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IA, United States, 3Department of Electrical Engineering, Iowa State University, Ames, IA, United
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Introduction: Computer vision and deep learning (DL) techniques have

succeeded in a wide range of diverse fields. Recently, these techniques have

been successfully deployed in plant science applications to address food

security, productivity, and environmental sustainability problems for a growing

global population. However, training these DL models often necessitates the

large-scale manual annotation of data which frequently becomes a tedious and

time-and-resource- intensive process. Recent advances in self-supervised

learning (SSL) methods have proven instrumental in overcoming these

obstacles, using purely unlabeled datasets to pre-train DL models.

Methods: Here, we implement the popular self-supervised contrastive learning

methods of NNCLR Nearest neighbor Contrastive Learning of visual

Representations) and SimCLR (Simple framework for Contrastive Learning of

visual Representations) for the classification of spatial orientation and

segmentation of embryos of maize kernels. Maize kernels are imaged using a

commercial high-throughput imaging system. This image data is often used in

multiple downstream applications across both production and breeding

applications, for instance, sorting for oil content based on segmenting and

quantifying the scutellum’s size and for classifying haploid and diploid kernels.

Results and discussion: We show that in both classification and segmentation

problems, SSL techniques outperform their purely supervised transfer learning-

based counterparts and are significantly more annotation efficient. Additionally,

we show that a single SSL pre-trained model can be efficiently finetuned for both

classification and segmentation, indicating good transferability across multiple

downstream applications. Segmentation models with SSL-pretrained backbones

produce DICE similarity coefficients of 0.81, higher than the 0.78 and 0.73 of
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those with ImageNet-pretrained and randomly initialized backbones, respectively.

We observe that finetuning classification and segmentation models on as little as

1% annotation produces competitive results. These results show SSL provides a

meaningful step forward in data efficiency with agricultural deep learning and

computer vision.
KEYWORDS

self-supervised, classification, embryo identification, segmentation, high-
throughput sorting
1 Introduction

Deep learning (DL) for computer vision applications has

recently become a boon to innovations in agricultural efficiency.

These methods have transformed how we extract various

agronomically relevant plant traits under laboratory and field

conditions (Fahlgren et al., 2015; Ubbens and Stavness, 2017;

Singh et al., 2018; Guo et al., 2021). Automatically and rapidly

extracting plant traits can be a game-changer in terms of reducing

food costs and improving production efficiencies, improving

sustainability by reducing waste, and providing a better

understanding of adapting crops for climate change. Deep

learning methods have been used in various agricultural

applications to identify, classify, quantify, and predict traits

(Mohanty et al., 2016; Naik et al., 2017; Pound et al., 2017;

Dobrescu et al., 2019; Jubery et al., 2021). With the availability of

high-throughput data acquisition tools that produce large amounts

of good-quality data, the major bottleneck in deploying DL-based

computer vision tools is the need for large amounts of labeled data

to train these DL models. Data annotation or labeling is the main

development barrier to building high-quality DL models, especially

since labeling the raw data often requires domain experts to

annotate images. Data annotation by an expert with domain-

specific knowledge is a tedious and expensive task. The DL

community is exploring various strategies to break this

dependency on a large quantity of annotated data to train DL

models in a label-efficient manner, including approaches like active

learning (Nagasubramanian et al., 2021), transfer learning (Jiang

and Li, 2020), weakly supervised learning (Ghosal et al., 2019;

Körschens et al., 2021) and the more recent advances in self-

supervised learning (Jing and Tian, 2020; Marin Zapata et al.,

2021; Nagasubramanian et al., 2022). Transfer learning has been

widely utilized in plant phenomics applications for classification

and segmentation tasks (Wang et al., 2019; Kattenborn et al., 2021).

Recently, self-supervised learning has been applied to improve

classification and segmentation models (Güldenring and

Nalpantidis, 2021; Nagasubramanian et al., 2022; Lin et al., 2023).

