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Incorporating the effect of the
photon spectrum on biomass
accumulation of lettuce using a
dynamic growth model
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2Department of Horticulture, Michigan State University, East Lansing, MI, United States, 3Department
of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing,
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Cultivation studies in specialty crop optimization utilize models to estimate the

fresh and dry mass yield. However, the spectral distribution and photon flux

density (mmol  m−2   s−1) affect plant photosynthetic rate and morphology, which

is usually not incorporated in plant growth models. In this study, using data for

indoor-grown lettuce (Lactuca sativa) cultivated under different light spectra, a

mathematical model that incorporates these effects is presented. Different

experimental cases are used to obtain a modified quantum use efficiency

coefficient that varies with the spectral distribution. Several models for this

coefficient are fitted using experimental data. Comparing the accuracy of

these models, a simple first- or second-order linear model for light-use

efficiency coefficient has about 6 to 8 percent uncertainty, while a fourth-

order model has a 2 percent average error in prediction. In addition, normalizing

overall spectral distribution leads to a more accurate prediction of the

investigated parameter. A novel mathematical model based on normalized

spectral irradiance integrated over wavelength for photosynthetically active

radiation (PAR) wavebands and the far-red waveband is presented in this study.

It accurately predicts lettuce dry mass grown indoors under different

light spectra.

KEYWORDS

plant growth, dynamic modeling, spectral distribution, Lactuca sativa, indoor crop
production, regression-based modeling, controlled environment agriculture
1 Introduction

The photon flux density and spectrum can independently and interactively affect crop

photosynthesis, secondary metabolism, and other physiological processes (Ooms et al.,

2016). Paz et al. (2019) investigated the impact of DLI (i.e., daily light integral), varying

from 1.6 to 9.7 mol m−2 day−1 on the growth of indoor-grown red-leaf lettuce and

suggested a minimum DLI of 6.5 mol m−2 day−1. However, biomass of lettuce continues to
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increase with DLI until some saturating value, when appearance of

physiological disorders begin to appear (e.g., around 17 mol m−2

day−1) (Both et al., 1994; Kelly et al., 2020). While it is common for

crops to have species- and cultivar-specific DLI recommendations

for maximized growth rate, the spectral distribution at a constant

DLI has additional impacts on biomass accumulation and

morphology. For example, decreasing the red to far-red ratio (R:

FR) typically increases extension growth (e.g., greater leaf area or

elongated stems) that often increases per-plant biomass as a result

of increased photon interception (Park and Runkle, 2018a; Park and

Runkle, 2018b; Park and Runkle, 2019; He et al., 2021). Similarly,

increasing the fraction of blue (B) light a plant receives inhibits

extension growth and light interception and can decrease the per-

plant biomass of lettuce (Meng et al., 2019; Park and Runkle, 2019;

Kong and Nemali, 2021). Increasing the fraction of B and UV light

can also increase the biosynthesis of secondary metabolites like

anthocyanins which act as photo-protectants and can influence the

photosynthetic rate (Meng and Runkle, 2019; He et al., 2021). As an

additional consideration to the effect of light intensity and spectral

distribution, PAR does not have a constant quantum yield of

photosynthesis (mol CO2 assimilated per mol photon absorbed)

on a per-nanometer basis; red light typically has a greater quantum

yield than blue or green light (Hogewoning et al., 2012). Meng et al.

(2020) analyzed the interaction of blue and green light on

hydroponic lettuce growth, and replacing green with red light

increased the quantum yield of photosynthesis.

Innovations have been made with respect to spectral-shifting

materials for agricultural use that attempt to leverage our

understanding of how light intensity and spectrum influence

crops. For example, Shen et al. (2021) developed a spectral-

shifting film that primarily absorbs blue and green light and

fluoresces red and far-red light to theoretically increase lettuce

biomass accumulation through increased quantum efficiency and

light interception. Hebert et al. (2022) constructed luminescent

quantum dot films that decrease overall DLI by 14%, but the

modified spectrum enhances the tomato biomass yield and

vegetative growth by 6% and 10%, respectively. Despite the

wealth of knowledge on how light intensity and distribution affect

crop growth, models predicting crop growth have not developed at

a similar rate.

A plant growth model is a valuable tool to predict yield and

provide an approximation for the impact of factors (e.g., water use

or CO2 concentration). In addition, plant growth modeling allows

researchers to perform virtual studies to test a hypothesis without

investing the required time to perform costly experiments. Van

Henten and Van Straten (1994) developed a dynamic model to

predict lettuce dry mass as a state variable in time using

environmental inputs such as CO2 concentration, spectral

irradiance for photosynthetically active radiation, and ambient

temperature. Jones et al. (1991) proposed a model for tomato

growth that responds to constantly varying environmental

parameters, and the plant state was presented through seven

variables that included dry mass for different components, leaf

number, and leaf area. These are two of several computational

models that consider environmental parameters to increase crop

yield. While these models consider the impacts of spectral
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distribution through the overall spectral irradiance (overall energy

of the incoming spectrum), the impacts of spectral distribution on a

photometric basis are often disregarded. There are few models in

the literature that incorporate the impact of the photon spectrum of

incoming light on plant growth. Dieleman et al. (2019) aimed to

investigate the impact of light quality on tomato physiological and

morphological responses. Young tomato plants were cultivated

under 7 different light treatments, and various parameters were

measured, including leaf light reflection and transmission,

accumulated biomass, photosynthesis rate, and concentration of

light-capturing pigments. Based on these measurements and the 3D

model developed in GroIMP, and when extrapolated to a mature

(fruit-bearing crop), it was suggested that dynamic light spectra

might stimulate growth and production for an indoor crop

production system.

