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Mosaic viral diseases affect sugarcane productivity worldwide. Mining disease

resistance-associated molecular markers or genes is a key component of disease

resistance breeding programs. In the present study, 285 F1 progeny were produced

from a cross between Yuetang 93-159, a moderately resistant variety, and ROC22, a

highly susceptible variety. The mosaic disease symptoms of these progenies, with

ROC22 as the control, were surveyed by natural infection under 11 different

environmental conditions in the field and by artificial infections with a mixed

sugarcane mosaic virus (SCMV) and sorghum mosaic virus (SrMV) inoculum.

Analysis of consolidated survey data enabled the identification of 29 immune, 55

highly resistant, 70 moderately resistant, 62 susceptible, and 40 highly susceptible

progenies. The disease response data and a high-quality SNP geneticmapwere used

in quantitative trait locus (QTL) mapping. The results showed that the correlation

coefficients (0.26~0.91) between mosaic disease resistance and test environments

were significant (p< 0.001), and that mosaic disease resistance was a highly heritable

quantitative trait (H2 = 0.85). Sevenmosaic resistance QTLs were located to the SNP

genetic map, each QTL accounted for 3.57% ~ 17.10% of the phenotypic variation

explained (PVE). Furthermore, 110 pathogen response genes and 69 transcription

factors were identified in the QTLs interval. The expression levels of nine genes

(Soffic.07G0015370-1P , Soffic.09G0015410-2T , Soffic.09G0016460-

1T, Soffic.09G0016460-1P, Soffic.09G0017080-3C, Soffic.09G0018730-3P,

Soffic.09G0018730-3C, Soffic.09G0019920-3C and Soffic.03G0019710-2C) were

significantly different between resistant and susceptible progenies, indicating their

key roles in sugarcane resistance to SCMV and SrMV infection. The seven QTLs and

nine genes can provide a certain scientific reference to help sugarcane breeders

develop varieties resistant to mosaic diseases.

KEYWORDS

sugarcane (Saccharum spp. hybrids), sugarcane mosaic disease, QTL mapping, gene
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Introduction

Sugarcane mosaic disease (SMD) is a worldwide issue that has

long plagued sugarcane production. The disease is mainly caused by

single or co-infection of Sugarcane mosaic virus (SCMV), Sorghum

mosaic virus (SrMV), and Sugarcane streak mosaic virus (SCSMV)

(Lu et al., 2021). SMD exhibiting typical “mosaic” symptoms

(Grisham, 2011) can seriously reduce the photosynthetic capacity

(Bagyalakshmi et al., 2019), yield, and quality of sugarcane (Singh

et al., 2003; Viswanathan and Balamuralikrishnan, 2005). Pandemic

SMD has occurred many times in history and caused huge economic

losses and even bankruptcies to many sugar companies (Koike and

Gillaspie, 1989; Grisham, 2011). Breeding and rationally planting of

SMD-resistant varieties are the most economical and effective

methods to prevent and control the disease.

So far, both natural infection disease surveys and artificial

inoculation-induced infection disease surveys are used in SMD

resistance assessments. Using the natural infection method, Li et al.

(2013); Da-Silva et al. (2015a); Yang et al. (2020), and Lavıń-Castaeda

et al. (2020) successively screened sugarcane breeding materials,

cultivars, or hybrid offspring populations. A few varieties (lines)

with immunity or good resistance to SMD provided good material

for mosaic disease resistance gene mining and hybrid breeding.

Although this method is simple and saves labor and time, it

requires a high level of professional ability and is often affected by

environments. Alternatively, several artificial inoculation methods,

including friction (Da-Silva et al., 2015b; De-Souza et al., 2017), spray

(Dean, 1960), stalk cutting (Li et al., 2013; Li et al., 2018), and

injection inoculations (Zhou, 2015), can be well controlled and be

evaluated under a set stress. Roossinck (2015) assumed that the

occurrence and prevalence of plant diseases depended on a

compound effect among host plants, pathogens, and environmental

factors. Therefore, it is of vital importance to choose the most suitable

growth stage and the optimum inoculation methods for improved

accuracy of resistant phenotype identification during field evaluation.

The development of practical molecular markers and related

detection methodology are the basis for molecular marker-assisted

breeding. Currently, traditional DNA markers, such as amplified

fragment length polymorphism (AFLP), restriction fragment length

polymorphism (RFLP), and simple sequence repeats (SSR), are being

used in quantitative trait locus (QTL) mapping or bulk segregant

analysis (BSA) research (Xia et al., 1999; Duble et al., 2000; Xu et al.,

2000; Dussle et al., 2003; Yuan et al., 2004). Several SCMV-resistance

markers were identified in corn (Zea mays L., 2n = 2x = 20; genome

size ~2,300 Mb) (Schnable et al., 2009). Single nucleotide

polymorphisms (SNP) markers are superior markers due to wide

distribution, huge quantity, high stability, strong representativeness,

and bi-allelicity (Rafalski, 2002). SNP chips represent a high-

throughput, automated, and relatively cost-effective genotyping

method (Laframboise, 2009), which has been used to identify

resistance genes to Bean common mosaic virus in soybean (2n = 2x

= 40) (Bello et al., 2014) and to Soil-borne wheat mosaic virus in wheat

(2n = 6x = 42) (Liu et al., 2014). However, due to the complexity of the

sugarcane genome (2n = 12x = 100~130 and genome size ~10 Gb)

(Roach, 1989; D'Hont et al., 1998), sequencing technology, and high

cost, only two SNP chips, namely, the 345K chip of Aitken et al.