In this work, we focus on deploying self-supervised learning

approaches to the problem of characterizing maize kernels that

are imaged in a commercial high-throughput seed imaging system

[Qsorter technologies (QualySense)]. We consider two vision tasks
02
– first, identify if the maize kernels are correctly oriented for

downstream analysis (a classification task), and second, segment

out the kernel scutellum from the correctly oriented seeds (a

segmentation task).

The ability to accurately and efficiently segment maize kernel

scutellum has significant utility for both production and breeding

application. Maize oil (corn oil) is extracted from corn kernels

through milling (Paulsen and Hill, 1985). Milling processes are

integrated into the production of corn starch, sugar, syrup, alcohol,

and byproducts like gluten feed, along with corn oil. Of the 1.1

billion metric tons of corn produced annually around the world,

over 3.5 million are used for oil production (Ward and Singh, 2002;

Lee et al., 2021). Almost all oil is found in the embryo of the kernel

(Paulsen and Hill, 1985). The ability to sort seeds for embryo/

scutellum size is a significant value addition. Similarly, the non-

destructive sorting of single seeds based on oil content (OC) has

been shown to be useful for early-generation screening to improve

the efficiency of breeding (Silvela et al., 1989; Xu et al., 2019) and for

haploid selection in an oil-inducer-based doubled haploid breeding

program (Chaikam et al., 2019; Aboobucker et al., 2022). Over the

past few years, nuclear magnetic resonance (NMR) (Melchinger

et al., 2017; Yang et al., 2018), fluorescence imaging (Boote et al.,

2016), near-infrared (NIR) reflectance spectroscopy (Jiang et al.,

2007; Armstrong et al., 2011; Jones et al., 2012; Gustin et al., 2020),

hyperspectral imaging (Weinstock et al., 2006), and line-scan

Raman hyperspectral imaging (Liu et al., 2022) have been

developed to measure or predict oil content. However, these

methods and tools are expensive. On the other hand, sorting

based on NIR reflectance is less costly, has been around for a

long time (McClure, 2003; Halcro et al., 2020), and has worked well

to predict protein and starch content. However, using those tools to

measure OC is not easy because the position of the embryo/

scutellum to the camera/light source (Spielbauer et al., 2009)

strongly affects OC measurements of single seeds, which leads to

significant standard errors. Several currently available NIR spectra-

based high throughput single seed sorting devices capture RGB

images of the seed along with the NIR spectrum (QualySense;

Satake-USA). These images can be used to identify the correctly

orientated seed and quantify the relative size of the embryo to the

seed, which, coupled with the NIR spectrum, could be used to

improve the prediction of OC.
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This work aims to design an end-to-end DL framework that

classifies kernels based on their orientation and segments the

embryos of correctly oriented kernels. Accurately performing

these steps will allow us to, in the future, predict corn OC with

high accuracy. Figure 1 illustrates this pipeline. A challenge in

accomplishing this goal is that DL techniques often rely on having

access to large datasets of annotated images for successful training

results. This problem motivates our approach of using self-

supervised contrastive. The self-supervised pretraining procedure

automatically uses unlabeled data to generate pretrained labels

(Misra and Maaten, 2020). It does so by solving a pretext task

suited for learning representations, which in computer vision

typically consists of learning invariance to image augmentations

like rotation and color transforms, producing feature

representations that ideally can be easily adapted for use in a

downstream task. After obtaining this pre-trained model, we

apply standard DL to finetune the model with a smaller labeled

dataset. The smaller labeled dataset is used to reduce the effect of

possible inaccuracies in the pseudo-labels from the self-supervised

task (Zhai et al., 2019). The orientation of corn kernels must

maintain consistency between measurements and be oriented to

fully display the embryo. The goal of the segmentation problem is

then to identify the embryo amidst the background and the rest of

each kernel.