The aim of this study is to modify an existing calibrated

dynamic growth model of lettuce to accommodate the impact of

spectral distribution. Several regression scenarios are investigated to

find a modified model that estimates the impact of spectral

distribution and intensity on plant growth. A new modified light-

use efficiency coefficient that quantifies the impact of spectral

distribution is also presented below.
2 Plant growth
computational modeling

2.1 Plant growth model for lettuce

The dynamic growth model of lettuce proposed by Van Henten

(1994) is modified in this study to numerically investigate the

impact of spectral distribution and intensity on lettuce dry mass

and yield. Using dry mass as the primary output for the model, this

variable is further subdivided into structural dry mass and

nonstructural dry mass, which accounts for starch, glucose, and

other similar elements. The model assumes that the two categories

of dry mass fully define the state of the plant and describes lettuce

growth by calculating these sub-variables using the following

ordinary differential equations (ODE),

dXnsdm

dt
= ca fphot − rgrXsdm − fresp −

1 − cb
cb

rgrXsdm, (1)

dXsdm

dt
= rgrXsdm : (2)

Equations (1) and (2) represent the transient behavior in the

structural and non-structural dry mass per unit of area (g  m−2) in

response to photosynthesis. In the above equations, fphot = fphot
ðCCO2

, I,T ,Xsdm) is the gross canopy photosynthesis (g  m−2   s−1),

fresp = fresp(T ,Xnsdm,Xsdm) is the maintenance respiration (g  m−2  

s−1), and rgr = rgr(T ,Xnsdm,Xsdm) is the growth rate of structural

material (g  m−2   s−1), while ca and cb describe the conversion rate

of CO 2 to sugar (CH 2O) and yield factor which is a measure of

non-structural dry mass losses due to respiration and

photosynthetic activities, respectively. The value for ca is the
frontiersin.org
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molecular weight ratio of CO2 to CH2O and is set to 0:68.

According to Sweeney (1981), cb for lettuce is approximately 0:8.

The growth rate (rgr) refers to the rate at which non-structural

materials are transformed into structural materials, i.e,

rgr = cgr,max
Xnsdm

cgXsdm + Xnsdm
c(T−20)=10Q10,gr

, (3)

where T is the canopy temperature ( °C), cgr,max is the saturation

growth rate at 20 °C, cg is the growth rate coefficient, and cQ10,gr is

the measure of growth rate sensitivity to the canopy temperature.

Van Holsteijn (1981) approximated the saturation growth rate

coefficient to 5� 10−6   s−1; Sweeney (1981) estimated the growth

rate coefficient for lettuce to 1:0. The growth rate sensitivity

constant is set to 1:6, which means that for every 10 °C increase

in the canopy temperature, the growth rate increases by a factor of

1:6. The maintenance respiration rate is predicted through,

fresp = (cresp,sht(1 − ct )Xsdm + cresp,rtctXsdm)c
(T−25)=10
Q10,resp

: (4)

In Equation (4), cresp,sht and cresp,rt represent shoot and root

maintenance respiration coefficients at 25 °C and indicate the

amount of glucose consumption per structural dry material. Van

Henten (1994) estimated shoot and root respiration coefficients as

3:47� 10−7   s−1 and 1:16� 10−7   s−1, respectively. cQ10,resp is the

sensitivity of maintenance respiration to canopy temperature and

Van Henten (1994) assigned a value of 2:0 for this coefficient. ct is

the ratio of root dry mass to the overall dry mass of the plant, which

can depend on the type of cultivation. Lorenz and Wiebe (1980)

reported an average value of 0:15 for lettuce cultivated in soil, while

Sakamoto and Suzuki (2015) measured an average value of 0:14 for

hydroponic lettuce cultivation. Goudriaan and Monteith (1990)

formulated an empirical correlation to estimate gross canopy

photosynthesis,

fphot = (1 − exp  ( − cKclar(1 − ct )Xsdm))fphot,max , (5)

that cK is the extinction coefficient, and for lettuce with planophile

characteristics, is set to 0:9; clar is the structural leaf area ratio and

Lorenz and Wiebe (1980) approximated it to 75� 10−3  m2   g−1;

and fphot,max is the gross CO 2 assimilation rate for a canopy with

1 square meter of effective surface area. Acock et al. (1978)

presented an equation to calculate fphot,max considering the effect

of CO 2 concentration and spectral irradiance integrated over

wavebands within PAR as well as canopy temperature and

photorespiration,

fphot,max =
eIgCO2

cw (CCO2
− G )

eI + gCO2
cw (CCO2

− G )
: (6)

In Equation (6), e is the light-use efficiency, I is the spectral

irradiance integrated over the wavebands within PAR that

regulates plant growth, gCO2
is the conductance of canopy for the

diffusion of CO 2, cw is the density of CO 2 that has an approximate

value of 1:83� 10−3   g  m−3 (considering greenhouse temperature

around 20 ∘C), CCO2
is the concentration of CO 2 in the greenhouse,

and G is the CO 2 compensation point, accounting for the impact of

the temperature on photosynthesis rate (Van Henten, 1994). CO 2

compensation is determined based on canopy temperature using
Frontiers in Plant Science 03
the following correlation,

G = cGc
              (T−20)=10
Q10,G , (7)

whereas cG is the CO 2 compensation point at 20 °C which is 40  

mL   L−1, and cQ10,G is the sensitivity of CO 2 compensation with

canopy temperature, which Goudriaan et al. (1985) approximated it

as 2:0. Light-use efficiency is computed considering light level

impact on CO 2 compensation and photorespiration (Goudriaan

et al., 1985),

e = ce
CCO2

− G
CCO2

+ 2G
: (8)

In Equation (8), ce is the quantum use efficiency which is the energy

required for a reduction of one mole CO2, and Goudriaan et al.

(1985) approximated its value to be about 17:0� 10−6   g   J−1. In

this study, there is an assumption that this parameter is affected by

the photon spectral distribution; therefore, its value varies

depending on the lighting conditions utilized for lettuce growth.

Goudriaan et al. (1985) developed a mathematical correlation for

the canopy conductance for CO2 diffusion, which is derived

considering the boundary layer, stomatal, and carboxylation

conductance,

1
gCO2

=
1

gbnd
+

1
gstm

+
1
gcar

, (9)

where gbnd , gstm, and gcar represent the boundary layer, stomatal, and

carboxylation conductance, respectively. Stanghellini (1987)

estimated the boundary layer conductance to be 0:007  m   s−1 at a

5°C temperature gradient, 0.1 m   s−1 wind speed, and leaf with a

characteristic length of 0:075  m. For a plant that grows in an

environment without stress, Stanghellini (1987) approximated

stomatal conductance to be 0:005  m   s−1. Carboxylation

conductance is a function of canopy temperature and its value

(from 5 to 40°C) is determined using the following empirical

correlation,

gcar = −1:32� 10−5T2 + 5:94� 10−4T − 2:64� 10−3 : (10)

Table 1 provides a summary for the definition of different

coefficients and their numerical values within the plant growth model.
2.2 Plant growth ODE solver

A MATLAB code was developed to find a solution for the ODE

Equations (1), and (2). The code utilized experimental temperature,

spectral irradiance integrated over wavebands from 400 to 750 nm,

and CO 2 concentration as inputs to compute the two sub-variable

dry masses as outputs. Input and output data were extracted from

experiments that investigated the impact of the photon spectrum on

production of lettuce ‘Rouxai’ growth by Meng and Runkle (2019);

