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Applying network and
genetic analysis to the
potato metabolome

Anna V. Levina1, Owen A. Hoekenga2, Mikhail Gordin3,
Corey Broeckling4 and Walter S. De Jong1*

1School of Integrative Plant Science, Cornell University, Ithaca, NY, United States, 2Cayuga Genetics
Consulting Group LLC, Ithaca, NY, United States, 3Department of Mechanical Engineering, Penn State
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Compositional traits in potato [Solanum tuberosum L.] are economically

important but genetically complex, often controlled by many loci of small

effect; new methods need to be developed to accelerate analysis and

improvement of such traits, like chip quality. In this study, we used network

analysis to organize hundreds of metabolic features detected by mass

spectrometry into groups, as a precursor to genetic analysis. 981 features

were condensed into 44 modules; module eigenvalues were used for genetic

mapping and correlation analysis with phenotype data collected by the

Solanaceae Coordinated Agricultural Project. Half of the modules were

associated with at least one SNP according to GWAS; 11 of those modules

were also significantly correlated with chip color. Within those modules

features associated with chipping provide potential targets for selection in

addition to selection for reduced glucose. Loci associated with module

eigenvalues were not evenly distributed throughout the genome but were

instead clustered on chromosomes 3, 7, and 8. Comparison of GWAS on

single features and modules of clustered features often identified the same

SNPs. However, features with related chemistries (for example, glycoalkaloids

with precursor/product relationships) were not found to be near neighbors in

the network analysis and did not share common SNPs from GWAS. Instead,

the features within modules were often structurally disparate, suggesting that

linkage disequilibrium complicates network analyses in potato. This result is

consistent with recent genomic studies of potato showing that chromosomal

rearrangements that create barriers to recombination are common in

cultivated germplasm.

KEYWORDS

potato, network analysis, WGCNA (weighted gene co- expression network analyses),
metabolome, GWAS - genome-wide association study, linkage disequiblibrium
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1 Introduction

The dissection and improvement of traits related to plant

composition is a challenging process and often requires a

combination of genetic and mathematical methods. Plant

composi t ion can be influenced by both genet ic and

environmental factors and is a substantial determinant of end-

product use and can therefore determine the economic value of a

specific crop. Unfortunately, the genetic bases for nutritional

quality, flavor, and appearance are often complex (Tieman et al.,

2017). Nutritional quality and flavor result from the interplay

between known and yet unknown compounds such that taking a

holistic view of the metabolome is often appropriate. To use large

and complex metabolomic datasets efficiently and effectively,

methods that allow for the data to be organized, analyzed and

visualized are important so investigators can recognize patterns that

potentially underlie biological processes and then make plans to test

subsequent hypotheses.

Weighted Gene Correlation Network Analysis (WGCNA)

provides one means of analyzing the large datasets that result

from expression studies of genes or metabolites via organizing a

large set of features into a smaller, more manageable number of

‘modules’ or groups (Zhang and Horvath, 2005). By estimating the

relationships between all features measured, some of the statistical

power lost from the multiple testing problem is regained while also

enhancing the possibility of identifying patterns that exist within

the dataset (DiLeo et al., 2011). Modules can be summarized with

eigenvalues which represent the first principal component of the

module. This allows for correlations to be drawn between modules

and phenotypic or genotypic data so that new hypotheses can be

generated (Langfelder and Horvath, 2008). In one early use case,

WGCNA was used to relate gene expression in the liver with mouse

body weight (Ghazalpour et al., 2006). Microarray data (3421 genes)

collected from an F2 population with 135 mice were condensed into

12 modules; eigenvalues for modules were found to be highly

correlated with 22 phenotypic traits including body weight.

Eigenvalues for one module associated with body weight mapped

to nine genomic regions; one of these regions harbored three

candidate genes for body weight identified in an independent

experiment (Ghazalpour et al., 2005). WGCNA has also been

used to build networks from metabolomic datasets in tomato and

maize (DiLeo et al., 2011; Shen et al., 2013; DiLeo et al., 2014). The

metabolite network in tomato revealed clustering of biochemically

similar metabolites into distinct modules, which allowed for

identification of unknown metabolites due to “guilt by

association” between features in the same modules (DiLeo et al.,

2014). Previous work in tomato also allowed for differentiation

between ripe and unripe tomatoes by modules (DiLeo et al., 2011).