Our contributions in this paper are 1) the creation of an end-to-

end DL pipeline for kernel classification and segmentation,

facilitating downstream applications in OC prediction, 2) to

assess capabilities of self-supervised learning regarding annotation

efficiency, and 3) illustrating the ability of self-supervised

pretraining to create models that can be finetuned for diverse
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downstream applications. Beyond the direct application of the

classification and segmentation capabilities of the learned

representations, using self-supervised techniques, in general, could

accelerate the development of computer vision techniques for ag

applications, skipping several stages of arduous and time-

consuming data collection.
2 Materials and methods

2.1 Dataset

2.1.1 Dataset for classification by imaging
orientation

The classification dataset consists of 44,286 RGB 492-pixel by

240-pixel images of maize kernels of various accessions taken using

the RGB imaging tools of QSorter. Of these, 2697 were manually

labeled into two classes: “oriented” and “non-oriented.” Kernels

that belong to the “oriented” class were deemed appropriate for

calculating internal OC within the embryo/germ center of corn

kernels. This determination was based on the requirement that the

visible embryo is parallel to the camera’s plane.

In a typical downstream application, this visual information

provided by image segmentation would be combined with data

from the hyperspectral imaging sensor provided by QSorter, but

with such a sensor having its field of view limited to only the middle

pane. However, the other two panes still provide useful visual

information for our classification models since the determination

of the orientation of any particular kernel is not limited to only the

frontal view of the kernel. Figure 2A shows oriented kernels, noting
FIGURE 1

End-to-end pipeline for corn kernel classification and segmentation. The curved arrow shows the middle pane being processed for the
segmentation task. We show that the classification and segmentation models perform bets with self-supervised weights.
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the lighter portion visible in each middle pane, which is the corn

embryo’s visible part. Figure 2B shows non-oriented kernels in

which the embryos are not visible or only partially visible.

2.1.2 Dataset for embryo segmentation
The embryo segmentation dataset consists of only 401 RGB

images of corn kernels, taken from the same source of QSorter

images as in the classification dataset above, along with their

respective binary masks. Thus, the 2D image shapes were again

492 x 240. Segmentation (into the binary mask) distinguishes

between the embryo and the rest of the background (including

the non-embryo portion of the kernel). Figure 3 illustrates the

segmentation annotation process for an RGB image and its mask.

The three frames of each original (492, 240) dataset image were split

into three individual images and downsampled to (128, 128). All

completely negative masks and their respective RGB images were

then removed.
2.2 SSL pretraining

2.2.1 Methods overview
The contrastive learning framework is a self-supervised learning

method that maximizes the similarity between representations of an

image and the augmented version of an image while minimizing the
Frontiers in Plant Science 04
similarity between an image and other images (Zhao et al., 2021).

The two models used for self-supervised pretraining were SimCLR

(Simple Framework for Contrastive Learning of Visual

Representations) (Chakraborty et al., 2020) and NNCLR

(Near e s t -Ne ighbor Con t r a s t i v e Lea rn ing o f V i sua l

Representations) (Dwibedi et al., 2021). Figure S1 shows these

two models superimposed on the same diagram.

SimCLR trains a backbone used for downstream processes by

considering the contrastive loss of the representations of two

distinct augmentations of images extracted from any given batch.

If the initial images are the same, the pair of representations is

considered a positive pair for the final calculation, and if the views

are augmentations of two distinct images in the batch, then it is

considered a negative pair. The representations are created by

taking each augmented view of the initial image along a path

including two networks: a base encoder where the desired

backbone resides and a final projection head to calculate the

contrastive loss of the representation in a separate space. NNCLR

is also a contrastive model but differs from SimCLR in that upon

taking both views of a given image through an encoder; the nearest

neighbor algorithm is used to sample dataset representations for

one of the views from a subset of the initial dataset. These are

treated as the analog of the positive pairs described in the SimCLR

model. Negative pairs are then the nearest neighbors of distinct

initial images. Both architectures use the same InfoNCE loss to
BA

FIGURE 3

Preprocessing for segmentation consists of splitting each dataset image into three 128 x 128 images. Completely negative masks were excluded.
(A) Preprocessing of RGB image. (B) Preprocessing of the mask.
BA

FIGURE 2

Images classified as “oriented” with the embryo visible (A) and “non-oriented” with the embryo not visible (B).
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maximize agreement, a loss function using categorical cross-

entropy to maximize agreement with positive samples, commonly

used in self-supervised learning (Song and Ermon, 2020). To

evaluate the performance of the pretrained models, a linear probe

— separate from the non-linear projection head included in both

models — was attached directly to the encoder and was weight-

updated at each step. The backbone and probe were then extracted

to calculate validation accuracy for model selection.