(2017) and the 100K chip of You et al. (2019), have been developed in
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sugarcane. The 100K SNP chip has a polymorphism rate of up to

77.04% and has been successfully used in QTL mapping of disease

resistance markers to yellow leaf disease (You et al., 2019), ratoon

stunting disease (You et al., 2020), and leaf blight disease (Wang et al.,

2021) in sugarcane.

In plants, compared to qualitative resistance traits, quantitative

resistance traits are more broad-spectrum and persistent and play an

important role in preventing large-scale disease outbreaks due to the

loss of a single gene resistance (Poland et al., 2009). For instance, a

QTL locus qMdr9.02 was found to be associated with resistance to

southern leaf blight, northern leaf blight, and gray leaf spot in maize

(Yang et al., 2017). However, to date, only four SCMV resistance-

associated markers (AFLP-346, AFLP-372, AFLP-538, and CV29.13),

each accounting for 5.51 to 14.02% of PVE, were reported by Burbano

et al. (2022). The objectives of this study were to construct a genetic

mapping population, to evaluate the SMD response of the mapping

population, and to develop SMD resistance-associated QTL markers

and suggest candidate genes for the improvement of the efficiency and

accuracy of sugarcane breeding.
Materials and methods

Plant material and field planting

Two hundred and eighty-five F1 progeny were produced from a

cross between YT93-159 (moderately resistant to SMD) and ROC22

(highly susceptible to SMD). The cross was made in 2014 at the

Hainan Sugarcane Breeding Station, Yacheng, Hainan, China. After

vegetative propagation, stems of these progeny were planted at five

different ecological sites, namely, Cangshan (119˚14’E, 26˚5’N),

Longchuan (97˚53’E, 24˚15’N), Suixi (110˚10’E, 21˚6’N), Tianyang

(107˚0’E, 23˚39’N), and Yuanjiang (101˚59’E, 23˚36’N) (Figure 1;

Supplementary Table 1). A randomized block design was adopted for

field planting. Specifically, the trial design in Cangshan and

Longchuan contained three replications, Suixi and Yuanjiang

contained two replications, and Tianyang contained one replicate.

Specific row spacing and planting density were shown in

Supplementary Table 2. The five ecological sites were routinely

managed according to conventional planting measures, and stalk-

cutting was done at the end of December each year.
Mosaic disease survey

By natural infection
To identify the appropriate survey season, SMD symptoms on a

field grown, highly susceptible progeny FN14-255 were monitored

monthly on the campus of Fujian Agriculture and Forestry University

(FAFU) (119˚14’E, 26˚5’N). Three typical +1 leaves were sampled for

comparison. The three periods showing the most severe symptoms

were selected for investigating natural SMD incidence.

By artificial inoculation
Before planting, a machete was used to cut the stem of FN14-255

into single-bud pieces, which were rinsed in running water overnight.

Only single-bud pieces that met the criteria of 1) having one full and
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healthy bud, and 2) with flat incisions without any cracks were kept. A

super constant temperature tank (Ningbo Prandt Instrument Co.,

Ltd, Ningbo, China) was used for hot water treatment. Water

temperature was set and kept at ± 0.2°C of 50°C (CK), 55°C, 57°C,

59°C, and 61°C. Water level was maintained at about 2/3 tank full.

Treatment was for 30 minutes. Once the treatment was completed,

the stems were rinsed in running water until the buds cooled

complete ly . The buds were cul tured in a greenhouse

(Supplementary Figure 1) under 12 h light/12 h dark with a light

intensity of 15,000 Lx and a relative humidity of 60%. Greenhouse

temperature was set to 28°C before inoculation and 25°C after

inoculation. Each treatment had 30 buds with three replications.

After 30 d, the one-step multiplex reverse transcription PCR (RT-

PCR) method of Shan et al. (2020) was used to detect different

sugarcane mosaic virus. The oligonucleotide sequence of species-

specific RT-PCR primers and the length of targeted fragments are

shown in Table 1.

