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Raman spectroscopy detects
chemical differences between
potato tubers produced under
normal and heat stress
growing conditions

Sanjeev Gautam1, Rohini Morey2, Nina Rau1,
Douglas C. Scheuring1, Dmitry Kurouski2* and M. Isabel Vales1*

1Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States,
2Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
Potato is the most consumed vegetable worldwide. Potato tubers contain water,

starch, proteins, minerals, and vitamins. The amounts of these chemicals depend

on the cultivar and growing location. When potatoes are exposed to high

temperatures during the growing period, tuber yield and quality are

detrimentally affected; however, there is limited knowledge about the influence

of high temperatures on tuber chemical composition. With temperatures rising

around the globe, the reaction of potato cultivars to high temperatures is

increasingly important, and heat-induced changes, including changes in the

chemical composition of tubers, should be considered. The Texas A&M

University Potato Breeding Program has been selecting potato clones under

high-temperature conditions for many years. Several released cultivars are

considered heat-tolerant based on high marketable yields and low internal and

external tuber defects. In this study, we used Raman spectroscopy (RS), an

analytical tool, to determine whether heat stress causes changes in the chemical

composition of tubers of ten potato cultivars. RS is a non-invasive method that

requires less time and labor than conventional chemical analysis. We found drastic

changes in the intensities of vibrational bands that originate from carbohydrates in

the spectra acquired from tubers of heat-stressed plants compared to tubers

produced by potato plants grown under normal conditions. These results

demonstrate that RS could be used as a replacement or complement to

conventional chemical analysis to inspect the effect of heat stress on tuber

chemical composition.
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1 Introduction

Potato (Solanum tuberosum ssp. tuberosum L.) is a staple crop for

many people worldwide and is the most widely consumed vegetable,

with a per capita consumption of 32.4 kg/year (FAOSTAT, 2022).

Potato tubers are a major source of starch, sugars, proteins, vitamins

(Vit. C, Vit. B1, Vit. B3, Vit. B5, Vit. B6), potassium, and dietary fiber

(McGill et al., 2013; Beals, 2019; Haverkort et al., 2022). Potatoes and

root vegetables are the world’s third largest provider of carbohydrates

after rice and wheat for human consumption (FAO/WHO, 1998; CIP,

2020). Potato is a very adaptable crop as it can grow from

mountainous regions at high altitudes, with poor soil conditions, to

coastal areas. From the center of domestication around the Titikaka

lake (in northern Bolivia and southern Peru), cultivated potatoes have

expanded to more than 156 countries worldwide (FAO, 2019).

Globally, potatoes were planted on 16.494 million hectares in 2020

and produced 359.071 million tonnes of tubers, with a yield of 21.8

Mg/ha (FAOSTAT, 2022). The top producer country is China. Potato

in the USA ranks fifth and represents a very important industry (3.6

billion US$ in 2020) (USDA, 2018).

Despite being a resilient plant, extreme environmental conditions

such as excessive heat threaten potato tuber yield and quality.

Compared to the preindustrial period (1850-1900), the earth’s

temperature at the end of the current century is predicted to

increase by 1-1.8°C (under a very low greenhouse gas emission

scenario) or 3.3-5.7°C (under very high greenhouse gas emission

scenario) (IPCC, 2021). High-temperature stress during the potato

growing period can become a major problem for potato growers and

consumers. Heat stress can affect marketable yields, tuber quality,

market value, and nutritional benefits of potatoes. In particular,

potato tuber yield and quality (external appearance, internal defects,

and processing quality) are detrimentally affected when night

temperatures go above 18°C (Bushnell, 1925; Haverkort and

Verhagen, 2008). Tito et al. (2018) reported a reduction of potato

production of 87-97% when grown at 1.3 and 2.6°C higher than usual

maximum temperatures. Heat stress will likely be a more frequent

event in the future. Potato yield loss due to heat stress is estimated to

be between 18% and 32% by the end of 2050 (Hijmans, 2003). Around

12.5% of the current potato production regions are projected to shift

(‘climatic shift’) in 2070 compared to the 1970-2000 period. Thus, to

maintain the current production level, there is a need to increase

production by 44 million tonnes from the current acreage, or bring

2.1 million hectares under potato production, given new climatic

conditions (Fumia et al., 2022). Specific gravity, tuber dry matter,

starch, and reducing sugars are important quality attributes in

potatoes and are especially critical considerations in the case of

processing market classes (Islam et al., 2022). Specific gravity is an

indirect measure of potato solids and affects oil absorption in fried/

processed products (Gould and Plimpton, 1985). High specific gravity

(1.080 or higher) is desired in the processing industry (Stark, 2020).