Meng et al. (2019), and Meng et al. (2020). Meng and Runkle (2019)

carried out three replications with a PPFD of 100 and 180 mmol  

m−2   s−1 during 0-2 and 2-3 days, respectively. After that, the

seedlings were grown under various LED treatments with a 24-

hour photoperiod, and the temperature was set to 23 °C. Fresh and
frontiersin.org
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dry mass data were obtained using destructive tests for plants

harvested on day 10. Similarly, Meng et al. (2019) performed

experiments three times at a total photon flux density of 180 mmo

l  m−2   s−1. The seedlings were transplanted into a hydroponic

system with a 20-hour photoperiod, an average air temperature of

21:1 ∘C, average CO 2 concentration of 402 mL   L−1, and relative

humidity ranging from 41 % to 70%. Meng et al. (2020) conducted

two replications at a temperature of 20 °C, a total photon flux

density of 50 mmol  m−2   s−1, and 24-hour photoperiod. The next

day, the temperature, the photoperiod, and total photon flux density

were set to 22 °C, 20 hours, and 180 mmol  m−2   s−1, respectively. On

the fourth day, the seedlings were exposed to nine different light-

quality treatments under the same controlled conditions. For the

first replication, the average temperature, relative humidity, and

CO2 concentration was 22:4 °C, 410 mL   L−1, and 34%, and in the

second replication, these parameters were 22.4 °C, 410 mL L-1 and

35%, respectively. Table 2 represents the experimental data for red-

leaf lettuce ‘Rouxai’ under different light treatment conditions,

while Figure 1 illustrate the variation of incoming light spectra.

Using integrated spectral irradiance, CO2 concentration, and

temperature, the Van Henten (1994) growth model is used with the

parameters in Table 1 to predict dry mass for different light treatment

experiments. Figure 2 represents the necessity of considering the

impact of spectral distribution on lettuce growth by showing the

difference between the experimental data and the plant growth
Frontiers in Plant Science 04
model. For example, the growth model predicted only 6 of the 20

lighting treatments to be within 25 % of the actual dry mass values.

Numerical error is the measure of a difference between the

experimental dry mass of lettuce and the model prediction using the

suggested value for ce (Van Henten, 1994), which was 17:0�
10−6   g   J−1. With the assumption of unvarying ce for different

experiments, the dynamic growth model does not accurately

predict for various light treatment experiments other than typical

greenhouse light conditions.
2.3 Validation of ODEs solver through
altering ce for different experiments

As mentioned earlier, using a constant ce led to a considerable

error in lettuce dry mass prediction; however, as we will show, a

varying ce depending on spectral distribution allows prediction in

good accordance with experimental data. Knowing the dry mass of

lettuce for different experiments, the solver tries to find a value for

ce that allows a prediction of a state variable in good accordance

with experimental data. These values will be used in the next section

to develop a model that predicts the impact of the photon spectrum

on cϵ, and eventually on plant growth. Figure 3 compares the lettuce

dry mass predicted by the model with the experimental dry mass for

the investigated light treatments. It is inferred from Figure 3 that the
TABLE 1 Summary of coefficients needed in Equations (1)-(9) for lettuce cultivation modeling.

Parameter Definition Value Reference

ca Conversion rate of CO2 to CH2O 0.68 Van Henten (1994)

cb Yield factor 0.8 Sweeney (1981)

cgr,max Saturation growth rate at 20 °C 5� 10−6   s−1 Van Holsteijn (1981)

cg Growth rate coefficient 1.0 Sweeney (1981)

cQ10 ,gr Growth rate sensitivity to the canopy temperature 1.6 Sweeney (1981)

cresp,sht Shoot maintenance respiration coefficient at 25 °C 3:47� 10−7   s−1 Van Henten (1994)

cresp,rt Root maintenance respiration coefficient at 25 °C 1:16� 10−7   s−1 Van Henten (1994)

cQ10 ,resp Sensitivity of maintenance respiration to the canopy temperature 2.0 Van Henten (1994)

ct Ratio of root dry mass to total plant dry mass (soil) 0.15 Lorenz and Wiebe (1980)

Ratio of root dry mass to total plant dry mass (hydroponic) 0.14 Sakamoto and Suzuki (2015)

cK Extinction coefficient 0.9 Goudriaan and Monteith (1990)

clar Structural leaf area ratio 75� 10−3  m2   g−1 Lorenz and Wiebe (1980)

cw Density of CO2 1:83� 10−3   g  m−3 Van Henten (1994)

cG CO2 compensation point at 20 °C 40  mL   L−1 Goudriaan et al. (1985)

cQ10 ,G Sensitivity of CO2 compensation with canopy temperature 2.0 Goudriaan et al. (1985)

ce Quantum use efficiency as energy required for a reduction of one molecule of CO2 17:0� 10−6   g   J−1 Goudriaan et al. (1985)

gbnd Boundary layer conductance 0:007  m   s−1 Stanghellini (1987)

gstm Stomatal conductance 0:005  m   s−1 Stanghellini (1987)
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solver is capable of finding a quantum use efficiency for each

experiment that leads to an accurate prediction of the lettuce state

variable (dry mass) on the day of harvest.
3 Implementation of regression
methodology to account for the
impact of spectral distribution and
intensity on lettuce growth

This section describes the development of the linear regression

model. Two distinctive datasets are considered, which represent the

experiments carried out under different LED spectrums and novel data

for natural light. The general form of the model is presented in the next

subsection, which is followed by a discussion on the input features of

the model. Exploratory data analysis is performed on the input dataset

in subsection 3.3. The generic form of the empirical models is

investigated in subsection 3.4, and the performance of different

models is evaluated using various metrics such as R2, mean absolute

percentage error (MAPE), Akaike information criterion (AIC), and

Bayesian information criterion (BIC), in the next subsection. A

regression model is built from the LED lighting data using a train
Frontiers in Plant Science 05
and test split of 85% and 15%, respectively. The effects of combining the

suggested empirical model with the dynamic growth model for lettuce

are studied in subsection 3.6. In the last subsection, the precision of the

proposed combined dynamic growth model is evaluated using data

from another study conducted under completely different experimental

conditions under natural lighting.
3.1 Light-use efficiency prediction based
on incoming spectrum

The aim of this study is to develop a model that predicts the

quantum use efficiency (ce) as a function of spectral photon flux

density or integrated spectral irradiance within the PAR+FR

waveband (i.e., 400-750 nm). A linear regression approach proves

to be an invaluable tool for generating a basic model for obtaining

weights for different features and establishing a simple

mathematical model in the form of cϵ =o
4

i=1
(wiFi) where wi and Fi

correspond to the weight (coefficient) and the value for the i th input

feature, respectively. Since the incoming spectrum is a continuous

function (Figure 1), an idea was devised to generate discrete features

based on the continuous distribution of the spectrum for the linear
TABLE 2 Experimental data for different spectral treatments obtained from Meng and Runkle (2019) and Meng et al. (2019, 2020).