In maize grain, (Shen et al., 2013) found a significant association

between modules summarizing aspects of the grain metabolome

and kernel weight, a major component of grain yield.

In the United States mean potato consumption of potatoes is

50 kg person-1 year-1 (FAOSTAT, 2013), with approximately 70%

consumed as french fries and chips and 30% consumed fresh (NPC,

2018). Since the mid-1970s the Cornell potato breeding program
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has focused on improving potatoes used for making potato chips.

One key quality attribute of potato chips (and French fries) is color

after frying, as most consumers prefer the taste and appearance of

the lighter-colored product (Roe et al., 1990). The reducing sugars

glucose and fructose are largely (but not exclusively) responsible for

darkening at the time of frying (Sowokinos et al., 1987; Roe and

Faulks, 1991). In addition to dark color, the reaction of glucose or

fructose with asparagine during frying results in the formation of

acrylamide (Mottram et al., 2002), which is a carcinogen in rodents

and causes peripheral neuropathy in humans (Tornqvist, 2005;

Lineback et al., 2012). Thus, it is important to breed chipping

potatoes with low levels of reducing sugars and any other

compounds that result in browning. Currently, the best chipping

clones are selected by frying potato slices at various times after

harvest, where the clones producing the lightest chips are retained

and the darkest discarded (Greenwood et al., 1952; Young, 1962;

Wang et al., 2017). Previous work using the SolCAP diversity panel

has demonstrated that chip color is highly heritable (broad sense

H2 = 0.91), but no QTL were resolved by GWAS with a 187 clone

subset of the panel (Rosyara et al., 2016). Thus, while chip color has

been improved through selection, the inheritance of this trait is

complex and likely involves many genes of small individual effects.

In this study, we sought to determine whether building a co-

expression network of metabolites could increase our

understanding of the genetics of chip color and other important

but recalcitrant traits related to tuber composition. By assembling a

network of metabolites it may be possible to break complex traits

into component traits, each with simpler inheritance. We identified

several modules that were highly correlated with chip color and

reducing sugar content. Within these modules, we found specific

features that were more highly correlated with traits of interest than

the other features in the same module which suggest a small set of

novel compounds that may have predictive value for estimating

correlated traits. We also applied GWAS at the module level,

identifying those modules with relatively simple inheritance. A

closer examination of the membership of modules suggests that

biosynthetic pathways are not the only driver for module

condensation; other genetic factors, perhaps linkage drag,

influence the patterns of metabolite co-expression we report here.
2 Materials and methods

The full methods for sample processing, analysis, and data pre-

processing are cited in (Levina et al., 2021); a brief summary is

presented below. The potato clones selected for the study were a

subset of a diversity panel assembled by the Solanaceae Coordinated

Agricultural Project (SolCAP) (Douches, 2008; Hirsch et al., 2013).

Even though a total of 207 distinct clones were planted and analyzed

by UPLC-MS/MS, only 185 clones had the genetic marker data

necessary for GWAS. The 185 clone subset was used for both

network analysis and GWAS, and their attributes are summarized

in Table 1. Samples were analyzed by UPLC-MS using a Waters

Acquity UPLC-Waters Xevo G2 Q-TOF-MS at the Proteomics and

Metabolomics facility of Colorado State University in Fort Collins,
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CO. The protocol for loading samples has been described by

(Heuberger et al., 2013).

Phenotypic data analyzed here originated with the SolCAP

project and represent observations made on plants grown in East

Lansing MI, Ithaca NY, and Madison WI (Douches, 2008; Rosyara

et al., 2016). Phenotypic data included aggregate scores for chipping

score (1 (lightest)-5 (darkest), tuber sucrose and glucose

concentration, yield, tuber length, width and size, and vine

maturity at 95 and 120 days, as previously reported in (Rosyara

et al., 2016).
2.1 Raw data pre-processing

From the LC-MS analysis, over 3000 distinct features were

detected that represent a mixture of primary metabolites,

specialized metabolites, and fragments of abundant proteins. As

this initial dataset contains isotopomers and other redundancies,

the ramclustR package was applied to reduce the dataset to unique

signatures via an examination of the retention time and

correlational similarity between all pairs of features in the dataset

(Broeckling et al., 2014). After ramclustR was applied, 981 features

remained and were used for further analysis. All features were log-

transformed to obtain a normal distribution before calculating Best

Linear Unbiased Prediction (BLUP) values. BLUPs were calculated

from both biological and technical replicates using the Lmer

package in R to include all available data in a single estimate for

each feature. Biological rep (clone) was used as a random effect

while injection and rep were used as fixed effects. Since potato is an

autotetraploid, methods that take its ploidy into account are needed.

