A) color images and multispectral images with data from the main wavebands in the (B) Vis/NIR (29 bands) and (C) SWIR regions (19
bands).
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wavelengths that can be used to predict the total chlorophyll content

(Wang et al., 2019b).

The SWIR region contains different wavelengths related to the

organic components of plant leaves. In this study, the 1001 nm region

was related to OH, whereas the 1012, 1018, and 1036 nm regions were

related to the CH functional group. The 1018 nm region is known to be

related to proteins, and the 1036 nm region is known to be related to

oils (Shenk, 1992). The 1112–1300 nm region reflects a combination of

the CH and OH functional groups and is also related to the chemical

structure of phenolic compounds in crops (Dale et al., 2013). As such,

changes in phenolic compounds associated with wavelengths in this

regionmay indicate symptoms of infection. The 1200 nmwavelength is

related to water, cellulose, starch, and lignin, whereas 1217 nm is related

to starch (Kawamura et al., 2008). The 1359 nm region is related to CH,

1412 nm to OH, 1441 nm to sucrose and starch, and 1723 nm to the

CH functional group (similar to that of carotenoids) (Xiaobo et al.,

2010) and chlorophyll (Ji-Yong et al., 2012).
4 Discussion

Generally, exposure to abiotic and biotic stresses can induce

various changes in plants, including in factors such as

photosynthetic activity and the levels of carotenoids, anthocyanins,

moisture, and starch. These changes can be detected optically through

the analysis of spectral bands either in the Vis-NIR or SWIR region.

The main wavelength of Vis/NIR region associated with the

chlorophyll in this study was similar to those associated with high-

temperature stress in ginseng (Park et al., 2021). However, the main

wavelengths related to anthocyanins (541 and 560 nm), nitrogen and

protein (708–740 nm), and moisture and starch (961 nm) were

different from those reported previously. These results can be

confirmed by comparing the specific wavelengths related to root rot

with those related to high-temperature stress in the Vis/NIR region. In

the SWIR region of carotenoids, chlorophyll, protein, and water

wavebands were confirmed similar to those observed in the Vis/NIR

region. Similarly, the wavelengths related to starch (1217 and 1441 nm)

were the same as those related to high-temperature stress. However,

there were differences in the 1112–1300 nm range (related to phenolic

compounds) and 1723 nm (related to carotenoids and chlorophyll).

The results indicated that when ginseng is infected by root rot, the

negative effects on root development cause a decline in nutrient

absorption. It may lead to a decrease in overall photosynthetic activity

and promotes carotenoid expression. Differences in the main

components of primary and secondary metabolites—such as starch,

sucrose, glucose, and amino acids—are also expected. In addition, the

increase of phenolic compounds can be observed, which are synthesized

as a result of plant resistance to pathogen infection and disease.

In most of the cases, nutrient absorption and growth activity

decrease when plant roots are infected, and the onset of resistance

disease. The spectral patterns of ginseng leaves infected by root rot

disease could be influenced by physiological changes of the

photosynthetic activity and the levels of carotenoids, anthocyanins,

moisture, starch, and phenolic compounds. The changes could be

investigated through spectral analyses in this study.

Hyperspectral imaging technique has an advantage of being able

to detect and show biochemical changes in organisms more
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sensitively than conventional color imaging. However, the relative

high cost of the hardware and the large image data to be processed

have been a hamper for HSI technique to be used in agricultural

industry widely.
5 Conclusions

In this study, we used HSI data in the Vis/NIR and SWIR regions

(400–1800 nm) to develop a model for the early prediction of root rot

disease in ginseng. The main wavelengths were selected based on PLS-

DA supplemented by VIP–SPA analysis. In the Vis/NIR region, the

average accuracy of the model (using 29 wavelengths) was 84%, and

the accuracy increased every week over a period of four weeks. In the

SWIR region, the average accuracy of the model (using 19

wavelengths) was 95%, although we did not observe any special

patterns in these results.