The method of Li et al. (2013) was used to configure the viral

inoculum mixture. The viral source was SMD symptomatic leaves

from sugarcane variety Funong 41 that was planted on the Sugarcane

Farm on the campus of FAFU. SCMV and SrMV pathogens were

detected in these leaves by RT-PCR (Supplementary Figure 2). YT93-
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159 and ROC22 were used to test different inoculation methods,

including spray, micro-injection, quartz sand friction, abrasive cloth

friction, rasp friction, young stem cut, single bud soaking, single bud

soaking and quartz sand friction (Supplementary Figure 3,

Supplementary Table 3), and to choose the best inoculation method

to inoculate the test population. In 2021, three batches of viral

inoculums were administered successively. One was conducted at

the sugarcane station of FAFU during February to April. Another was

conducted in a climate-controlled greenhouse of the Key Laboratory

of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture

and Rural Affairs, FAFU from May to July. A final inoculation was

conducted in the same greenhouse from October to December. For

each genotype, 15 single buds were inoculated with three replications

and were kept in the dark for 24 h after inoculation. Four weeks post

inoculation, SMD incidence was investigated for three consecutive

sessions with an interval of one week.
Resistance evaluation

One growth cycle at one ecological site and a batch of artificial

inoculation treatments were considered as one environment. The
FIGURE 1

Ecological survey sites and sugarcane crop density in China based on the data from the 2020 Statistical Yearbook.
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highest SMD incidence rate out of the three surveys was used to

determine the level of SMD resistance for each F1 progeny in a single

environment. Comprehensive evaluation was based on the maximum

value of resistance across multiple natural and artificial inoculation

infection environments. The SMD grading system was set according

to the method of Li et al. (2000) (Table 2). During comprehensive

evaluation, if the disease incidence rate of ROC22 (control) in an

environment was more than 66.01%, the external SMD stress was

considered sufficient, and the survey data valid. If the disease

incidence rate of ROC22 (control) in an environment was less than

66.01%, then the external SMD stress was assumed to be insufficient,

and the environmental data discarded. The following formula was

used to calculate SMD incidence rate (%):

SMD incidence rate (%) = number of diseased plants/total

number of plants per F1 progeny × 100%.
Correlation analysis and generalized
heritability estimation

The QTL IciMapping V4.2 software (Chinese Academy of

Agricultural Sciences, Beijing, China) was used to analyze the

correlation and calculate the generalized heritability (H2) using the

following calculation formula:

H2 = s 2
g =(s

2
g +

s 2
ge

n
+
s2
e

nr
), ;

Where s 2
g is genotype variance, s 2

e is error variance, s 2
ge is

genotype-by-environment interaction variance, n is the number of

environments; and r is number of survey periods within

each environment.
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QTL mapping

The SMD resistance grading data of the F1 progeny population

and the sugarcane 100K SNP chip-based genetic map (Supplementary

Table 4) (Wang et al., 2021) were used to conduct QTL mapping

using the inclusive composite interval mapping (ICIM) of GACD 1.2

software (Chinese Academy of Agricultural Sciences, Beijing, China),

with a logarithm of odds (LOD) threshold of 2.5 and other default

parameters. Loci with ≥ 10% phenotypic variation explained (PVE)

values were defined as major QTLs, and loci with< 10% PVE were

minor QTLs. QTLs were named according to McCouch et al. (1997)

with “q” plus the sugarcane mosaic disease resistance (Rsm) trait,

followed by linkage group number in italics. R software (R-Tools

Technology Inc., Ontario, Canada), Origin 9.0 software (OriginLab

Inc., Massachusetts, USA), and Adobe Illustrator CS6 software

(Adobe Systems Inc., California, USA) were used to draw the

position of QTL on the linkage group.
Candidate gene mining

The protein sequences of all genes in the QTL interval were

extracted according to the GFF annotation file of a Saccharum

officinarum genome (http://sugarcane.zhangjisenlab.cn/sgd/html/-

index.html). The Plant Pathogen Receptor Genes database (PRGdb

4.0, http://prgdb.org/prgdb4/) was used to search for genes related to

disease resistance. At the same time, disease resistance-related

transcription factors were extracted from the plant transcription

factor database (TFDB 5.0, http://planttfdb.gao-lab.org/index.php)

(Osuna-Cruz et al., 2018).
Critical gene and functional
structure prediction

Stems of Yuetang 93-159, ROC22, five immune, and five highly

susceptible progeny were detoxified in a hot water bath as previously

described. Plants with 2~3 fully expanded leaves from the detoxified

buds were inoculated with a mixed inoculum of SCMV and SrMV by

quartz sand friction. Leaf samples were taken on 0 d, 1 d, and 4 d post

inoculation, RT-PCR was conducted to detect the viruses at 4 d post

inoculation (Supplementary Figure 4). There were four plants in each

of the three biological replicates. RNA was extracted by the Trizol

method, and the integrity of the extracted RNA samples was checked
TABLE 2 Resistance grading based on SMD incidence.

Grade Resistance SMD Incidence (%)

1 Immune 0

2 Highly resistant 0.01~10.00

3 Moderately resistant 10.01~33.00

4 Susceptible 33.01~66.00

5 Highly susceptible 66.01~100
TABLE 1 Species-specific RT-PCR primers for the detection of three sugarcane mosaic viruses.