The GWASpoly package was used specifically to account for SNP

marker allele dosage (nulliplex, simplex, duplex, triplex,
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quadruplex). Previous studies involving the SolCAP population

have shown that population structure also needs to be accounted

for (Rosyara et al., 2016). To control for population structure,

several methods were employed. For GWAS, a relationship matrix

explicitly defines population structure within the GWASpoly

package, so that population structure is addressed during those

analyses. For WGCNA, we estimated population structure effects

on individual features using the residuals from general linear

models. To perform that calculation, principal components (PCA)

for each clone were calculated from the genetic data and used to

model the BLUP scores using ANOVA, such that BLUP residuals

(resBLUPs) were used as inputs for network construction and

genetic mapping analyses. Scripts used in this study are reported

in Supplemental Materials.
2.2 Network construction and analysis

WGCNA was implemented in R through a package developed

by Langfelder and Horvath (Langfelder and Horvath, 2008). Data

were automatically scaled, and outliers were removed before the

start of network construction. Correlation networks were

constructed with a threshold of six, based on analysis of this

dataset, and minimum module membership was set at five to

encourage the detection of small groups of highly correlated

features. Potato clone MSL512-6 was removed by the package on

account of being an outlier. Module behavior was summarized by

WGCNA with an eigenvalue estimated for each group of co-

expressed features; eigenvalues were then used for phenotypic

correlation analysis and genetic mapping via genome-wide

analysis. The WGCNA package labels each module with the

name of an arbitrary color, where the grey module refers to those

features that were so poorly correlated with others that they are not

assigned to another group. The grey module can be thought of as a

residual module. Node and edge relationships were visualized using

Cytoscape version 3.4.0 (Shannon et al., 2003).

The WGCNA package derives several variables from a data set

including module membership and gene trait significance

(Langfelder and Horvath, 2008). Module membership refers to

the correlation between individual features and the eigenvalue of

each module and ranges from -1 to 1 with most values being close to

0. A feature is assigned to the module where its module membership

is highest. Gene trait significance is the correlation between an

individual feature and the value for each trait in the phenotype

dataset, also ranging from -1 to 1 with most values being close to 0.

Features with higher gene trait significance scores may be causally

related to a trait of interest and thus identifying such features is

of value.
2.3 Genetic mapping by genome-wide
association

We have previously reported SNPs associated with individual

features in potato tubers (Levina et al., 2021). In this study, 3521
TABLE 1 Characteristics of the 185 potato clones used for GWAS in this
study, broken down separately by market class, skin color, and flesh color.

Category Number of clones

Market Class

Chipping 71

French Fries 36

Fresh Market 78

Skin Color

White 154

Red 20

Purple 11

Flesh Color

White 153

Yellow 22

Purple 7

Red 3
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SNPs were evaluated for association with 44 module eigenvalues

using genome-wide association mapping as implemented by

GWASpoly (Rosyara et al., 2016). The SolCAP population has

previously been genotyped with an Infinium array of 8303 SNP

markers; SNPs were not used here if there were more than 20%

missing data, or if the SNP was not able to distinguish between the

different heterozygous classes (Hirsch et al., 2013). Of the 185 clones

summarized in Table 1, only 184 clones were used for GWAS, since

one clone was removed as an outlier during WGCNA. Population

structure was taken into account by calculating the K matrix and

including it in the model calculations. We performed GWAS with

both BLUPs and residual corrected BLUPs. We used the procedure

suggested by Lipka et al., 2012 to address population structure. We

calculated the first three principal components and then asked what

fraction of the signal was explained by principal components as

opposed to markers. If the population structure was highly

associated with a specific phenotype then we removed the effect

of that population structure. A genome-wide significant threshold

was determined using Bonferroni correction (0.05 divided by the

number of markers used) which addressed the problem of testing

multiple hypotheses and allowed us to focus on modules and

features with very strong correlations.
3 Results

3.1 Network construction and data
condensation

Previously, we used UPLC-MS/MS to conduct metabolic

profiling on a subset of the SolCAP potato diversity panel to

study tuber composition (Levina et al., 2021). We measured 981

small molecules and peptide fragments (or “features”), where we

obtained structural information on 6.8% of them and used GWAS

to map genetic determinants for 48%. From that analysis, we

identified a large number of mappable features, detected four

regions of the genome associated with unexpectedly high

numbers of features, and highlighted new candidate loci for

glycoalkaloids (Levina et al., 2021).