The use of HSI technology allows us to observe the spectral

changes in a non-destructive manner in ginseng plant induced by root

rot disease. Further chemical analyses need to be performed for the

verification of the changes in biochemical content of the infected

ginseng plant. We expect that the techniques proposed in this study

can be used for the early prediction of root rot and other soil-borne

diseases in ginseng plants.
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Pérez-Bueno, M. L., Pineda, M., Vida, C., Fernández-Ortuño, D., Torés, J. A., de
Vicente, A., et al. (2019). Detection of white root rot in avocado trees by remote sensing.
Plant Dis. 103, 1119–1125. doi: 10.1094/PDIS-10-18-1778-RE

Reynolds, G. J., Windels, C. E., MacRae, I. v, and Laguette, S. (2012). Remote sensing
for assessing rhizoctonia crown and root rot severity in sugar beet. Plant Dis. 96, 497–505.
doi: 10.1094/PDIS-11-10-0831

Shenk, J. S., Workman, J. J. Jr., and Westerhaus, M. O. (1992) Application of NIR
spectroscopy to agricultural products. In: Handbook of Near-Infrared Analysis, Dekker
Inc., New York, pp. 383–431.

Soares, S. F. C., Gomes, A. A., Araujo, M. C. U., Galvão Filho, A. R., and Galvão, R. K.
H. (2013). The successive projections algorithm. TrAC Trends Analytical Chem. 42, 84–
98. doi: 10.1016/j.trac.2012.09.006

Thenkabail, P. S., Smith, R. B., and de Pauw, E. (2000). Hyperspectral vegetation indices
and their relationships with agricultural crop characteristics. Remote Sens Environ. 71,
158–182. doi: 10.1016/S0034-4257(99)00067-X

Thomas, S., Behmann, J., Steier, A., Kraska, T., Muller, O., Rascher, U., et al. (2018a).
Quantitative assessment of disease severity and rating of barley cultivars based on
hyperspectral imaging in a non-invasive, automated phenotyping platform. Plant
Methods 14, 1–12. doi: 10.1186/s13007-018-0313-8

Thomas, S., Kuska, M. T., Bohnenkamp, D., Brugger, A., Alisaac, E., Wahabzada, M.,
et al. (2018b). Benefits of hyperspectral imaging for plant disease detection and plant
protection: a technical perspective. J. Plant Dis. Prot. 125, 5–20. doi: 10.1007/s41348-017-
0124-6

van de Vijver, R., Mertens, K., Heungens, K., Somers, B., Nuyttens, D., Borra-Serrano,
I., et al. (2020). In-field detection of alternaria solani in potato crops using hyperspectral
imaging. Comput. Electron Agric. 168, 105106. doi: 10.1016/j.compag.2019.105106

Wang, Y., Hu, X., Jin, G., Hou, Z., Ning, J., and Zhang, Z. (2019b). Rapid prediction of
chlorophylls and carotenoids content in tea leaves under different levels of nitrogen
application based on hyperspectral imaging. J. Sci. Food Agric. 99, 1997–2004. doi:
10.1002/jsfa.9399

Wang, D., Vinson, R., Holmes, M., Seibel, G., Bechar, A., Nof, S., et al. (2019a). Early
detection of tomato spotted wilt virus by hyperspectral imaging and outlier removal
auxiliary classifier generative adversarial nets (OR-AC-GAN). Sci. Rep. 9, 1–14. doi:
10.1038/s41598-019-40066-y

Xiaobo, Z., Jiewen, Z., Hanpin, M., Jiyong, S., Xiaopin, Y., and Yanxiao, L. (2010). Genetic
algorithm interval partial least squares regression combined successive projections algorithm
for variable selection in near-infrared quantitative analysis of pigment in cucumber leaves.
Appl. Spectrosc 64, 786–794. doi: 10.1366/000370210791666246
frontiersin.org