Treatment
Number

Literature Treatment
Type

Dry Mass
(g)

PFD
(mmol  m−2s−1)

I PAR+FR
(Wm−2)

1 Meng et al. (2020) R180 2.931 180.2 32.8

2 Meng et al. (2020) G60R120 2.745 184.3 36.3

3 Meng et al. (2020) B20R160 2.258 179.6 34.4

4 Meng et al. (2020) B20G60R100 2.449 180.2 37.2

5 Meng et al. (2020) B60R120(1) 2.051 183.0 38.5

6 Meng et al. (2020) B60G60R60 1.527 178.7 40.3

7 Meng et al. (2020) WW180(1) 2.470 184.8 36.5

8 Meng and Runkle (2019) B30R150 0.046 183.7 36.2

9 Meng and Runkle (2019) B30R150FR30 0.052 216.5 41.7

10 Meng and Runkle (2019) R180FR30 0.045 214.2 38.4

11 Meng et al. (2019) B60R120(2) 1.014 178.1 37.3>

12 Meng et al. (2019) B40G20R120 1.187 182.5 37.3

13 Meng et al. (2019) B20G40R120 1.348 181.7 36.4

14 Meng et al. (2019) G60R120 1.587 184.3 36.3

15 Meng et al. (2019) B40R120FR20 1.232 180.8 36.1

16 Meng et al. (2019) B20R120FR40 1.438 183.6 34.4

17 Meng et al. (2019) R120FR60 1.622 174.2 30.1

18 Meng et al. (2019) B20G20R120FR20 1.417 182.4 35.4

19 Meng et al. (2019) WW180(2) 1.394 188.1 37.0

20 Meng et al. (2019) EQW180 1.087 181.7 38.4
fron
B, G, R, FR, WW, and EQW refers to blue (400–500nm), green (500–600nm), red (600–700nm), far-red (700–750nm), warm-white, and equalized white light-emitting diodes, respectively
according to Meng et al. (2020). PFD, and IPAR+FRrepresent photon flux density and spectral irradiance integrated over PAR and far-red wavebands.
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regression model, as shown in Figure 4. This idea involves dividing

the incoming spectrum into four segments, which in the context of

this study, corresponding to four distinctive wavebands in PAR+FR:

blue (400-500 nm), green (500-600 nm), red (600-700 nm), and far-

red (700-750 nm). A discrete value is assigned for each segment
Frontiers in Plant Science 06
based on the integral of spectral distribution. Subsection 3.2

provides a detailed description of how these discrete values are

obtained for each spectrum.

In addition, it is possible to investigate the interaction between

different light wavebands on quantum use efficiency through the

regression model in the form of �cϵ =o4
i=1(wiFi) +oj(w

0

j F
0

j ) where

F
0

j can be defined as the multiplication of two fraction ratios, e.g.,

the blue and green wavebands. Figure 4 provides an overview of the

development of empirical correlation for light-use efficiency based

on the continuous spectrum distribution.
3.2 Definition of the fraction ratio

As previously stated, the dynamic growth model’s efficiency can

be improved by developing a model for ce that takes into account

the impact of spectral distribution. This can be accomplished by

creating a function for ce that is dependent on the photon flux

density or integrated spectral irradiance ratio for 100-nm

wavebands in PAR and 50-nm FR waveband. Calculation of these

ratios based on spectral photon flux distribution is more convenient

since Meng et al. (2020) assigned a label based on photon flux

density treatments with different wavebands. Considering lighting

treatment 18, or “B20G20R120FR20” as an example, the photon
FIGURE 1

Spectral distribution for different case studies of lighting treatment for lettuce reported in the literature to study the effect of spectral distribution on
lettuce growth. The label at the top of each graph represents a light treatment experiment according to Table 2.
FIGURE 2

Numerical error for the lettuce growth model using the ce value by
Van Henten (1994). DMsim, and DMexp are lettuce dry mass for
numerical simulation and experimental study in g, respectively. The
considerabledifferences, some with more than 75 % error, indicate
the necessity of considering the impact of spectral irradiance and
flux density on the ce value for an accurate prediction of lettuce
growth yield.
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FIGURE 4

The development of the regression model for light-use efficiency based on spectral photon flux density distribution is shown. In Panel 1 (from

Figure 1), l is the wavelength (nm), and SPFD is the spectral photon flux density ( m mol m −2s −1 nm −1). The continuous SPFD is converted to four
discrete features, as seen in Panel 3 (from Figure 5). Dry mass versus time is given in Panel 2 (from Figure 3), which is then converted to ce . ce , given
on the right, is the light-use efficiency in the dynamic growth model of lettuce, and F i and wi are the discrete input features based on the incoming
spectrum and the corresponding weights, respectively. Finally, Terms with prime correspond to the interaction between different wavebands.
FIGURE 3

Comparison of lettuce dry mass for a dynamic growth model with experimental data under different spectral distributions and intensities. The label
at the top of each graph represents a light treatment experiment according to Table 2.
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flux density for blue and green light is 20  mmol  m−2   s−1, red light

is 120  mmol  m−2   s−1, and far-red light is 20  mmol  m−2   s−1. The

photon flux density for different wavebands represents the areas

under the curve in Figure 5. Therefore, photon flux density ratios

for the blue, green, and far-red wavebands are 20
180, while for the red

waveband is equal to 120
180. Computation of the ratios for integrated

spectral irradiation of the PAR+FR wavebands is different, since

spectral irradiance is a measure of the energy carried by a photon.