?>In a preliminary analysis, using data uncorrected for

population structure, we found that WGCNA assembled a

network composed of 42 modules, each containing between five

and 220 members, with only five features assigned to the grey

(residual) module (data not shown). Because of the potentially

confounding aspect of population structure on co-expression

networks, we also calculated the network after correcting

individual feature BLUP scores for population structure using

genetic marker information as analyzed by principal components

analysis. In this improved network, we observed 44 modules with

five to 171 members each, similar to the initial network

(Supplemental Table 1). However, the grey module expanded

from 5 to 73 members, which suggests that an appreciable

fraction of spurious associations exist in the naïve analysis and

that addressing population structure explicitly is appropriate. The

following correlation and genetic analyses utilize the population

structure-adjusted co-expression network.
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3.2 Correlations between tuber
composition and agronomic traits

Once the relationships between all members of an expression

data set were calculated, WGCNA was used to conduct a correlation

analysis between traits and module eigenvalues (Figure 1). For this

study, we used phenotype data collected by SolCAP (Supplemental

Table 2) (Douches, 2008; Rosyara et al., 2016). All traits were

significantly correlated with at least one module, with the

magnitudes varying from r = |0.18| for tuber length and free

sucrose to r = |0.46| for chip color (Figure 1).

Modules that exhibited a significant positive correlation

(r>0.2, p value< 0.05) value with the fry quality traits chip

color, log(glucose), and log(fructose) were tan, brown, and

salmon, while modules that negatively correlated with fry

quality were thistle1, midnightblue, royalblue, brown4, and

lightcyan (Figure 1). We also observed correlations between

modules and other traits collected by SolCAP: yield was

correlated with yellow and sienna3, tuber size was correlated

with mediumpurple3, midnight blue and blue, while vine

maturity was correlated with darkgrey (Figure 1).
3.3 Genetic control over groups of
compositional features

To identify genetic regions that influence tuber composition

module (rather than an individual feature) behavior, GWAS was

performed on module eigenvalues (Supplemental Table 3) using

GWASpoly, an R package that allows tetraploid allele dosage to be

considered. Twenty-two out of 44 modules were significantly

associated with at least one SNP marker (Table 2).

Supplemental Table 4 lists all modules significantly associated

with one or more SNPs, the genetic model used to make each

association, the identity of significant SNPs, and their chromosome

positions. SNPs associated with modules were found on

chromosomes 3, 5, 6, 7, 8, and 12, with the preponderance of

associations found on chromosomes 3, 7, and 8 – a similar

distribution to that seen for SNPs associated with individual

features in (Levina et al., 2021). All of the QQ plots and

Manhattan plots are collated in Supplemental Figure 1. Of the

modules with genetic associations, three were associated (r>0.2)

with chip color: thistle1, midnightblue, and tan.
3.4 Individual features strongly associated
with chipping

Selection for chip color in the Cornell breeding program is

currently based solely on phenotypic evaluation as we have no

useful molecular markers to identify superior or inferior clones.

Accordingly, we sought to better understand connections between

chip score, potato composition modules, and specific features

within those modules to create useful molecular markers (genetic,

biochemical, or both) that can facilitate our selection efforts. To find
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such markers, we evaluated module membership (MM) and gene-

trait significance (GS) for modules that exhibited the strongest

correlation with chipping scores. MM and GS are among the

derived variables created by the WGCNA package, where both

range from -1 to 1 and most values are near 0. MM is the correlation

between individual features and the module eigenvalue of each

module, while GS is the correlation between each feature and each

phenotype. The plot of module membership vs. gene trait

significance of chip color yields several modules with substantial

correlations (r2 >0.2) (Figure 2).

Specifically, brown (r2 = 0.81) and tan (r2 = 0.26) modules

show a very strong positive correlation while midnightblue (r2 =

0.36) and thistle1 (r2 = 0.38) show a strong negative correlation

(Figure 2). Note that lower chip score values indicate superior

performance, thus features with the largest negative GS values

indicate predictors of superior chipping (Supplemental Table 5).