https://doi.org/10.1007/s11119-019-09703-4
https://doi.org/10.1007/s11119-019-09703-4
https://doi.org/10.1016/j.biosystemseng.2020.07.001
https://doi.org/10.1016/j.biosystemseng.2020.07.001
https://doi.org/10.1016/j.imavis.2007.08.011
https://doi.org/10.1016/j.imavis.2007.08.011
https://doi.org/10.1007/s10658-018-1505-9
https://doi.org/10.1016/S0169-7439(01)00119-8
https://doi.org/doi: 10.23076/jgc.2022.4.001
https://doi.org/10.1007/s41348-020-00344-8
https://doi.org/10.1080/07352681003617285
https://doi.org/10.1080/07352681003617285
https://doi.org/10.3390/rs13132436
https://doi.org/10.1016/j.rse.2013.07.031
https://doi.org/10.1016/j.compag.2018.12.036
https://doi.org/10.1016/j.chemolab.2004.12.011
https://doi.org/10.1016/j.talanta.2013.05.006
https://doi.org/10.1016/j.jgr.2017.01.004
https://doi.org/10.1016/j.jgr.2017.01.004
https://doi.org/10.1016/j.infrared.2022.104040
https://doi.org/10.4489/MYCO.2010.38.1.033
https://doi.org/10.1016/j.scienta.2012.02.024
https://doi.org/10.1111/j.1744-697X.2008.00116.x
https://doi.org/10.1111/j.1744-697X.2008.00116.x
https://doi.org/10.1080/0143116031000139926
https://doi.org/10.1080/0143116031000139926
https://doi.org/10.21273/HORTTECH.5.1.27
https://doi.org/10.3390/s140407489
https://doi.org/10.1186/s13007-019-0479-8
https://doi.org/10.1186/s13007-019-0479-8
https://doi.org/10.3390/pr9101804
https://doi.org/10.3390/s21165634
https://doi.org/10.1016/j.snb.2018.10.109
https://doi.org/10.1094/PDIS-10-18-1778-RE
https://doi.org/10.1094/PDIS-11-10-0831
https://doi.org/10.1016/j.trac.2012.09.006
https://doi.org/10.1016/S0034-4257(99)00067-X
https://doi.org/10.1186/s13007-018-0313-8
https://doi.org/10.1007/s41348-017-0124-6
https://doi.org/10.1007/s41348-017-0124-6
https://doi.org/10.1016/j.compag.2019.105106
https://doi.org/10.1002/jsfa.9399
https://doi.org/10.1038/s41598-019-40066-y
https://doi.org/10.1366/000370210791666246
https://doi.org/10.3389/fpls.2023.1109060
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Park et al. 10.3389/fpls.2023.1109060
Young Sook, K., Myeong Seok, L., Ji Hee, Y., Ja Gyeong, S., In Kyoung, L.,
Woon Hyung, Y., et al. (2012). Screening of antagonistic bacteria for biological
control of ginseng root rot. Korean J. Mycology 40, 44–48. doi: 10.4489/KJM.
2012.40.1.044
Frontiers in Plant Science 09
Zhang, X., Han, L., Dong, Y., Shi, Y., Huang, W., Han, L., et al. (2019). A deep
learning-based approach for automated yellow rust disease detection from high-
resolution hyperspectral UAV images. Remote Sens (Basel) 11, 1554. doi: 10.3390/
rs11131554
frontiersin.org

https://doi.org/10.4489/KJM.2012.40.1.044
https://doi.org/10.4489/KJM.2012.40.1.044
https://doi.org/10.3390/rs11131554
https://doi.org/10.3390/rs11131554
https://doi.org/10.3389/fpls.2023.1109060
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	Hyperspectral reflectance imaging for nondestructive evaluation of root rot in Korean ginseng (Panax ginseng Meyer)
	1 Introduction
	2 Materials and methods
	2.1 Plant materials, environmental conditions, and experimental treatments
	2.2 HSI system and image acquisition
	2.3 Data extraction
	2.4 Multivariate analysis for classification
	2.4.1 Partial least squares discriminant analysis
	2.4.2 Selection of main wavebands for classification

	2.5 Image processing
	2.5.1 Data classification
	2.5.2 Image enhancement


	3 Results
	3.1 Root rot infection and pathogen activity
	3.2 Spectral profile of ginseng leaves
	3.3 Results of the PLS-DA model and coefficients of the main wavebands
	3.3.1 Vis/NIR data analysis
	3.3.2 SWIR data analysis
	3.3.3 PLS-DA-based image analysis for detecting fungal infection
	3.3.4 Biochemical interpretation of selected wavelengths


	4 Discussion
	5 Conclusions
	Data availability statement
	Author contributions
	Funding
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