An increase of 0.005 specific gravity can enhance chip yield by 0.78%

and reduce chip oil content 1.33% (Lulai and Orr, 1979). Specific

gravity, which reflects tuber dry matter and starch content in

potatoes, is affected by environmental conditions and crop

management. Lower specific gravity and, thus, lower dry matter

and starch content are observed in potato tubers from plants grown

under high-temperature conditions (Asmamaw et al., 2010).
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Reducing sugar levels below 0.35 mg/g of fresh weight (or <0.035%)

is the benchmark for potatoes intended for chip production (Stark,

2020). Reducing sugars react with the amino acid asparagine to form

acrylamide (a potential carcinogen) through the Maillard reaction.

Thus, lowering the content of reducing sugars in potato tubers is

desirable to minimize the amount of acrylamide produced in fried

potato products. High temperatures during the potato growing season

have also been associated with an increase in reducing sugars in

tubers, which is highly undesirable (Eldredge et al., 1996).

It is challenging to bring new land into the production system and

intensify production. An effective way of alleviating the detrimental

effects of heat stress, whether short or long-term, is to develop heat-

tolerant plant cultivars (Bonnel, 2008; Demirel et al., 2017; Busse

et al., 2018; Gautam et al., 2021). Developing a tolerant cultivar begins

with identifying promising germplasm that can provide quality yield

so that its introgression into the potato gene pool is possible (Bashir

et al., 2022). Texas is one of the US States where potato production is

more severely affected by high-temperature stress resulting in

challenges, especially for potato growers. However, the reality of

growing potatoes under high-temperature stress offers the

opportunity of selecting heat-tolerant potato varieties. The Texas

A&M Potato Breeding Program has been selecting clones for the last

30-40 years under high-temperature conditions. Thus, it is plausible

that Texas-bred potato clones should have some heat tolerance. The

potato cultivars differ in their responses to high temperatures. The

differential responses of potato cultivars to heat stress can be observed

in changes in the chemical composition of the tubers under

heat stress.

Currently, there are no technological or computational ways of

analyzing the effect of heat stress on potatoes. Chemical tests are often

used to measure the nutritional profile of a crop (Damodaran et al.,

2017). Gravimetric analysis and Megazyme assays measure starch

content (Zhu et al., 2008). Protein content in potatoes is usually

quantified using the Dumas Combustion Method by analyzing the

nitrogen content in the potato (Mihaljev et al., 2015). Although these

tests are common in a laboratory setting, they are often destructive,

time-consuming, labor-intensive, cannot be implemented in the field,

and are not easily accessible to farmers. Near-infrared Spectroscopy

has been used as a spectroscopic methodology for the chemical

analysis of potatoes. However, such analysis cannot be done using

fresh potatoes tubers due to their high water content (~80%) and thus

requires freeze-drying the samples, which is destructive (Osborne

et al., 1993; Berardo et al., 2004; Baranska et al., 2006; Kim et al., 2007;

Stubbs et al., 2010).

Raman Spectroscopy (RS) is non-destructive and non-labor-

intensive spectroscopic method based on inelastic light scattering

(Kurouski et al., 2015). The inelastically scattered photons provide

information about the sample’s chemical structure. Previous studies

demonstrated that RS could diagnose potato disease (Farber et al.,

2021), reveal nutritional profiles of potato tubers, and create chemical

profiles of different potato cultivars (Morey et al., 2020). RS was also

used to accurately identify soil nitrogen, potassium, or phosphorus

deficiencies (Sanchez et al., 2020). In this study, we aim to investigate

whether RS could be used to differentiate between potato clones

grown under normal and heat-stressed conditions, as well as to

determine which cultivars of potatoes were more affected by heat

stress and which ones were heat-tolerant.
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2 Materials and methods