Virus Primer sequence (5’!3’) Annealing temperature (°C) Amplification size (bp)

SCMV
F: GCGCGGTATGCATTTGACTT

58

200
R: CACTCCCAACAGAGAGTGCAT

SrMV
F: AACAGGATGCCGATGCGAAA

450
R: CGTTGATGTTCGGTGAGCAA

SCSMV
F: GAACGCAGCCACCTCAGAAT

800
R: CCAAAATGAGCGCCTCCGAT
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using an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara,

CA, USA). The integrity number of a qualified RNA sample was

considered greater than 6.0, and the detection quality was A-level

(Supplementary Table 5). The qualified RNA samples were sent to

Novogene Bioinformatics Technology Co., Ltd. (Beijing, China) for

transcriptome sequencing. The DNBSEQ-T7 (Shenzhen Huada

Intelligent Technology Co., Ltd., Shenzhen, China) sequencing

platform was used for paired-end sequencing, and each library

yielded ≥ 12 Gb of sequence data (Supplementary Table 6). The

Transcripts Per Kilobase Million (TPM) normalization method

(Wang et al., 2021) was used to calculate the expression levels of all

genes. TBtools V1.0986 software (South China Agricultural

University, Guangzhou, China) was used to draw an expression

heat map of candidate genes, and to locate significantly

differentiated key genes in the S. officinarum genome. An online

tool GSDS V2.0 (http://gsds.gao-lab.org/) was used to describe the

gene structure. The Arabidopsis genome (https://www.arabidopsis.

org/Blast/index.jsp) was referred for functional annotation with e-

value threshold set to 1e-10.
Data statistics and analysis

A Canon EOS 60D camera (Canon Inc., Tokyo, Japan) was used

to capture the images of SMD symptoms. Data were achieved as Excel

2010 (Microsoft Inc., Washington, USA) spreadsheets. Duncan’s

significant difference test and descriptive statistics were performed

using IBM SPSS® V25 software (International Business Machines

Inc., California, USA).
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Results

Phenotypic analysis and evaluation

Determination of the natural survey period
The SMD symptoms of a highly susceptible progeny (FN14-255) are

shown in Figure 2. The figure shows the symptoms of infected sugarcane

leaves were more clearly distinguishable during February to April and

October to December, with mosaic symptoms covering the entire leaf.

Nevertheless, the symptoms were significantly weakened in January and

inMay to September, especially from June to August, the symptoms were

suppressed by high temperature, and can only be observed at the bottom

of the leaves. Therefore, the field natural incidence survey was arranged

in March, April and November, respectively.

Hot-water detoxification and artificial inoculation
Germination time was obviously delayed, and germination rate was

significantly reduced with increasing hot water temperature

(Supplementary Table 7). On the other hand, mild leaf symptoms

could be seen from the 50°C treatment. And even barely visible from

the 55°C treatment. However, no symptomwas observable from the 57°

C, 59°C, and 61°C treatments. As shown in Supplementary Figure 5, no

band was visible on the gels, indicating that all three target viruses were

not detectable for the samples treated at 59°C and 61°C. Therefore, a

hot water treatment at 59°C for 30 min can completely detoxify the

viruses, albeit with a germination rate of about 30% (Supplementary

Table 7). The ‘single bud soaking + quartz sand friction’ method had

the highest inoculation efficiency (Supplementary Table 8). Therefore,

this method was used to inoculate the mapping population material.
FIGURE 2

SMD symptoms of a highly susceptible progeny (FN14-255) observed in different months CK1: disease free control (January); CK2: disease free control
(December); (A–L): January-December, respectively.
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Comprehensive evaluation
The SMD survey data for the F1 mapping population from 11

natural infection and 3 artificial inoculation infection environments

during 2020 to 2022 are shown in Supplementary Table 9. The

frequency distribution of SMD resistance grades within this

population in 14 environments is shown in Supplementary

Figure 6. The data from two environments at Cangshan ecological

site (block 2) were excluded from the comprehensive evaluation and

resistance analysis due to insufficient pathogen stress. Accordingly,

the population was comprehensively evaluated based on nine natural

environments and three artificial inoculation environments. Among

the 285 progenies, 29 immune, 55 highly resistant, 70 resistant, 62

susceptible, and 40 highly susceptible progenies were identified. The

remaining 29 progenies had inconsistent SMD responses. The SMD

resistance trait segregated widely within the F1 mapping population

and showed an obvious hybrid vigor (Heterosis) phenomenon

(Figure 3). That was in line with the typical characteristics of a

quantitative trait, indicating its suitability for QTL analysis.
Correlation analysis and
generalized heritability

Certain differences of SMD incidence were observed in the

mapping population across different environments. For example,

SMD incidence in the ratoon crop was significantly higher than the

plant cane crop. The SMD tended to accumulate when the sugarcane

crop underwent prolonged ratooning. Correlation coefficients

between the resistance trait and different environments were

0.26~0.91 (Supplementary Table 10), all these values were very

significant (p< 0.001), indicating that the SMD resistance was a

stable trait. Not surprisingly, the estimated broad sense heritability

(H2) of SMD resistance in this mapping population under 14

environments was 0.85, which implied that the SMD resistance trait

was mainly determined by genetic factors.
Frontiers in Plant Science 06
QTL mapping

Seven SMD resistance-related QTLs were detected (Table 3),

which could explain 46.53% of the PVE. One major QTL, qRsm-

Y12, could explain 17.10% of the PVE. The other six were minor

QTLs, each could explain 3.57% ~ 7.70% of PVE. Four QTLs were

detected on the YT93-159 map, and the remaining three QTLs were

detected on the ROC22 map (Figure 4). The maximum genetic

distance of each QTL from the nearest marker was 2.4 cM, the

minimum was 0, and the average genetic distance was about 1.1 cM.
Candidate gene mining