2.2.2 Contrastive data augmentation
In many supervised image processing and computer vision

tasks, data augmentation is used for the dual purposes of

increasing the size of a labeled dataset through synthetic means

and improving the diversity of a dataset. For purely supervised

purposes, data augmentation can synthetically multiply the

dataset’s size by altering existing data and increasing the diversity

of data to generalize the training set better (Wang and Perez, 2017).

Contrastive learning uses heavier image augmentations than would

normally be supplied to purely supervised training (Xie et al., 2020).

This is due to the reliance of contrastive learning on using

augmentations as a model for learning invariance to “style”

changes, while the “content” component of a representation

remains invariant (Doersch et al., 2015). Thus, heavy stylistic

changes should generally benefit the learned representations.

The data augmentations used for our pretraining process were

derived from the recommended augmentations particular to

SimCLR, consisting of random zoom, random flip, color jitter,

and Gaussian noise. NNCLR is less dependent in its performance

than SimCLR on the precise type and magnitude of data

augmentations used in training; indeed, upon applying

augmentations to NNCLR pretraining similar to the full set

recommended for SimCLR produced only a 1.6% performance

improvement when compared to using only random crop

(Dwibedi et al., 2021).

2.2.3 Pretraining setup
Hyperparameter sweeping during pretraining consisted of the

variation of the contrastive learning rate, the type of weight

initialization applied to the ResNet50 backbone, and data

augmentation strength. The learning rate was chosen between 1e-

3 and 1e-4, coupling the contrastive learning rate with the

classification learning rate of the linear probe. Weight

initialization was chosen between ImageNet and random

initialization. The data augmentation strength of each

augmentation was varied together and explained below. Thus,

eight runs were processed for each sweep, and each sweep was

repeated three times to ensure precision.
2.3 Classification

2.3.1 Data split
Of the 2697 images manually classified from the unlabeled

dataset, there were 1300 oriented images and 1367 non-oriented
Frontiers in Plant Science 05
images. Of the labeled images, 1697 were used for training, with an

800:897 class split in favor of non-oriented images. The rest were

divided between validation and testing and were split evenly

between the classes. So, 500 images were allocated to each set,

with 250 images in each class. During pretraining, the images

allocated to the validation and testing were separated from the

unlabeled dataset used for contrastive learning, while the labeled

training dataset was included, such that 43,286 out of the 44286

total images were used for unlabeled contrastive learning.

2.3.2 Training setup
The training process was set up to facilitate comparison

between different models after undergoing end-to-end finetuning.

Only ResNet50 was used for the backbones, as is standard in self-

supervised model evaluation and as was used in both the NNCLR

and SimCLR original papers (Chakraborty et al., 2020; Dwibedi

et al., 2021; Shafiq and Gu, 2022). Two backbones for the end-to-

end process were chosen from a pretraining sweep with the

mentioned self-supervised contrastive architectures, and one

backbone was initialized with ImageNet weights.

Data augmentation strength was defined separately for each

particular augmentation depending on its configuration specifics:

Random zoom acted by cropping to a single rectangle with its shape

uniformly chosen between a maximum area of the initial 128x128

2D image shape and a minimum area of either 25% or 75% of the

maximum area. Brightness and color transform was accomplished

first by taking an identity matrix multiplied by the chosen

brightness factor, then adding a matrix with uniformly chosen

values selected between the jitter factor and its negative, and

secondly by multiplying the original dataset image by this matrix.

Brightness jitter increased the brightness of the image by either 50%

or 75%, and the jitter factor was either 0.3 or 0.45. Gaussian noise

was applied with a standard deviation of either 0.1 or 1.5. The only

augmentation kept constant was random flip, constantly at 50%

activation chance. Upon evaluation, the two chosen models from

this pretraining sweep process—corresponding to the top-left-most

two light-green boxes in Figure S2—were backbones pretrained by

NNCLR with random initialization at LR = 1e-3 and SimCLR with

ImageNet initialization at LR = 1e-3.