2.1 Greenhouse experiments

2.1.1 Plant materials
Ten potato cultivars (Table 1) were planted, grown, and harvested

in greenhouses at the Horticulture Teaching Research and Extension

Center at Texas A&M University, located near Somerville (Latitude:

30.5223 and Longitude: -96.4307), Texas, USA. Atlantic, Russet

Burbank, Russet Norkotah and Yukon Gold are commercial

cultivars used as references for different market classes. Atlantic is a

chipping variety; Russet Burbank is a French fry processing potato;

Russet Norkotah is a popular russet skin potato for the fresh market;

Yukon Gold is a fresh market yellow cultivar. The Texas A&M

University Potato Breeding Program released the other six potato

clones used in the study. The Texas A&M potato breeding program

has been selecting potato clones for the last 30-40 years under high-

temperature conditions where several days with temperatures beyond

35°C are common (Vales et al., 2019). Thus, the clones from Texas

A&M can be considered to possess heat tolerance characteristics.

COTX09022-3RuRe/Y was released under the experimental code; it

has russet skin, red eyes and yellow flesh. TX1523-1Ru/Y (Sierra

Gold™) has russet skin and yellow flesh. Reveille Russet, Russet

Norkotah 278, Russet Norkotah 296, and Vanguard Russet are fresh

market potatoes with russet skin and white flesh.
2.1.2 Experimental design
Potatoes were planted in a factorial block design in experiments

conducted in 2020 and 2021. Potato tuber seed pieces (~56.7 g) of ten

clones were planted in two greenhouses (one under normal growing

conditions and the other under heat-stress conditions). Four

replications were used for each clone and growing condition. Each

replication had three plants, and each plant was in an 11.4 cm3 pot.
2.1.3 Growth conditions
Sprouted seed pieces were planted in pots at a depth of ~10 cm

from the surface. The pots were filled with ProMix BX (Premier Tech,

Quakertown, PA) amended with the starter fertilizer Osmocote
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(Scotts Miracle-Gro, Marysville, OH) 50 g per pot. The greenhouses

were set at 25/15°C day/night temperatures for the first 30 days. For

the rest of the time, one greenhouse was maintained at 25/15°C day/

night (normal conditions), whereas the other greenhouse was set to

35/25°C day/night (heat stress conditions). Extreme temperatures

were recorded (Supplementary Figure 1). The greenhouse conditions

were controlled with GROWCOM systems (Microgrow, Temecula,

CA, USA). The greenhouses were cooled with evaporative cooling and

heated with vented forced air propane heaters. External weather

conditions affected greenhouse temperature control; it was difficult

to cool the greenhouses when it was hot and humid outside. The

greenhouses had warmer temperatures in 2021 than 2020

(Supplementary Table 1; Supplementary Figure 1). No artificial

light was used during the experiment; recorded natural light

conditions indicated that plants experienced long day conditions

(14/10 hrs. day/night).

The tuber seed pieces were planted on February 24, in both years-

2020 and 2021. The plants were grown for about 90 days when the

vines were killed. Tubers were left for ten days in the pots to ensure

good skin set before harvesting. The tubers were harvested onMay 27,

2020, and June 3, 2021. The specific gravity of tubers was evaluated by

comparing the weight of tubers (~1kg, US No. 1 grade) in the air to

the weight of the same volume of water using the following formula:

specific gravity = [weight in air/(weight in air – weight in water)]. The

four largest tubers from each replication were sampled for further

analysis (Raman spectroscopy and wet chemistry). Tubers were stored

at room temperature (20°C and 70% RH) in the dark until they were

scanned with a Raman Spectrometer.

Raman analysis was performed for the 2020 and 2021

experiments on the same tubers used for wet chemistry. After the

scans were completed, four tubers per replication were cut

longitudinally from stem to bud end to generate four quarters per

tuber; four quarters (a single quarter per tuber) were chopped and

mixed thoroughly. About 15 g of chopped fresh tuber samples were

weighed in 50 mL Falcon tubes. To calculate dry matter (DM), each

sample’s fresh weight (FW) was obtained and immediately frozen at

-20°C and later transferred to – 80°C for a few days before freeze-

drying. The samples were freeze-dried (LABCONCO, FreeZone

console freeze dryer 6L −50°C Series, Kansas City, MO, USA) with
TABLE 1 Tuber characteristics and plant maturity of the ten potato clones planted under two greenhouse conditions (normal vs. heat stress) in 2020
and 2021.