According to the sequence information of the markers on either

side of the QTL (Supplementary Table 11), 1,525 candidate genes

were searched in the seven QTLs regions. In total, 110 disease

resistance candidate genes were identified, whose gene products

included CC-TM (coiled-coil plus transmembrane receptor), LRR

(leucine rich repeats), RLK (receptor-like protein kinases), WAK

(wall-associated receptor kinase), and others domain. In addition,

69 transcription factors were identified, including AP2 (APETALA2),

bHLH (basic helix-loop-helix), bZIP (basic region/leucine zipper),

ERF (ethylene response factor), MYB (myeloblastosis), SBP

(squamosa promoter binding protein) and other types of

transcription factors (Supplementary Table 12). These genes and

transcription factors may directly or indirectly involve in regulating

sugarcane response to mosaic virus infection.
Critical gene prediction

The gene expression levels of 110 pathogen-responsive genes and

69 transcription factors obtained by map mapping were presented in

Figure 5. Among the candidate genes related to disease resistance, it

was found tha t genes such as So ffi c .07G0015370-1P ,

Soffic.09G0016460-1T, and Soffic.09G0018730-3P had significant

expression differences between resistant and susceptible progenies,

including three transcription factors and six pathogen response genes.

These nine genes contained conserved domains such as

bHLH_AtILR3_like, LRR, STKc_SNT7_plant and that were closely

related to plant disease resistance (Table 4). The genomic positions,

conserved domains and gene structures of the nine predicted genes

are shown in Figure 6. It is speculated that these genes may be key to

the resistance of sugarcane to SCMV and SrMV, and can be a focus

for future research.
Discussion

Mosaic disease is one of the most important viral diseases in

sugarcane and has threatened the security and sustainability of the

world sugarcane industry for a long time (Wu et al., 2012). In recent

years, with the increasing pressure of natural stress, the differentiation

of plant viruses has accelerated (Roossinck, 2015). The genetic basis of

modern sugarcane cultivars is narrow, and the utilization of resistant

genes and genotypes is limited. There is an increasing chance of a large-
FIGURE 3

Distribution of five SMD resistance grades (Table 2) within a sugarcane
mapping population YT93-159 belongs to Grade 3 and ROC22
belongs to Grade 5.
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scale epidemic of mosaic diseases. Since different sugarcane varieties

may have different resistances to the virus, breeding and careful

distribution of disease-resistant varieties is the most economical and

effective method to control mosaic disease. Therefore, it is imperative to

fully explore the specifics of germplasm resistance and expand research

on resistance-related molecular markers or key genes to further

improve breeding efficiency.

In this study, SMD surveys were based on the “mosaic” symptom

manifested under multiple environments. The results of resistance to

mosaic disease in the experimental population showed that the overall

disease incidence upon artificial inoculation was significantly higher

than that upon natural infection. Due to many years of sugarcane

production and greater levels of pathogen pressure, the overall disease

incidence in sugarcane production areas of Guangxi and Yunnan is

significantly higher than other ecological regions in China

(Supplementary Table 9). In our study, inconsistent SMD

incidences were observed across different habitats. The pathogen

pressure of SMD was not high enough on the newly planted

sugarcane crop at Cangshan ecological site (block 2) in 2020 and

2021, therefore, the survey data from these two environments were

discarded. Therefore, the evaluation was only carried out with the

progeny with the highest level of resistance across nine natural

infection environments and three artificial inoculation infection

environments. Excluding 29 F1 progeny with inconsistent levels of

SMD resistance across different environments, 256 progeny of the F1
mapping population were included in further analysis. The 29 F1
progenies that were immune to SMD will be valuable in molecular

breeding to develop SMD resistant sugarcane cultivars.

Sugarcane is a vegetatively propagated crop, and multiple sets of

a mapping population can be propagated genetic research (Asnaghi

et al., 2004). This study showed that the correlation coefficients

among SMD resistance data sets from the various environments

were highly significant (p< 0.001) at 0.26 ~ 0.91 (Supplementary
Frontiers in Plant Science 07
Table 10). This indicates that SMD resistance is stable under

different environmental conditions. The consolidated survey

results showed that the frequency of the five grades followed a

continuous normal distribution and that the Grades 1 and 2

contained 84 super-parent segregants with a better resistance level

than the parent YT93-159, which is resistant to SMD (Grade 3)

(Figure 3). This is in line with the typical characteristics of a

quantitative trait controlled by polygenes. The generalized

heritability (H2) of the SMD resistance across different

environments was 0.85, which is obviously higher than the H2

values reported on sugar content (0.57), plant height (0.57),

effective stem number (0.65), single stem weight (0.56), and yield

(0.49) (Barreto et al., 2019). This may be due to the long-term

accumulation and habitation of the virus in sugarcane and the less

effective management of SMD than on plant yield-related traits. The

SMD resistance trait is mainly controlled by genetic factors, which

can be identified using the map mapping method.