2.3.3 Feature extraction and finetuning
During training, separate trials were performed for each

proportion of annotated data used in classification (1%, 10%,

25%, 100%). As in pretraining, each trial was repeated three

times. With 1% and 10% data, a batch size of 4 was used; for 25%

data, a batch size of 32 was used; and for 100% data, a batch size of

128 was used. During feature extraction, first, the ResNet-50

backbone from each initialization method was frozen to weight

updates, upon which a trainable one-node classifier was constructed

with sigmoid activation. Each classifier in every trial was trained for

300 epochs. In finetuning, the backbone was unfrozen, and the

entire model was trained for 400 epochs. The same learning rate

schedule was used in both phases at the fixed schedule of a 0.5

multiplier every 50 epochs. This process is illustrated in Figure 4.
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2.4 Segmentation

Semantic segmentation is a pixel-level classification problem

where the goal is to assign a class label to each pixel of the image.

Semantic segmentation of the classified images with the model

created above is its natural downstream application. In doing so, full

utilization of the QSorter pipeline can be achieved, where along

with the immediate results of seed embryo pixel identification, these

results can be combined with hyperspectral imaging data in a
Frontiers in Plant Science 06
simple regression problem to pair results in segmentation with

results in direct imaging.

2.4.1 Evaluation metrics
The Sørensen–Dice coefficient, also known as the Dice

Similarity Coefficient (DSC), is a metric often used in

segmentation tasks to evaluate the spatial overlap between two

image masks (Taha and Hanbury, 2015). It is given by the equation

below:
FIGURE 5

U-Net with ResNet50 backbone using filters of channel dimensions [64, 128, 256, 512].
FIGURE 4

Training process. With each sweep over hyperparameters, the best model is chosen for the next round.
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Dice(y1
!, y2

!) =
2y1
! · y2

!
y1
! + y2

! (1)

Here, y1
! and y2

! are the mask tensors flattened to one

dimension. In statistical validation for computer vision tasks,

DSC is often preferred over the pixel accuracy metric because

DSC ignores true negatives, and pixel classes are often heavily

biased toward the (negative) background, especially in binary

semantic segmentation.

2.4.2 Model details
U-Net is a convolutional neural network commonly used for

semantic segmentation tasks (Zunair and Hamza, 2021). It consists of

a symmetric encoder-decoder pair, where the encoder down-samples

while increasing the number of channels until a bottleneck tensor,

from which the decoder up-samples while reducing the number of

channels. For the segmentation task, we used U-Net with ResNet50

used as the encoder to both utilize and compare the self-supervised

weights learned during the classification phase, as has been

implemented in the literature to considerable advantage (Siddique

et al., 2021). In this architecture, the encoder and decoder are not

symmetric, as opposed to standard U-Net without a backbone, but

skip connections are still fully implemented by limiting the depth of

the encoder. Figure 5 shows a U-Net with a ResNet50 as its encoder

and four sets of multi-channel feature maps.

2.4.3 Data augmentation
Data augmentation was applied to each training batch to

increase the set of distinct training images and to reduce

overfitting. Augmentations were coupled between any RGB image

and its mask. All augmentations were executed with a 50%

application chance. These consisted of combinations of the

following: 1) horizontal flip across the vertical middle axis, 2)

paired brightness and contrast transform with an application

factor uniformly selected from [-0.2, 0.2], and 3) paired scaling

and shearing affine transform, the scaling factor uniformly selected

from [0.75, 1] and the shear angle uniformly selected from [-p/6, p/
6]. Figure S3 shows an example of an augmented image-mask pair.
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2.4.4 Training process
Due to the smaller size of the segmentation dataset compared to

the classification dataset, ten-fold cross-validation was performed.