Clone Codes Tuber flesh color Tuber skin type Market class Plant maturity

Atlantic AT White Smooth (light russeting) Processing (Chipping) Medium

COTX09022-3RuRE/Y CO Yellow Russet Dual Early-Medium

Reveille Russet RR White Russet Fresh Late

Russet Burbank RB White Russet Processing (French fries) Medium

Russet Norkotah RN White Russet Fresh Medium

Russet Norkotah 278 RN278 White Russet Fresh Medium

Russet Norkotah 296 RN296 White Russet Fresh Medium

Sierra Gold™ SG Yellow Russet Fresh Early

Vanguard Russet VR White Russet Fresh Medium-late

Yukon Gold YG Yellow Smooth Fresh Early
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a collector temperature of (-50°C) and vacuum pressure of 0.21mbar

for five days. Freeze-dried samples were weighed to obtain dry weight

(DW), and DM was calculated using the formula: DM% = (DW/FW)

*100. The freeze-dried potato samples were ground and homogenized

with a grinder (1600 Mini G from SPEX® SamplePrep, NJ, USA) at

1500 rpm for 1.5 minutes. Ground samples (about one gram per

replication) were used to quantify protein. The protein content (in

percentage of DW) was calculated by multiplying the total nitrogen

obtained by the Kjeldahl method (McGeehan and Naylor, 1988) by a

factor (6.25). Triplicates of five grams of freshly chopped tuber

samples were taken for estimating reducing sugars. Reducing sugars

were evaluated following the modified 3,5-Dinitrosalicylic acid (DNS)

method (Gonçalves et al., 2010).
2.2 Raman spectroscopy

A hand-held Agilent Resolve spectrometer (Agilent Technologies,

USA) equipped with 830 nm laser was used to obtain spectra from the

potatoes. Raman spectra were collected from four tubers per clone (10

clones), per replication (4), and condition (2) (normal vs. heat stress)

(2020, 2021). Each tuber was scanned a minimum of three times,

resulting in 48 spectra per clone per greenhouse condition (normal vs.

heat stress), which resulted in over nine hundred and sixty acquired

spectra. The instrument collects three types of spectra – ‘surface’,

‘offset’ and ‘spatially-offset Raman spectra (SORS)’ (Matousek et al.,

2005). In 2020, ‘offset’ spectra were obtained directly from the intact

tubers (with skin on). We acquired spectra with good signal-to-noise

ratios from tubers with thin skin. However, spectra with lower signal-

to-noise ratios were obtained from tubers with heavy russet skin. To

improve the signal-to-noise ratio in the acquired spectra, in 2021, a

very small section (1cm2) of the skin of potato tubers was peeled

(2 mm thickness) before taking ‘surface’ spectra. The spectral

acquisition time for each scan was 1 s.
2.3 Statistical analysis

Analyses of variance for specific gravity, dry matter, reducing

sugars, and protein traits were analyzed using the mixed model

approach in JMP ®16 (SAS Institute Inc, 2021). Clones and

growing conditions were considered fixed effects, whereas

replications were random. Mean comparisons were made based on

Tukey’s HSD. The results (Supplementary Table 2) were graphically

represented using MS excel. Variances were calculated for each source

of variation from ANOVA table using the sum of squares.

MATLAB equipped with PLS Toolbox (Eigenvector Inc., WA,

USA) was used to perform partial least-squares discriminant analysis

(PLS-DA) for all collected spectra. Four preprocessing steps were

performed before analyzing the spectra for differences in the Normal

and heat-stressed samples: (a) MSC Mean, (b) Smoothing (1st

polynomial order and 15 filter width), (c) 2nd Derivative of the

Spectra (3rd Polynomial order and 51 fi lter width), (d)