Therefore, integrated spectral irradiance (I) for a specific spectrum

of PAR+FR is determined by calculating the energy for each

wavelength through multiplication of wavelength energy and its

number of photons and integrating those over the specific

waveband. For “B20G20R120FR20” as an example, the integrated

spectral irradiance for blue, green, red and far-red wavebands are

5:57  W  m−2, 4:57  W  m−2, 21:74  W  m−2, and 3:51  W  m−2,

respectively. Based on the integrated spectral irradiance values

computed for different wavebands, the integrated spectral

irradiance intensity ratios for blue, green, red, and far-red are
5:57
35:38,

4:57
35:38,

21:74
35:38, and

3:50
35:38, or 15:7 : 12:9 : 61:4 : 9:9 respectively.
3.3 Exploratory data analysis

With the calculation of ce from the experimental data, the next step

is to create regression models to fit polynomial functions over a set of

discrete variables and predict the light-use efficiency. As the aim of this

study is to establish a framework that can estimate light-use efficiency

as a function of incoming spectra, the input features include discrete

parameters associated with either PFD or spectral irradiance
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distribution. The first set of input variables consists of photon flux

density ratios for blue, green, red, and far-red wavebands, which are

calculated by integrating the photon flux density distribution shown in

Figure 1. On the other hand, the second set of input parameters

includes spectral irradiance ratios for the same wavebands, obtained by

integrating over spectral irradiance distribution for various lighting

distributions. Before investigating various regression models, the

properties of the data used for regression are explored. Table 3

represents the mean, standard deviation (std), minimum (min),

maximum (max), and percentile values for the investigated features

(25% or first quartile, 50% or second quartile or median, 75% or third

quartile), the input (F is the fraction ratio which is either based on

photon flux density (PFD) or spectral irradiance integrated over

wavelengths (I) whereas B, G, R, and FR represent blue, green, red,

and far-red wavebands) and the output (ce is the light-use efficiency) of

the model. Figure 6 visualizes the 3D distribution for photon flux

density and spectral irradiance fraction ratios for the studied dataset.
3.4 Predictive model including polynomial
features for the quantum use efficiency
coefficient (ce)

Different polynomial models examined within the aim of this

study have a form similar to

cϵ = a0 +o
4

i=1
aiFi + biF

2
i + ciF

3
i + diF

4
i +o

4

j=i
(eijFiFj)

" #
: (11)

Not all of the models have every term presented in Equation (11),

e.g., the regression model based on the first-order term is defined as
�ce = a0 +o4

i=1(aiFi). Regression models are defined in a way that

includes up to 16 weight coefficients. Within the scope of this study,

22 distinctive terms are investigated, that are provided in Equation

(11), and includes ratios (Fi, 4 terms representing each waveband),

the square of ratios (F2
i , 4 terms), the cubic of ratios (F3

i , 4 terms),

the quartic of ratios (F4
i , 4 terms), and interaction ratios (FiFj, 6

terms). Therefore, studied regression models within the scope of

this study are comprised of linear models with 4 (includes Fi terms),

8, 12, 14, and 16 (includes Fi, F
2
i , F

3
i , F

4
i terms) weight coefficients.

Initially, a regression model with four terms corresponding to the

first-order terms was developed and investigated as a baseline

model. Higher-order polynomials were then explored to improve

the poor performance (R2 < 0.45%) of this linear model.

Polynomials with 8 (combinations of linear, second-order, and

interaction terms), 12 (same with third-order terms), 14 (same as

12 with two more terms), and 16 (including fourth-order terms)

were considered. It should be noted that all 22 terms (all

combinations through fourth-order) were not used because of the

small size of the dataset. Results from these model choices will be

given in the following section.

Since the dataset is comprised of 20 observations of ce for

different spectral distributions and intensities (Figure 1), increasing

the number of coefficients beyond the suggested limit would result

in an overfitted model. In other words, this would lead to a model

capable of accurate prediction for the studied data; however,
FIGURE 5

Dividing the photon spectrum for experimental treatment number
18, or “B20G20R20FR120”, to calculate the intensity ratio that
corresponds with the integrated spectral irradiance or PFD
distribution. B, G, R, FR corresponds to blue (400 − 500  nm), green
(500 − 600  nm), red (600 − 700  nm), and far-red (700 − 750  nm)
wavebands.
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evaluating the performance of the model against new data would

decrease the fidelity of the model. The term “nonlinear” in this

section refers to polynomial models based on Equation (11) in

which eij ≠ 0 for every i and j value. The regression models which

estimate the impact of incoming light spectrum on the light-use

efficiency are classified into the following categories: 1) models

based on PFD ratios that disregard the impact of overall photon flux

density; 2) models based onintegrated spectral irradiance ratios that

disregard the impact of overall value; 3) models based on PFD

ratios, that considered the impact of overall photon flux density; 4)

models based on integrated spectral irradiance ratios that

considered the impact of overall value. Figures 7A–D, represent

the accuracy of categories 1, 2, 3, and 4 using R 2 metric.

To prevent overfitting and ensure the model’s applicability to

new data, a validation study is conducted on the dataset. This
Frontiers in Plant Science 09
involves reserving a portion of the data for testing, which is not used

during the model training phase. The testing data is used to evaluate

the model’s performance on new and unseen data. The goal is to

find a model that performs well on both training data and testing

data, thereby preventing underfitting or overfitting issues. For

instance, for a regression model with 16 weight coefficients, 3

samples are randomly chosen for testing purposes. The remaining

17 samples are used to train the regression model, and then its

accuracy is evaluated on the 3 unseen samples. The selected

regression model (and the corresponding weights for different

terms) is the one that performs well on both training data (17

samples) and testing data (3 samples). This approach ensures that

the model is not overfitting and can predict well on new data,

making it useful for practical applications. In addition to using

unseen data for the validation of the regression model, a
TABLE 3 Statistical information for ratios based on integrated spectral and photon flux density distributions, and ce .