Using ten folds, ten models were created separately for each

backbone and each set of hyperparameters, repeated for each of

the three weight initialization types, each trained on a train/

validation split of 288/32. With every ten folds, the highest

average Dice score across all ten was collected. A model with this

set of best-performing hyperparameters was trained on all training

data without a validation set for 300 epochs. This model was then

evaluated on the full test set. Figure S4 illustrates the cross-

validation process. Training and experiments were completed

using Google Colab with NVIDIA Tesla T4 and K80 GPUs on 32

GB RAM.
3 Results and discussion

3.1 Classification results

3.1.1 Feature extraction evaluation
We first illustrate the impact of SSL pretraining on annotation

efficiency, especially when compared with standard supervised

approaches. Figure 6 compares the results of the classifier at

various % of training data using a standard supervised loss vs

both SimCLR and NNCLR. After feature extraction, (before end-to-

end finetuning), both SimCLR and NNCLR were more annotation-

efficient and performed better than purely transfer learning-based

methods. Listing test results from greatest to least utilization of total

available annotated data, the NNCLR-pretrained model had

accuracies of 83.6%, 83.2%, 82.0%, and 76.2%; the SimCLR-

pretrained model had accuracies of 83.0%, 82.6%, 81.4%, and

78.6%; and the ImageNet-initialized model had accuracies of

82.6%, 81.2%, 77.2%, and 74.6%. At every annotation percentage,

the self-supervised models outperformed the ImageNet-based

model, with the largest difference at 10% annotation, where the

NNCLR-pretrained model outperformed the ImageNet-based

model by 4.8%.
FIGURE 6

Feature extraction classification accuracy versus percentage of training samples for three types of weight initializations.
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3.1.2 Finetuning evaluation
After end-to-end finetuning, both SimCLR and NNCLR were

more annotation-efficient and performed better than purely transfer

learning-based methods, as shown in Figure 7. Listing test results

from greatest to least utilization of total available annotated data,

the NNCLR-pretrained model had accuracies of 85.6%, 83.8%,

81.6%, and 80.2%; the SimCLR-pretrained model had accuracies

of 85.2%, 84.0%, 81.4%, and 81.8%; and the ImageNet-initialized

model had accuracies of 84.0%, 81.4%, 77.2%, and 76.8%. At every

annotation percentage, the self-supervised models outperformed all

other models, with the largest difference at 1% annotation, where

the SimCLR-pretrained model outperformed the ImageNet-based

model by 5.0%. Furthermore, at just 1% annotation, SimCLR out-

performs the ImageNet-initialized model at 25% annotation. At just

10% annotation, NNCLR also out-performs the ImageNet-

initialized model at 25% annotation. We remind the reader that

the total available annotated data is only around 5% of the total data

(2697 annotated images out of 44,286 total images). SSL pretraining

provides a significant boost in model performance, especially at very

low total annotated data availability; for instance, a 10% usage of

annotated data represents just 270 annotated images!
3.2 Comparisons

Models pretrained with contrastive SSL outperformed transfer

learning models in every trial and between all data splits. Table 1

shows the performances of each model compared to the ImageNet-

pretrained model. The results of the SimCLR and NNCLR
Frontiers in Plant Science 08
pretrained models outperforming the transfer learning model and

being more annotation efficient are clear. The performances of

NNCLR and SimCLR were similar to each other among the four

annotation percentages, but in training on the full dataset, NNCLR

performed slightly better, while SimCLR was more efficient at the

lowest data split.
3.3 Segmentation results

Figure 8 shows the test dataset evaluation results after the best

models were selected and then finetuned, according to data from the

previous three tables. It also shows the validation statistics and

hyperparameter set for the chosen model. In Supplementary

Information, Table S1 shows the averaged results from 10-fold

cross-validation on U-Net with a ResNet50 backbone from weights

pretrained with SimCLR, pretrained with NNCLR, and pretrained

from ImageNet. Table S2 shows the selected models ’

hyperparameter set. The U-Net with a SimCLR-pretrained

backbone trained at 1e-04 LR and four encoder-decoder filters

performed best, with a test DICE score of 0.81 compared to an

ImageNet-pretrained backbone at 0.78 DICE score.

The results from this section have a twofold implication: 1) they

show U-Net with a backbone loaded with self-supervised pretrained

weights can perform well, producing ~0.81 Dice score, and 2) they

show semantic segmentation with these backbones outperform

those pre-trained with ImageNet. Figure 9 displays three

representative results from the segmentation model, including the

predicted mask, the true mask, and the input RGB image.
TABLE 1 Relative performance by the accuracy of SimCLR-pretrained and NNCLR-pretrained models as compared to ImageNet preloaded model.