Normalization to the Area. Model was built with 70% of the

acquired spectra which was then used to test 30% of the spectra to

determine the true positive rate (TPR) for each model (normal growth

vs. heat stress).
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Analyses of variance (ANOVA) for the acquired Raman spectra

were performed using MATLAB (MATLAB Co., USA). We focused

on vibrational bands with the following peaks: a peak at 479 cm-1 to

assess starch (Morey et al., 2020), a peak at 1527 cm-1 to inspect

carotenoids (Adar, 2017), a peak at 1208 cm-1 representing

phenylpropanoids (Larsen and Barsberg, 2010), and a peak at 1660

cm-1 for protein (Kurouski et al., 2015).
3 Results

3.1 Specific gravity

The highest specific gravity was observed in Atlantic under

normal conditions in both years; this was expected since Atlantic is

a chipping variety and high specific gravity (high starch content) is a

required trait for this market group. Tubers produced under heat

stress conditions had significantly lower specific gravities than those

harvested from normal growing conditions (Figures 1, 2). The

interaction of clone*condition was significant, indicating a

differential response of some clones to the growing conditions

(Figures 1, 2; Table 2). Potato tubers harvested from heat-stress

greenhouse growing conditions had, on average, 1.2% and 1.7%

lower specific gravity than those tubers produced under normal

conditions in 2020 and 2021, respectively (Table 3). The least

reduction (0.9%) was observed in Russet Norkotah 278, whereas the

largest reduction (1.9%) was observed in COTX09022-3RuRE/Y

followed by Russet Burbank (1.6%) in 2020. In 2021, tubers of

Yukon Gold were the least affected by specific gravity

reduction (1.2%).

In contrast, tubers of Russet Burbank were the most affected by

specific gravity reduction (2.7%) due to high-temperature stress.

Conditions and clones alone explained more than one-third

variation associated with specific gravity in both years (Figure 3).

The interaction between clone and condition explained from 2.3% to

4% variation in the specific gravity of potato tubers harvested in 2020

and 2021.
3.2 Tuber dry matter

Similar to specific gravity, tubers produced under heat stress

conditions had significantly lower tuber dry matter than those

harvested from normal growing conditions. Clones showed

differential responses for tuber dry matter under different

temperature conditions (Figures 1, 2; Table 2). Tuber dry matter is

highly correlated with specific gravity, and Atlantic had the highest

tuber dry matter. Variation in tuber dry matter was associated with

clones, conditions, and interaction between clones and conditions in

decreasing order in both years (Figure 3). Though a significant

interaction was observed for tuber dry matter, the genetic makeup

of the clones had a strong influence, as well as the growing conditions

of the plants. The potato clones had an 8.1% (2020) and 14.6% (2021)

reduction of tuber dry matter when grown under high-temperature

conditions as compared to the normal growing condition (Table 3).

The largest reduction in tuber dry matter (16.3%) was observed in

Russet Norkotah 296 followed by Russet Norkotah (15.6%) and
frontiersin.org
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Russet Burbank (14.3%) whereas tuber dry matter increased by 2.5%

and 10.2% in Vanguard Russet and Reveille Russet, respectively in

2020. In 2021, the highest reduction of tuber dry matter was observed

in Russet Burbank (24.2%), while the lowest reduction was observed

in Russet Norkotah 296 (7.0%) together with Reveille Russet (7.0%).
3.3 Reducing sugars

Reduced sugars (glucose + fructose) in tubers were significantly

higher under heat-stress growing conditions than under normal

growing conditions. There was an increase of 67.7% (2020) and
Frontiers in Plant Science 05
143.0% (2021) in reducing sugars in tubers grown under heat stress

compared with that of tubers grown under normal temperature

conditions (Table 3). Under normal conditions, the lowest reducing

sugars were observed in Atlantic followed by Sierra Gold and Yukon

Gold in 2020 and Atlantic, Sierra Gold, Yukon Gold and

COTX09022-3RuRE/Y in 2021. As in the case of specific gravity

and tuber dry matter, reducing sugars also exhibited significant clone-

by-condition interaction (Figures 1, 2), however, the interaction effect

(clone*condition) for reducing sugars was lower (Figure 3). Variation

in reducing sugars could thus be attributed mainly to the genetic

makeup of the clone and the growing condition in which the potatoes

were grown (Figure 3).
A B

DC

FIGURE 1

Effect of temperature and clone on different traits (2020). (A) Tuber Specific gravity, (B) Tuber dry matter (C) Total reducing sugars (glucose + fructose) in
tubers, (D) Protein (% Dry weight basis). The following potato clones were used in the experiment: AT (Atlantic), CO (COTX09022-3RuRE/Y), RR (Reveille
Russet), RB (Russet Burbank), RN (Russet Norkotah), RN278 (Russet Norkotah 278), RN296 (Russet Norkotah 296), Sierra Gold (SG), Vanguard Russet (VR)
and Yukon Gold (YG). Bars with the same letter were not significantly different at p≤ 0.05.
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3.4 Protein