Variable Mean Std Min 25% 50% 75% Max

FB,PFD 0.127 0.112 0 0.049 0.111 0.181 0.333

FG,PFD 0.147 0.178 0 0 0.056 0.309 0.588

FR,PFD 0.660 0.167 0.284 0.639 0.667 0.679 1

FFR,PFD 0.066 0.093 0 0 0 0.111 0.333

FB,I 0.168 0.142 0 0.065 0.155 0.250 0.421

FG,I 0.158 0.187 0 0 0.063 0.322 0.605

FR,I 0.614 0.174 0.254 0.562 0.612 0.665 1

FFR,I 0.060 0.088 0 0 0 0.097 0.321

ce � 105 1.30 0.142 0.110 1.21 1.26 1.40 1.61
frontier
Mean, std, min, and max represent the average, standard variation, minimum, and maximum values in the dataset. 25%, 50%, and 75% represent numerical values for the first quartile, median,
and third quartile (based on the assumption that data is sorted in ascending order). F is the fraction ratio which is either based on photon flux density (PFD) or spectral irradiance integrated over
wavelengths (I), whereas B, G, R, and FR represent blue, green, red, and far-red wavebands, and ce is the light-use efficiency.
A B

FIGURE 6

3D visualizations of fraction ratio distribution for photon flux density and spectral irradiance ratio. The color bar represents the value of the light-use
efficiency for various experiments.
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regularization penalty (L1 or L2 norm) is introduced into the

regression model to decrease the variation caused by the

complexity of the model.
3.5 Development and performance
comparison of regression models

In this study, the Scikit-learn built-in function LinearRegression

developed by Pedregosa et al. (2011) is used to build a model that

minimizes the regularized residual sum of squares (R2) as the

criteria for the closest linear functionto the actual data 1. The R2

score is calculated using R 2 = 1 − on
i=1

(yi−ŷ i)
2

on
i=1

(yi−y)
2 , in which yi and ŷ i

represented the true and predicted value for the i th sample and y is

the average of the actual values. In addition to R2 criteria, the mean

absolute percentage error (MAPE) is also calculated for different

models and is defined as MAPE = 1
nsamples o

nsamples

i=1
jyi − ŷij

max ( ϵ, jyij)
,

where ϵ is an arbitrary non-zero small positive number to ensure

that MAPE is defined. Figure 8 compares the actual value, ce ,simulation,

versus the predicted value, ce ,prediction: a straight line would indicate a

perfect prediction. In Figure 8A, only terms linear in the features Fi are

included; in contrast, in Figure 8B, first-order and interaction terms in

Equation (11) are used. It is seen that the accuracy increases with more

features. Figure 8 provide qualitative insight into the accuracy, whereas

R2 and MAPE provide quantitative metrics, as shown in Figures 7, 9.

According to Figures 7, 9, in spite of simplicity for the first-order and

the combination of first and second-order models, these models have

poor accuracy in predicting the ce as a function of spectral distribution

with R2 score less than 0:75. This is addressed by considering several

models created from the general expression in Equation (11): ten

different combinations of features are shown, each as a horizontal bar.

Not all combinations are shown in the Figures 7, 9–11; a representative

set for a different number of terms is visualized, but one that includes

the best performing model (16 terms).

Normalization of ce to accommodate the impact of overall

integrated spectral irradiance or photon flux density was examined

and found to increase the fidelity of the regression model. Note the

improvement for the particular case of a model that includes first-,

second-, third-, and fourth-order terms (Fi+Se+Th+Fo bar in

Figure 7), which we will establish as the best model below. For

this case, using normalization resulted in a 16-feature regression

model that has an average error of 2%, as compared to the un-

normalized error of 15%.

In addition to R2 and MAPE metrics, the Akaike information

criterion (AIC) and the Bayesian information criterion (BIC) are

also computed for the studied models, which are the measures of the
1 In order to mitigate potential overfitting, the linear regression was also

performed using both ridge and LASSO regularization, again using Scikit-learn

built-in function. Figure 7 indicates the importance of high-order polynomial

terms but is not regularized; however, results in other figures employ ridge

regression.
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model’s complexity. The value of AIC and BIC for models with a

constant parameter is obtained using the following correlations

(Seabold and Perktold, 2010): AIC = − 2� LL + log  (N)� (k + 1),

and BIC = − 2� LL + 2� (k + 1), whereas LL is the log of the

likelihood function (how likely it is that the model predicted the

actual values), N is the size of training data, and k is the number of

features, respectively. It is worth mentioning that a lower value of

AIC or BIC indicates that the fitted model is a better fit for the data,

as it balances the goodness of fit and the complexity of the model

model (Baguley, 2018). Figures 10, 11 provide visual representations

of the impact of the model’s complexity on AIC and BIC value. For

the studied dataset, by increasing the accuracy of the model through

the addition of new terms, the likelihood function also improves,

which ultimately outweighs the negative penalty associated with the

higher number of features (k); therefore, for the investigated

models, the introduction of new features into the regression

model would generally decrease AIC value. Figure 11

demonstrates that the BIC shows a different pattern, where

regression models including nonlinear terms and only one of the

first-, second-, or third-order terms are better fitted than those

consisting ofnonlinear terms and two of the first-, second-, or third-

order terms.

It is important to note that while a lower AIC or BIC value

suggests a better model, it does not necessarily mean that the model

is the best possible fit for the data. In order to determine the best-

fitted model, a comprehensive analysis of the performance of the

studied models is conducted based on AIC, BIC, MAPE, and R2

metrics. Based on this comparison, it is evident that the model,

which incorporates first-, second-, third-, and fourth-order terms

based on the integrated spectral irradiance ratio considering the

impact of overall integrated spectral irradiance of light-use

efficiency, performs better than the other models with higher

accuracy, and relatively lower AIC and BIC values.

Equation (12) demonstrates the high fidelity regression model

based on spectral irradiance distribution normalized with integrated

spectral irradiance for R180 light treatment based on Table 2. As

shown in Figure 12, predictions of the suggested model are in good

accordance with numerical data (for the best performing model, the

testing data include treatment numbers 7, 14, and 19.); however,

additional data could prove useful in developing a more

comprehensive model.

cϵ=RI = −1:40� 10−4 + 1:82� 10−4FB,I + 2:06� 10−4F2
B,I

− 7:71� 10−4F3
B,I + 8:38� 10−4F4

B,I + 2:32� 10−4FG,I

−4:20� 10−4F2
G,I + 1:53� 10−3F3

G,I − 1:56� 10−3F4
G,I

−1:90� 10−4FR,I + 1:03� 10−3F2
R,I − 1:10� 10−3F3

R,I

+4:13� 10−4F4
R,I + 4:68� 10−4FFR,I − 5:25� 10−3F2

FR,I

+2:92� 10−2F3
FR,I − 4:77� 10−2F4

FR,I

(12)

Equation (12) is constrained by the following condition,

FB,I + FG,I + FR,I + FFR,I = 1 (13)