Mapping population size and molecular marker density directly

affect the accuracy and resolution of marker localization for the target

trait (Beavis, 1994). So far, most of the sugarcane populations for QTL

mapping of agronomic traits are made up of between 100 and 200

individuals with traditional markers, such as AFLP, RFLP or SSR

(Raboin et al., 2006; Yang, 2015; Singh et al., 2016). Due to the lack of

detection tools, high-density genotyping of large populations, the

genetic distance between the QTL markers and the gene of interest is

relatively large (Daugrois et al., 1996; Raboin et al., 2006). In this

study, linkage analysis was performed using a high-density map

constructed by the Axiom Sugarcane 100K SNP chip, which

contains 100,097 low-dose SNPs with a broad genetic basis and

mainly distributed in gene regions. This chip includes 64,726

single-dose markers and 35,371 double-dose markers (You et al.,

2019). Furthermore, the F1 progeny mapping population used in this

study consisted of 256 eligible F1 progeny, which is significantly more
TABLE 3 SMD resistance-related QTLs in a F1 progeny mapping population from the YT93-159 × ROC22 cross.

QTL Position Left/Right markers LOD PVE
(%)

Effect
female

Effect
male

Effect
FM

GD
(cM) Markera Distance

(cM)b

qRsm-
Y12

16
AX-171367442/AX-

171312668
10.19 17.10 -0.01 -0.05 0.50 9.5

AX-
171312668

0.9

qRsm-
Y41

35
AX-171308038/AX-

171265900
2.72 3.57 0.06 -0.21 -0.11 6.8

AX-
171308038

1.5

qRsm-
Y52

4
AX-171266761/AX-

117172243
3.25 4.90 0.27 -0.04 -0.02 25.3

AX-
171266761

0.4

qRsm-
Y57

60
AX-171332119/AX-

171288089
3.37 5.12 0.19 -0.03 0.22 5.6

AX-
171288089

2.4

qRsm-
R14

0
AX-171290689/AX-

171329853
2.52 3.88 -0.11 -0.10 0.19 1.8

AX-
171290689

0

qRsm-
R23

17
AX-171330585/AX-

171286409
3.44 7.70 0.11 0.13 -0.25 0.7

AX-
171286409

0.2

qRsm-
R92

3
AX-171360287/AX-

171296656
2.62 4.26 -0.22 0.12 -0.09 5.3

AX-
171296656

2.3
“Y”, YT93-159; “R”, ROC22; LOD, logarithm of odds; PVE, phenotypic variation explained; GD, genetic distance between left and right markers; a Nearest marker from the QTL peak, b Distance of
nearest marker from the respective QTL peak.
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than those of previous studies (Raboin et al., 2006; Yang et al., 2015;

Singh et al., 2016).

The genetic analysis of SMD resistance was analyzed in this study.

Seven SMD resistance-related QTLs were detected, only one of which,

qRsm-Y12, was a major QTL that could explain 17.1% of the PVE.

The genetic effect of qRsm-Y12 is similar to the PVE effects seen for

SCMV resistance (14.02%) by marker AFLP-346 in sugarcane

(Burbano et al., 2022) and the 15.3% ~ 15.8% PVE effect of a major

QTL R-scm3 related to SCMV resistance in maize (Zhang et al., 2003).

The seven QTLmarkers identified in this study range in distance from

the nearest marker from 0 to 2.4 cM, with an average of 1.1 cM, which

is similar to those seen for sugarcane brown rust resistance-associated

markers (0.1 cM ~ 8.1 cM) (Yang et al., 2017) and sugarcane orange

rust markers (0.2 cM ~ 2.2 cM) (Yang et al., 2018). This further

demonstrated the feasibility and reliability of using SNP genetic maps

to locate target trait-related QTLs. However, even with a high-quality
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sugarcane SNP map, the distance of the closest markers on either side

of the QTL is relatively large (Wang et al., 2021). For example, the

distance between QTL qRsm-Y57 and the closest marker is 2.4 cM,

which makes target trait localization difficult and highlights the need

for fine localization of SNP markers.

The major disease resistance traits in plants may generally be

described by a gene-for-gene mechanism. The Avr products of

pathogen-encoded avirulence genes are specifically recognized

directly or indirectly by specific proteins encoded by the cognate

plant disease resistance genes (Flor, 1971; Jia et al., 2000; Yakupjan

et al., 2015). When plants sense a pathogen invasion signal, the

disease resistance genes are activated through a series of signal

transmissions. During this process, transcription factors play an

important role in the defensive responses. For example, they may

inhibit or activate the transcriptional expression of target genes by

binding to specific DNA sequences in target gene promoters (Zhang
FIGURE 4

Location of seven SMD resistance-related QTLs (q) on sugarcane genetic linkage maps “Rsm”, resistance trait to sugarcane mosaic disease; “Y”, YT93-
159; and “R”, ROC22. The colored text values, phenotypic variation explained (PVE).
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et al., 2009). Plant leucine-rich repeat (LRR) receptor-like protein

kinases represent a large group of protein families that play important

roles in disease resistance (Smakowska-Luzan et al., 2018). Zhang

et al. (2021) showed that a homologous OsRLP1 gene regulated rice

resistance to Rice black-streaked dwarf virus infection. Qi et al. (2014)

found that a mutant of A. thaliana protein kinase AVRPPHB

susceptible (PBS1) was defective in sensing the avirulence gene

avrPphB of Pseudomonas syringae. Lee et al. (2015) showed that a

serine/threonine kinase domain protein encoded by OsPBL1 gene
Frontiers in Plant Science 09
might play a role in rice stripe resistance. Chang et al. (2022) found a