Protein (% DW) in tubers was significantly increased under heat

stress conditions (Figures 1, 2). Though there was a significant

interaction between clones and growing conditions regarding

protein in tubers, the effect size of the interaction (7% in 2020 and

2% in 2021) was too small to explain the variation. However, clone

(31% in 2020 and 30% in 2021) and condition (19% in 2020 and 35%

in 2021) explained most of the variation observed in protein

percentage in the tubers from the experiment (Figure 3). Under

heat stress conditions, Reveille Russet had the highest protein

content in both years. The lowest protein content was observed in
Frontiers in Plant Science 06
Russet Burbank and Sierra Gold under normal conditions. The

increase in protein (dry weight basis) was found to be 10.6% in

2020 and 20.2% in 2021 (Table 3).
3.5 Raman spectra

The averaged Raman spectra acquired from tubers of all potato

clones grown under normal and heat-stressed conditions exhibit

vibrational bands that could be assigned to starch, protein,

carotenoids, cellulose and phenylpropanoids (Figures 4, 5; Table 4).

There was a significant decrease in the intensity of most vibrational
A B

DC

FIGURE 2

Effect of temperature and clone on different traits (2021). (A) Tuber Specific gravity, (B) Tuber dry matter (C) Total reducing sugars (glucose + fructose) in
tubers, (D) Protein (% DW). The following potato clones were used in the experiment: AT (Atlantic), CO (COTX09022-3RuRE/Y), RR (Reveille Russet), RB
(Russet Burbank), RN (Russet Norkotah), RN278 (Russet Norkotah 278), RN296 (Russet Norkotah 296), Sierra Gold (SG), Vanguard Russet (VR) and Yukon
Gold (YG). Bars with the same letter were not significantly different at p≤ 0.05.
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bands that originated from carbohydrates (477 cm-1, 865 cm-1, 940

cm-1, 1085 cm-1, 1126 cm-1, 1261 cm-1 and 1340 cm-1) in Raman

spectra acquired from tubers harvested from heat-stressed plants

compared to the intensities of these bands in the Raman spectra

collected from tubers of plants grown under normal conditions

(Figures 4, 5, Supplementary Figure 2). We also found changes in

the intensities of bands that originated from proteins and

phenylpropanoids in the spectra acquired from tubers of normal vs.

heat-stressed plants. However, no significant changes were observed

in the intensities of carotenoid bands (Figure 6). These results

suggested that the concentration of carotenoids did not change in

potato tubers due to the high-temperature stress. Thus, we can

conclude that concentrat ions of s tarch , prote ins and

phenylpropanoids decreased in tubers produced by plants exposed

to high-temperature stress. It should be noted that when the yellow

flesh clones were compared individually, the carotenoid peaks were

significantly more intense in the spectra collected from tubers from
Frontiers in Plant Science 07
normal conditions versus those from heat stress conditions in

COTX09022-3RuRE/Y and Yukon Gold, but no significant change

in the intensity of carotenoids in the spectra acquired from another

fresh yellow flesh clone Sierra Gold™, a heat-tolerant early variety

from the Texas A&M Program (Figure 7).

Next, PLS-DA was used to investigate the prediction accuracy of

heat stress in potato clones grown in 2020 and 2021 (Table 5). We

found that developed models could identify heat stress with

accuracies of 63.8% in 2020 and 68.8% in 2021. At the same time,

the absence of stress could be identified with accuracies of 73.4% in

2020 and 84.3% in 2021.
4 Discussion

Changes observed in potato tubers (specific gravity, dry matter,

reducing sugars, protein) harvested from plants grown under high-
TABLE 2 Analysis of variance for effect of different temperature conditions (normal vs. heat stress) on ten potato clones.