Now that the best-performing model is selected, the impact of

adding higher-order terms to the regression model is investigated. The
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following notation ½a1  ,   a2  ,   a3  ,   a4� is used to evaluate the impact of

higher-order term addition on first-order terms, in which a1, a2, a3,

and a4 represent weights for blue, green, red, far-red fraction ratios,

respectively. The examined models included a first-order term model

with weights of ½−1:24� 10−5  ,  −6:96� 10−6  ,  −3:60� 10−6  ,   −
Frontiers in Plant Science 11
2:18� 10−7�, a combination of first- and second-order terms model

wi th ½6:95� 10−5  ,   7:34� 10−5  ,   8:02� 10−5  ,   4:29� 10−5�, a

combination of first- to third-order terms model with ½6:89� 10−6  ,  

−2:41� 10−5  ,   4:60� 10−5  ,  −1:60� 10−5�, and a combination of

first- to fourth-order terms model with ½1:82� 10−4  ,   2:32� 10−4  ,
D

A B

C

FIGURE 7

Comparison of different models based on R2 score criteria. Abbreviations within these figures are NL, nonlinear (includes 6 interaction terms
between wavebands), Fi, first-order terms; Se, second-order terms; Th, third-order terms; Fo, fourth-order terms. R2 score closer to 1 indicates a more
accurate model.
A B

FIGURE 8

Accuracy of first-order regression models with the assumption of (A) Neglecting nonlinearity (eij = 0), and (B) Considering nonlinearity (eij̸ = 0). IPAR+FR
refers to a regression model based on theintegrated spectral irradiance ratio, while PFD represents a model based on the photon flux density ratio.
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D

A B

C

FIGURE 9

Comparison of different models based on the mean absolute percentage error (MAPE) score criteria. Abbreviations within these figures are NL,
nonlinear (includes 6 interaction terms between wavebands), Fi, first-order terms; Se, second-order terms; Th, third-order terms; Fo, fourth-order
terms. The lower value for MAPE score indicates a more accurate model.
D

A B

C

FIGURE 10

Comparison of different models based on AIC criteria. Abbreviations within these figures are NL, nonlinear (includes 6 interaction terms between
wavebands), Fi, first-order terms; Se, second-order terms; Th, third-order terms; Fo, fourth-order terms. The lower the value for AIC, the better the
fit of the model (Baguley, 2018).
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 −1:90� 10−4  ,   4:68� 10−4�. Comparison between these notations

suggests that the addition of higher-order terms to the regression

models significantly affects the weights of the first-order terms,

highlighting the importance of exploring more complex models with

higher-order terms for improved prediction accuracy.
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3.6 Coupling the regression model
with van henten dynamic growth
model for lettuce

Using Equation (12) and integrated spectral irradiance fraction

ratio for the investigated wavebands of the different light treatment
D

A B

C

FIGURE 11

Comparison of different models based on BIC criteria. Abbreviations within these figures are NL, nonlinear (includes 6 interaction terms between
wavebands), Fi, first-order terms; Se, second-order terms; Th, third-order terms; Fo, fourth-order terms. The lower the value for BIC, the better the
fit of the model (Baguley, 2018).
FIGURE 12

Comparison of ce for the suggested model with numerical simulation for different light treatments.
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cases, the Van Henten (1994) dynamic growth model is utilized to

compare the accuracy of the modified growth model that accounts

for spectral distribution and intensity. Figure 13 compares the

difference between experimental dry mass for lettuce with dry

mass prediction of the modified growth model.

Comparing the numerical error of the lettuce growth model

using the suggested value for light-use efficiency (labeled constant in

Figure 13), with that of the lettuce growth model withthe proposed

regression model (Equation (11); labeled regression in Figure 13), it

is inferred that the suggested regression modelof the ce improves the

accuracy of Van Henten (1994) growth model and adequately

considers the impact of spectral distribution on plant growth.
3.7 Cross-validation of the proposed light-
use efficiency model with novel data

In the previous section, the performance of the proposed

mathematical model is investigated through integration with the Van

Henten (1994) dynamic growth model. To further investigate the

accuracy of the light-use efficiency model based on the spectral

irradiance ratios of various wavebands, data from Both et al. (1994)

on lettuce cultivated in a controlled greenhouse environment is utilized.

From October 1992 to March 1993, six controlled light treatments

(without the use of supplemental lighting) were conducted for lettuce

grown hydroponically. For these treatments, during the first 11 days,

the temperature and CO 2 concentration were maintained at 25 °C and

350mL L-1, respectively. After day 11, the temperature was set to 24 °C

between 7 am and 5 pm and 18.8 °C for the rest of the day, while CO 2

was enriched to 1000 mL L-1. Table 4 represents data used for cross-

validation of the suggested regression-based light-use efficiency model.

Spectral irradiance intensity and distribution ratios are approximated

using reported daily light integral for the different treatments and

predicted solar irradiation by Tobiska et al. (2000). Figure 14 displays a

comparison of the spectral photon flux density distribution with

respect to wavelength for the investigated LED spectrums and

natural lighting.
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According to Figure 15, using the proposed regression-based light-

use efficiency model, lettuce dry mass predictions were in close

agreement (mostly within 2-3 percent error) with the experimental data.
4 Discussion and conclusion

The aim of this study is to predict the impact of incoming light

spectral distribution and its intensity on lettuce growth. For this

purpose, a dynamic model of plant growth for lettuce provided by

Van Henten (1994) is modified. An ODE solver is developed to

simulate the dynamic behavior of lettuce from the seedling stage to

maturity. It is assumed that the spectral distribution of light and its

intensity affect the model through a coefficient ce , which accounts for

energy provided by photons for a reduction of one molecule of CO2.

Using data for lettuce cultivated under 20 different indoor lighting

treatments, the ODE solver calculated cϵ for different cases. Several

models are fitted using spectral distribution ratios for 4 light

wavebands: blue (400 − 500   nm), green (500 − 600   nm), red (600 −

700   nm), and far-red (700 − 750   nm) as input data and the obtained

ce as the sole output. To determine the algebraic structure of the

model with the highest accuracy, a variety of regression models with

varying numbers of features, from 4 (ratios for the blue, green, red,

and far-red wavebands) to 16 (first, second, third, and fourth-order

values for these ratios) are investigated. The combination of first to

fourth-order terms that had the highest accuracy (98 %) was a

regression model based on integrated spectral irradiance

distribution (in which the predicted ce was based on normalized

overall spectral irradiance). In order to obtain coefficients for different

terms in the regression model, 17 of the 20 experimental data were

utilized, while the rest prevented the overfitting of the regression

model. To further evaluate the accuracy of the regression model, 21

experimental data for three replications of indoor-cultivated lettuce

were used (Both et al., 1994) and are presented in Figure 15.