Many features with extreme positive and negative GS scores have

a sufficiently simple inheritance to be mapped using GWAS. Of

the features with the 25 most extreme module membership values

for each of brown, tan, midnight blue, and thistle1, the locations

of those that could be genetically mapped are summarized in

Table 3. The highest value of MM within each module was used to

select those features because this allowed the selection of features

that also had the highest absolute value of GS of chip color for

each module. The map locations of those features were not

evenly distributed across the genome but were instead

clustered on chromosomes 3, 6, and 8 (Table 3). The list of all

features and their correlation with chip color is presented in

Supplemental Table 6.
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3.5 The relationship between networks and
the distribution of loci identified by GWAS

As reported by (Levina et al., 2021), loci associated with

individual features of tuber composition are not evenly

distributed throughout the potato genome; some regions are

associated with a large number of features. With network analysis,

it became clear that these genetic hotspots represent the detection of

many members of a small number of modules (Figure 3).

For example, SNP c2_20259 was associated with the largest

number of individual features (108, using the additive genetic

model) according to GWAS. Network analysis revealed that these

108 features are members of just seven modules (of the 44 detected;

Figure 3). While the turquoise module is the largest in the network

with 170 features, only one feature from this module (C327) is

associated with SNP c2_20259. The black module is the second

largest, with 71 members, but only five of its features are correlated

with this SNP. Neither the turquoise nor black module eigenvalues

were associated with SNP c2_20259 by GWAS. The remaining 106

features associated with SNP c2_20259 are all members of modules

that are also associated with c2_20259: blue (where 45 of 59

members are associated with this SNP), dark orange (32/34),

midnight blue (16/28), medium purple (4/7) and violet (3/10);

Table 3; Figure 3). The representation of features associated with

c2_20259 in these modules is far higher than expected by chance,

with a nearly 3x enrichment for the violet module and 5x or more

for the other four (chi-square test, p ≤ 0.0001). To simplify the

presentation in Figure 3, only those correlations (edges) between

features (nodes) with r2 > 0.45 are shown. At this threshold, not all
FIGURE 1

Correlations between the tuber metabolome and tuber and vine phenotypes. A heat map summarizes correlations between module eigenvalues (y-
axis) and phenotypic traits (x-axis); red denotes a positive correlation and blue indicates a negative correlation between traits and module
eigenvalues. The numbers in the boxes are correlation coefficients and, in parentheses, p values for the relationship. The phenotypic traits shown in
this figure are total yield, potato chip color (measured on a 1-5 scale), tuber eye depth, shape, size, length, and width, as well as sucrose,
log10glucose, log10fructose, malic acid, and vine maturity at 95 and 120 days. All trait scores were provided by SolCAP (Rosyara et al., 2016).
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nodes are connected to other members of their own module. For the

dark orange module, five of the nodes are polypeptides (Figure 3),

one is a fatty acid, and one is a polyphenol. One member of the

midnight blue module has been identified as a polypeptide.

The amount of structural information about individual features

varies among modules, with only half of the modules having any

information available. In terms of absolute number, the brown

module (4th largest) has the most information available, for 15 of 43

members. In terms of density, the bisque4 module (15th largest) is

best with 12 of 18 members annotated. While WGCNA estimates

connectivity between nodes (features) via the topological overlap

measure (TOM), here we use r2 to report a correlation between

nodes, using the population structure-corrected residuals of BLUPs.

All members of the bisque4 module are highly correlated with one

another, with a median r2 of 0.43. We focused on feature C433 in

the bisque4 module that has previously been identified as b-
chaconine (Levina et al., 2021), a glycoalkaloid commonly found

in potato tubers. Glycoalkaloids impart a bitter taste and breeders

want to minimize their levels. Unexpectedly, as shown in Figure 4,
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b-chaconine and its immediate biosynthetic precursor a-chaconine
were not in the same module. b-chaconine and two other

glycoalkaloids (feature C38, a tetrahydropentoxyline-like

compound, and feature C176, a-chaconine) are highlighted with

yellow ovals in Figure 4). a-chaconine is highly (r2 = 0.97)

correlated with the unknown feature C170 while essentially

uncorrelated with b-chaconine (r2 <0.01. b-chaconine is highly

correlated with C38, C223 (a terpene), C578 (a polypeptide likely

formed by hydrolysis of an abundant protein), and C915 (no

structural information). b-chaconine is moderately (0.5<r2<0.75)

correlated with eight other members of the bisque4 module,

including C83 (a fatty acid), C150 (a polypeptide), C609 (a

polyphenolic compound), C780 (choline) and C797 (a

polypeptide). b-chaconine is modestly (0.2<r2<0.5) correlated

with other members of the bisque4 module, including C627 (a

napthofuran) and C795 (a polypeptide).
4 Discussion

In this study, we used network analysis to group 981 metabolic

features into 44 modules. Even though chip color could not

previously be resolved by GWAS in the SolCAP population, in

the current study we detected significant associations between

modules and chip color, as well as with yield and tuber shape.