Pretraining
Percentage annotated data used

1% 10% 25% 100%

SimCLR +3.4% +4.2% +2.6% +1.2%

NNCLR +5.0% +4.4% +2.4% +1.4%
front
Each entry represents a performance gap in Figure 9. Available annotated dataset size is 2697.
FIGURE 7

Classification accuracy versus percentage of training samples for three types of weight initializations.
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3.4 Advantages and limitations

In Section 3.1.1, we showed that a SimCLR-pretrained classifier

that has gone through end-to-end finetuning out-performs an

ImageNet-initialized classifier which uses 96% more annotated

training data – the 1% annotation used by a SimCLR-pretrained

model resulting in higher accuracy than the 25% annotation used

by an ImageNet-initialized model. This is a clear example of

the advantage of self-supervised contrastive methods in terms

of both human-annotated data efficiency and accuracy. Not

only does this curtail the time, labor, and resource-intensive

process of annotation as described in the Introduction, but

several other by-products of human annotation. For instance,

label noise, data bias, the need for domain experts, and imperfect

datasets in general are often inevitable with the use of large amounts

of annotated data.
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Other self-supervised methods have also been developed for

computer vision tasks. Our experiments with non-contrastive

methods such as SimSiam (Chen and He, 2021) turned out to be

examples of the well-known faults of model collapse in non-

contrastive self-supervised methods, with models consistently

predicting uniform classes, reaching binary classification

accuracies of no greater than 55%. We suggest that non-

contrastive methods are particularly susceptible to collapse when

applied to datasets with relatively homogenous feature spaces such

as the applied corn kernel dataset. Furthermore, methods like

inpainting (Pathak et al., 2016) have been shown to have poor

performance in many applications compared to image

augmentation-based methods. Thus, contrastive self-supervised

methods which use pretext tasks similar to those of the strong

augmentations we applied are particularly suited for processing

plant datasets of little species or orientation variation.
B

A

FIGURE 8

Loss and Dice scores for best hyperparameter sets for each weight initialization type. (A) Test set results, (B) Validation set results.
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Although we have found improved performance in applying

self-supervised pretraining with all tasks, we expect monotone

improvement in fine-tuned performance for classification and

segmentation by increasing the size of unlabeled dataset. The

clear advantage in relying on pretrained models is that procuring

such data is far easier than with similar amounts of labeled data, as

would be needed to improve purely supervised classification

accuracy. Finally, we expect that such methods to be easily

applied to, and very useful to a broad range of plant phenotyping

applications. Recent examples of successful applications of such SSL

training strategies include disease classification (Nagasubramanian

et al., 2022) and insect detection (Kar et al., 2021).
4 Conclusion

From training contrastive learning models and comparing them

with purely supervised and transfer learning methods, we found

that self-supervised learning produces successful representations of
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an agricultural dataset applicable for downstream applications. We

showed that NNCLR and SimCLR methods performed significantly

better than their supervised counterparts, especially for the

classification problem. These results also support the usage of

strong augmentations in contrastive learning—far stronger than

in end-to-end finetuning. In segmentation, self-supervised methods

significantly improved over ImageNet pretraining, resulting in

accurate masking capabilities and relative embryo size calculation.

The combined results further show the transferable nature of self-

supervised training. In particular, we illustrated that a single SSL-

pretrained model (ResNet50 backbone) could be finetuned and

used for two distinct downstream tasks – classification and

segmentation. Furthermore, SSL pretraining allowed us to train

models with very competitive performance even with very low

amounts of total annotated data, for instance, with less than 1%

(~400 out of 44000 total images) of annotation. Thus, we have

demonstrated that self-supervised learning provides a meaningful

path forward in advancing agricultural efficiency with computer

vision and machine learning.
FIGURE 9

Three representative rows of segmentation inputs and outputs. The first column shows the predicted mask, the second shows the true mask, and
the third shows the RGB input image.
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