FKBP-type peptidyl-prolyl cis-trans isomerase (PPIase) could interact

with the motor protein of Tomato leaf curl New Delhi virus, and its

transient overexpression reduced the virus replication. Aparicio and

Pallás (2017) confirmed that bHLH transcription factor can promote

salicylic acid-dependent defense signaling by interacting with the

Alfalfa mosaic virus CP protein. Studies have also shown that

MdMYB73 can improve apple’s resistance level to Botryosphaeria

dothidea through the salicylic acid pathway (Gu et al., 2020). The
BA

FIGURE 5

Expression of SMD resistance-related candidate genes (A) disease response-related genes; (B). disease resistance-related transcription factors.
TABLE 4 Information for SMD resistance-related key genes.

No. QTL Candidate
gene

Arabidopsis homologous
gene

Conserved
domain Gene description

1
qRsm-
R14

Soffic.07G0015370-
1P

AT2G43560 FkpA super family FKBP-like peptidyl-prolyl cis-trans isomerase family protein

2
qRsm-
Y52

Soffic.09G0015410-
2T

AT5G54680 bHLH_AtILR3_like
basic helix-loop-helix (bHLH) DNA-binding superfamily

protein

3
qRsm-
Y52

Soffic.09G0016460-
1T

AT5G01920 STKc_SNT7_plant Protein kinase superfamily protein

4
qRsm-
Y52

Soffic.09G0016460-
1P

AT5G01920 STKc_SNT7_plant Protein kinase superfamily protein

5
qRsm-
Y52

Soffic.09G0017080-
3C

AT3G12480 BUR6 super family nuclear factor Y, subunit C11

6
qRsm-
Y52

Soffic.09G0018730-
3P

AT5G25930 LRR
kinase family with leucine-rich repeat domain-containing

protein

7
qRsm-
Y52

Soffic.09G0018730-
3C

AT5G25930 LRR
kinase family with leucine-rich repeat domain-containing

protein

8
qRsm-
Y52

Soffic.09G0019920-
3C

AT1G68830 PLN03225 Serine/Threonine kinase domain protein

9
qRsm-
Y52

Soffic.03G0019710-
2C

AT5G23000 PLN03091 super family myb domain protein 37
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expression of a MYB transcription factor CaPHL8 was upregulated in

Ralstonia solanacerum infected pepper plants. The upregulated

expression activated the expressions of immune-related genes to

enhance the defense response of pepper (Noman et al., 2019).

O’Conner et al. (2021) showed that overexpression of GmNF-YC4-2

in soybean increased seed protein content, exhibited a broad disease

resistance, and accelerated soybean maturation.

In this study, a total of 110 pathogen-responsive genes and 69

transcription factors were identified in the interval regions of the QTLs.

Among them, nine candidate genes were obtained in the interval region

of the major QTL qRsm-Y12, including one transcription factor and eight

resistance genes. Basically, plants share a common resistance mechanism

to the same type of pathogen (Jones and Dangl, 2006; Li et al., 2020).

SCMV and SrMV are the most widely distributed sugarcane mosaic virus

in the world, with SCSMV mainly distributed in Asia (Lu et al., 2021).

Therefore, we used an artificial inoculum that only contained SCMV and

SrMV. Combined with the TPM normalization results of RNA-seq gene

expression after inoculation of SCMV and SrMV, six genes and three

transcription factors had significantly different levels of expression

between resistant and susceptible materials. Two genes,

Soffic.09G0018730-3P and Soffic.09G0018730-3C, contained LRR

domains. Two genes, Soffic.09G0016460-1T and Soffic.09G0016460-1P,

encoded kinase superfamily proteins. Gene Soffic.09G0019920-3C

encoded a serine/threonine kinase domain protein. Gene

Soffic.07G0015370-1P encoded a PPIase family protein. Among the

transcription factors, Soffic.09G0015410-2T is a bHLH transcription

factor, Soffic.03G0019710-2C encodes a MYB transcription factor, and

Soffic.09G0017080-3C encodes a NF-YC transcription factor. It is thus

speculated that these six genes and three transcription factors may have

potential functions in sugarcane mosaic disease resistance.
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Conclusions