The correlations between modules (and their constituent features)

with traits do not necessarily reflect cause and effect relationships –

but they do provide an entry point for further dissection of these

traits and have implications for applied potato breeding.

One unexpected observation with potato composition modules

is that they often contained structurally unrelated compounds

(Figure 3), while compounds that we expected to reside in the

same module because they are in the same biosynthetic pathway,

e.g., a- and b-chaconine, did not (Figure 4). One possible

contributor to this phenomenon is linkage disequilibrium (LD),

which is quite extensive in potato. (Vos et al., 2017) found that LD

was 1.5 Mb for varieties released before 1945 and 0.6 MB for

varieties released after 1945. Similarly, (Li et al., 2008) found, when

evaluating several populations from German potato breeding

companies, that LD could extend over as much as 20 cM.

Genomic structural variants, e.g., inversions and translocations,

can result in extensive LD because they suppress recombination. Of

note, several inversions, including a 5.8 Mb inversion containing

464 genes on chromosome 3, have recently been described in potato

(Tang et al., 2022). This paracentric inversion, which spans

positions 42.9 Mb to 48.7 Mb of chromosome 3 in the DMv6.1

genome sequence (Tang et al., 2022), includes the location of SNP

c2_20259 (43.4 Mb in DM v6.1), which may explain why c2_20259

was associated with a disproportionately large number (108) of

individual metabolic features. Similarly, the composition of the blue

module, where 45 of 59 features were associated with c2_20259, and

the dark orange module, where 32 of 34 features were associated,

may be determined primarily by LD.

Thus, in addition to compounds being clustered into modules

because they share a common regulator that coordinates their
TABLE 2 Modules significantly associated with SNPs by GWAS.

Module Chromosome Most significant
SNP

-log
pvalue

darkorange 3 c2_20259 28

violet 3 c2_58296 24.1

blue 3 c2_20259 13.7

midnightblue 3 c2_20259 10.0

mediumpurple3 3 c2_20259 6.2

darkred 3 c2_50802 5.1

grey 3 c2_1724 5.0

black 3 c1_6869 4.8

plum2 5 c1_15292 5.2

darkslateblue 6 c2_18502 5.6

tan 6 c2_56971 5.0

darkturquoise 7 c1_10001 18.8

paleturquoise 7 c2_44120 14.2

darkorange2 7 c2_55833 6.8

sienna3 7 c1_13483 6.7

plum1 7 c1_13385 4.8

white 7 c2_5900 4.7

thistle1 8 c2_32710 16.5

bisque4 8 c2_32677 15.0

lightsteelblue1 8 c2_32710 5.4

red 8 c2_28633 5.3

darkolivegreen 12 c2_16200.4.8
All modules whose eigenvalues were significantly associated with at least one SNP are shown.
A correction (0.05 divided by the number of markers used) was used to address the problem of
testing multiple hypotheses. Analysis was performed in GWASpoly.
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expression, compounds whose synthesis and/or regulation is

controlled by genes in close physical or genetic proximity with

each other can, in principle, also be placed into the same module

following WGCNA. The relative roles that shared regulation and

LD play in determining module assignment are not yet possible to

quantify, as most of the features we characterized are anonymous,

i.e., structural information is not yet available.

The network analyses reported here were conducted with the

hope that alternative approaches could be developed to improve chip

color, as chip color has proven to be recalcitrant to conventional

genetic analyses. Among five studies that have evaluated genetic

control of chip color in tetraploid potato, none have reported a locus

that explains more than 15% of the variation for chip color, and the

number of loci repeatedly detected among studies is small (Bradshaw

et al., 2008; Li et al., 2008; D’hoop et al., 2014; Rak et al., 2017; Park,

2018). The modules with the strongest correlation with chip color

were brown (r2 = 0.21), salmon (r2 = 0.16), and tan (r2 = 0.12), each of

which explained a comparable amount of variation to the best loci in

prior genetic studies. Unfortunately, neither brown nor salmon was

significantly associated with any SNP markers, while tan had a

relatively weak association (LOD = 5) on chromosome 6. (D’hoop

et al., 2014) reported a locus on chromosome 6 associated with fry

color from 8°C storage, but it is not clear whether this corresponds to

the same locus associated with the tan module. The fact that the

brown, salmon, and tan modules all hadmeasurable associations with
Frontiers in Plant Science 07
chip color nevertheless illustrates that many features beyond glucose

are associated with this trait. In the process of breeding for chip color,

potato breeders have also altered tuber composition in many

other ways.