The impact of incoming spectral distribution on lettuce plant

growth is investigated. By considering two constrained scenarios, it

is possible to visualize the impact of varying spectral distribution on
FIGURE 13

Computed numerical error is significantly reduced based on ce value using Equation (12) (regression label, black bar) compared with error using the
suggested constant value for ve by Van Henten (1994) (constant label, light gray bar). DMsim, and DMexp are lettuce dry mass for numerical simulation

and experimental study in g, respectively. As shown in the figure, coupling the regression model with the dynamic growth model improved the
accuracy of prediction for lettuce cultivated under different spectral distributions.
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light-use efficiency. In these scenarios, the spectral irradiance

integrated over wavelengths (IPAR+FR) remains unchanged while

one of the wavebands is eliminated from the spectra. In the first

scenario, it is assumed that the far-red waveband is missing from

the light spectra and only contains the traditionally defined PAR

waveband. Contrary to the first scenario, in the second one, the

green waveband is replaced with far-red; thus, the incoming

spectrum is composed of blue, red, and far-red wavebands.

Figures 16A, B demonstrate how light-use efficiency varies in

scenarios one and two, respectively. Based on these figures, the

red waveband promotes and the blue waveband inhibits biomass
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accumulation in lettuce by increasing and decreasing light-use

efficiency, respectively. The impact of the blue waveband on plant

growth is enhanced by the presence of the green waveband. On the

other hand, the addition of the far-red waveband to the light

spectrum mitigates the impact of the blue/green waveband.

Therefore, maximum lettuce biomass accumulation can be

achieved using the outcomes of these scenarios by emphasizing

the red and far-red wavebands and avoiding a high spectral

irradiance ratio of the blue and green bands. However, this model

ignores important quality considerations such as leaf color, texture,

nutritional content, and post-harvest longevity.
TABLE 4 Experimental dry mass data for greenhouse cultivated hydroponic lettuce grown under controlled light treatments obtained by Both et al. (1994).

Experimental period Daily light integral
(mol m–2 day–1)

Dry Mass

Day 14 Day 18 Day 21 Day 25 Day 28 Day 32 Day 35

November 1992 6.2 0.064 0.153 0.3 0.76 1.01 1.735 2.46

January 1993 4.7 0.063 0.141 0.2 0.44 0.84 1.2 1.87

February 1993 10.5 0.085 0.288 0.53 1.21 1.98 3.15 4.81
fron
FIGURE 14

Comparison of spectral photon flux density distribution for natural light (Both et al., 1994) and investigated LEDs spectrum.
FIGURE 15

Comparison of dynamic growth model accuracy using the suggested value for ce by Van Henten (1994), and obtained value using the proposed
regression-based light-use efficiency model with experimental data from Both et al. (1994) for periods of November 1992, and January and February
of 1993. The regression-based model is capable of approximating dry mass for greenhouse cultivated lettuce.
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The model presented in Equation (12) provides a simplified

framework to evaluate the impact of spectral distribution on lettuce

plant growth. This contrasts with a model for tomato growth

(Dieleman et al., 2019), in which the 3D model needs to be

solved in order to investigate the effect of light quality. Moreover,

the application of this model to the cultivation of lettuce can

increase biomass accumulation during the plant growth cycle.

This model can also be used to optimize light conditions,

allowing for more efficient use of energy and resources.

Although the regression model predictions are in good accordance

with the solver predictions, additional experimental data with a focus

on the impact of light spectrum on lettuce plant morphology will likely

create a more comprehensive model with higher fidelity. Furthermore,

adding higher-order terms to the regression model resulted in a

decrease in the weights of the first-order terms, which in turn

suggests the necessity of investigating regression models with higher

complexity on more comprehensive data for developing an accurate

model of light-use efficiency. Since in the studied dataset, the number of

samples is limited to 20 experiments, it is not feasible to assess the

performance of more complex regression models. In addition,

interactions likely exist between light intensity and the photon

spectrum, and additional data are needed to test and improve the

model’s performance. Specifically, morphological acclimation, such as

total leaf area, canopy area, number of leaves, leaf pigmentation, and

chlorophyll concentration, can affect the photosynthetic rate and light

interception and would ideally be parameterized in future growth

models. Finally, this technique has the potential to be applied to other

horticultural crops, particularly leafy vegetable crops, to incorporate the

impact of spectral distribution on biomass accumulation and

crop yield.
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FIGURE 16

Impact of the incoming light spectral distribution on the light-use efficiency coefficient (ce ) considering the same spectral irradiance integrated over
wavelength (IPAR+F R remains unchanged). B and R refer to blue and red. The constraint of Equation (13) enforces a linear relationship between FB,I
and FR,I within each scenarios, and ensures a clear visualization of the effect of the spectral distribution on ce .
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Glossary

CCO2 Carbon dioxide concentration (mL   L−1)

DLI Daily light integral (mol  m−2   day−1)

F Intensity ratio corresponding to specific wavelengths in the form of

(
PFDspecific

PFDoverall
) or (

Ispecific
Ioverall

)

f Mass rate of change (g  m−2   s−1)

g Conductance (m   s−1)

I Spectral irradiance integrated over wavelengths (W  m−2)

PFD Photon flux density (mmol  m−2   s−1)

RI Ratio of spectral irradiance integrated over PAR+FR wavebands to a
spectral irradiance reference value (R180 is considered as the reference)

(
IPAR+FR

IPAR+FR,R180
)

rgr Growth rate of structural material (g  m−2   s−1)

SPFD Spectral photon flux density (mmol  m−2   s−1   nm−1)

T Temperature (∘C)

X Dry Mass (g  m−2)

Subscripts:

B Blue light waveband (400 − 500   nm)

bnd Boundary layer

car Carboxylation

FR Far-red light waveband (700 − 750   nm)

G Green light waveband (500 − 600   nm)

K Extinction coefficient

lar Leaf area ratio

max Saturation rate (g  m−2   s−1)

nsdm Non-structural dry mass (g  m−2)

PAR Photosynthetically active radiation (400 − 700   nm)

PPFD Photosynthetic photon flux density (mmol  m−2   s−1)

phot Carbon dioxide photosynthesis (gm–2 s–1)

Q10 Q10 factor

R Red light waveband (600 – 700 nm)

resp Maintenance respiration (gm–2 s–1)

rt Root

sdm Structural dry mass (g m–2)

sht Shoot

stm Stomata

Greek Letters:

a Conversion of assimilated CO2

b Yield factor

(Continued)
F
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Continued

g Growth rate coefficient

G CO2 compensation point (ml L–1)

e Light-use efficiency (g   J−1)

t Ratio of root dry mass to total dry mass

w Density of CO 2 (g  m
−3)
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