This study showed that the SMD resistance trait of 256 F1
progeny of a cross (YT93-159 × ROC22) tested under different

environments was significantly correlated (p< 0.001) with

correlation coefficients of 0.26~0.91, and hence was a highly

heritable quantitative trait (H2 = 0.85). Based on the consolidated

multiple data sets of SMD resistance, 29 immune, 55 highly

resistant, 70 moderately resistant, 62 susceptible, and 40 highly

susceptible F1 progeny were identified. Using a high-quality SNP

chip, seven SMD resistance-related QTLs were located. One major

QTL, qRsm-Y12, explained 17.10% of the PVE and six minor QTLs,

namely, qRsm-Y41, qRsm-Y52, qRsm-Y57, qRsm-R14, qRsm-R23,

and qRsm-R92, explained 3.57% ~ 7.70% of the PVE. A total of 110

SMD response genes and 69 transcription factors were screened for

association with SMD resistance. Six key genes, namely,

Soffic.07G0015370-1P, Soffic.09G0016460-1T, Soffic.09G0016460-1P,

S o ffi c . 0 9 G 0 0 1 8 7 3 0 - 3 P , S o ffi c . 0 9 G 0 0 1 8 7 3 0 - 3 C , a n d

Soffic.09G0019920-3C and three transcription factors, namely,

S o ffi c . 0 9 G 0 0 1 5 4 1 0 - 2 T , S o ffi c . 0 9 G 0 0 1 7 0 8 0 - 3 C , a n d

Soffic.03G0019710-2C , were identified. These genes and

transcription factors can be further explored and utilized in the

marker-assisted breeding for mosaic disease resistance in sugarcane.
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De-Souza, I., Macêdo, G. A. R., Barbosa, M. H. P., Barros, B. D. A., Carvalho, S. G. M.,
and Xavier, A. D. S. (2017). Reaction of sugarcane genotypes to strains of the Sugarcane
mosaic virus. Int. J. Curr. Res. 9, 59112–59119.

Duble, C. M., Melchinger, A. E., Kuntze, L., Stork, A., and Lubberstedt, T. (2000).
Molecular mapping and gene action of Scm1 and Scm2, two major QTL contributing to
SCMV resistance in maize. Plant Breed. 119, 299–303. doi: 10.1046/j.1439-
0523.2000.00509.x

Dussle, C. M., Quint, M., Melchinger, A. E., and Lübberstedt, T. (2003). Saturation of
two chromosome regions conferring resistance to SCMV with SSR and AFLP markers by
targeted BSA. Theor. Appl. Genet. 106, 485–493. doi: 10.1007/s00122-002-1107-x

Flor, H. H. (1971). Current status of the gene-for-gene concept. Annu. Rev.
Phytopathol. 9, 275–296. doi: 10.1146/annurev.py.09.090171.001423

Grisham, M. P. (2011). “Mosaic,” in A guide to sugarcane diseases. Eds. P. Rott, R. A.
Bailey, J. C. Comstock and B. J. Croft (Montepellier: CIRAD Publication Services), 249–
254.

Gu, K., Zhang, Q., Yu, J., Wang, J., Zhang, F., Wang, C., et al. (2020). R2R3-MYB
transcription factor MdMYB73 confers increased resistance to the fungal pathogen
Botryosphaeria dothidea in apples via the salicylic acid pathway. J. Agr. Food Chem. 69,
447–458. doi: 10.1021/acs.jafc.0c06740

Jia, Y., McAdams, S. A., Bryan, G. T., Hershey, H., and Valent, B. (2000). Direct
interaction of resistance gene and avirulence gene products confers rice blast resistance.
EMBO J. 19, 4004–4014.
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fpls.2023.1107314/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2023.1107314/full#supplementary-material
https://doi.org/10.1111/mpp.12388
https://doi.org/10.1007/s00122-003-1487-6
https://doi.org/10.1007/s00122-003-1487-6
https://doi.org/10.1007/s12600-019-00747-w
https://doi.org/10.1371/journal.pone.0219843
https://doi.org/10.1371/journal.pone.0219843
https://doi.org/10.1186/1471-2164-15-903
https://doi.org/10.1007/s12355-022-01131-5
https://doi.org/10.1111/mpp.13181
https://doi.org/10.1139/g98-023
https://doi.org/10.1007/s12355-014-0323-4
https://doi.org/10.1007/s12355-014-0323-4
https://doi.org/10.1016/j.cropro.2015.01.002
https://doi.org/10.1016/j.cropro.2015.01.002
https://doi.org/10.1007/BF00224049
https://doi.org/10.1046/j.1439-0523.2000.00509.x
https://doi.org/10.1046/j.1439-0523.2000.00509.x
https://doi.org/10.1007/s00122-002-1107-x
https://doi.org/10.1146/annurev.py.09.090171.001423
https://doi.org/10.1021/acs.jafc.0c06740
https://doi.org/10.3389/fpls.2023.1107314
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Lu et al. 10.3389/fpls.2023.1107314
Jones, J. D. G., and Dangl, J. L. (2006). The plant immune system. Nature 444, 323–329.
doi: 10.1038/nature05286

Koike, H., andGillaspie, J. R. (1989). “Mosaic,” inDisease of sugarcane:Major disease. Eds.
C. Ricaud, B. T. Egan and A. G. Gillaspie (Amsterdam: Elsevier Science Publisher), 301–322.

LaFramboise, T. (2009). Single nucleotide polymorphism arrays: a decade of biological,
computational and technological advances. Nucleic Acids Res. 37, 4181–4193.
doi: 10.1093/nar/gkp552
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