Within modules associated with any given trait, the most

interesting features are those that have both high module

membership and gene-trait significance, e.g., the features in the

lower right-hand corner of Figure 2A are both characteristics of the

thistle1 module and strongly associated with chip color. As most

features are anonymous, we are not currently able to provide

biochemical insight into what pathways these features represent.

We could, however, assess where SNP markers associated with such

features are located. For features with high gene trait significance in

modules associated with chip color, SNPs associated with those

features were found to cluster on chromosomes 1, 3, 6, and 8

(Table 3). (Park, 2018) identified a QTL for chip color (r2 = 0.06) in

the same region of chromosome 1, while (Rak et al., 2017) identified

a QTL (r2 = 0.13) for chip color after three months of cold storage in

the same region of chromosome 3.

Plant breeders benefit by knowing which traits are positively

and negatively correlated with each other as they seek to assemble

the ideal phenotype. Network analysis helps to visualize such

correlations on a large scale. One potentially important

correlation we observed, at the genetic level, was on chromosome

8. Here SNPs associated with b-chaconine are also linked to features
A B

DC

FIGURE 2

Module Membership vs. Gene Trait Significance for average chip color evaluated in New York. The four plots illustrate the relationship between
module membership in four representative modules and gene trait significance scores for chip color. Module membership (MM) in thistle1
(A), midnightblue (B), brown (C), and tan (D) versus gene trait significance (GS) for average chip color in the SolCAP panel.
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TABLE 3 Features that were significantly associated at Bonferroni corrected p-value with both chip score and one or more SNPs.

Feature Module Identity Marker Chrom Position p-value

664 salmon c2_23943 11 6263603 2.53E-07

159 brown c2_25219 7 47348171 1.94E-03

6 brown tryptophan c1_2065 6 50281023 5.09E-06

26 tan C24H38O4-cholanoic acid like c2_56971 6 4701224 8.08E-03

427 tan c2_56971 6 4701224 4.71E-03

145 tan c2_56971 6 4701224 2.71E-02

589 tan c2_56971 6 4701224 4.53E-02

80 brown LysoPE(18:4) c2_39624 4 8060573 6.59E-06

42 salmon c2_39624 4 8060573 7.17E-03

890 tan peptide c1_15547 3 55999347 4.42E-03

880 tan peptide c2_20259 3 49317882 2.29E-02

46 tan c1_15547 3 55999347 9.98E-06

143 tan c1_15547 3 55999347 8.60E-04

269 brown c2_25897 2 40132605 2.42E-06

267 salmon c2_14704 1 86355044 3.56E-04

25 salmon c2_14704 1 86355044 4.59E-04

810 brown c2_6713 1 2068305 7.54E-03
F
rontiers in Plant Sci
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Feature number, the module each feature belongs to, identity of feature (if available), most significant marker with its chromosomal location (DM version 4.03) are provided. GWAS was
performed using the R package GWASpoly, while linear regression was used to associate features with chip color.
FIGURE 3

Node and edge plot representing the network relationships among features significantly associated with SNP c2_20259 when evaluated with an
additive genetic model. A threshold of r2 ≥ 0.45 was imposed to simplify the number of edges displayed; 101 nodes are correlated with each other
under this rule. These nodes are members of seven modules, defined by the variously colored circles. The five modules whose eigenvalues are
significantly associated with SNP c2_20259 by GWAS are encircled with solid lines; those not associated have dashed lines. Structural information is
available for 12 nodes, with their designation as peptides, fatty acids, and polyphenols color-coded.
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associated with lighter chip color. The Cornell breeding program

has often had to discard, at a relatively late stage in evaluation,

clones with excellent chip color because they are found to have

unacceptably high levels of glycoalkaloids. Going forward it may be

worth evaluating whether such clones share a common haplotype

on chromosome 8, and if they do, taking steps to break apart this

linkage through meiotic recombination.
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