Source of Variation Specific gravity Tuber dry matter (%) Reducing sugars (mg/100g) Protein (% DW)

A. Year 2020

Clone *** *** *** ***

Condition *** ns ns **

Clone*Condition *** ** *** ***

Rep [Condition] *** ** *** ***

B. Year 2021

Clone *** *** *** ***

Condition *** ** ** ***

Clone*Condition *** *** *** *

Rep [Condition] * ** *** ***
ns, non-significant; * p< 0.05, ** p< 0.01, *** p< 0.001. Four replications per clone per condition were used.
TABLE 3 Percent change in selected traits of clones grown under heat stress vs. normal growing conditions in greenhouses for year 2020 and 2021.

Specific gravity Tuber dry matter Reducing sugars Protein

Clone 2020 2021 2020 2021 2020 2021 2020 2021

Atlantic -1.0 -1.8 -10.2 -16.5 10.1 65.7 20.3 23.8

COTX09022-3RuRE/Y -1.9 -1.8 -1.6 -21.4 6.9 216.3 15.4 20.0

Reveille Russet -1.0 -1.4 10.2 -7.1 8.8 237.5 21.3 13.1

Russet Burbank -1.6 -2.7 -14.3 -24.2 111.1 190.3 9.8 34.9

Russet Norkotah -1.0 -2.4 -15.6 -13.3 170.3 141.2 5.7 15.1

Russet Norkotah278 -0.9 -1.6 -14.8 -14.9 61.6 158.4 0.1 26.2

Russet Norkotah296 -1.2 -1.5 -16.3 -7.0 39.1 98.2 11.3 18.7

Sierra Gold -1.2 -1.4 -14.7 -13.9 95.2 2.7 12.3 24.9

Vanguard Russet -1.2 -1.4 2.5 -16.9 20.0 179.9 4.3 11.5

Yukon Gold -1.4 -1.2 -6.6 -11.0 153.8 140.4 6.0 13.3

Average -1.2 -1.7 -8.1 -14.6 67.7 143.0 10.6 20.2
frontie
*Negative values indicate percent reduction in the trait from normal to heat stress conditions, whereas positive values indicate percent increase in the trait from normal to heat stress conditions.
Calculated with the formula: % change= (Value at Heat stress- Value at Normal condition)/Value at Normal condition*100.
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temperature stress compared to those harvested from potatoes grown

under normal temperature were generally reflected in Raman scans.

Raman spectroscopy captured changes in chemical composition for

starch, phenylpropanoids, carotenoids, proteins, and other chemicals.

The protein peaks had low intensity, likely because proteins were

present in lower concentrations than starch.
4.1 Specific gravity

Having high specific gravity is very important in processing potatoes.

In these experiments, Russet Burbank was used as a reference for

processing French fries, and Atlantic as a reference for processing

chippers. Processors are paid by the dry weight of the final product,

and oil expenses are directly related to the amount of water replaced in

tubers; thus, less water in tubers (higher specific gravity) is desired in

processing potatoes. Sensory attributes for French fries and chippers are

better in potatoes with high specific gravity (high drymatter, high starch).

Heat stress has been reported to decrease the specific gravity of potatoes

(Teixeira et al., 2015; Andrade et al., 2021; Fernandes Filho et al., 2021).

The decrease in specific gravity is regarded as a loss to the processors. The

decrease in specific gravity indicates that there is less dry matter

accumulated in the potato tuber. A reduction in dry matter would

result in reduced income. The effect of heat stress can be seen as a general

decrease in specific gravity in all potato clones tested. The greatest

decrease in specific gravity was observed in Russet Burbank, indicating

that heat significantly reduced its processing quality and thus can be

considered heat sensitive. Reveille Russet is a fresh market potato and has

low specific gravity. The reduction of specific gravity in Reveille Russet

due to heat stress was proportionally lower than that observed in Russet

Burbank. The results of this experiment show that Atlantic when grown

under normal (temperature) conditions, gives the highest specific gravity,
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but its specific gravity decreases when grown under high-temperature

conditions indicating its sensitivity towards heat stress.
4.2 Tuber dry matter

Tuber dry matter of potatoes is an important quality characteristic for

processing that can also be obtained from specific gravity (Nzaramba et al.,

2013). Several reports have also indicated that tuber dry matter is

drastically reduced when potatoes are grown above 20-25°C (Levy and

Veilleux, 2007; Aien et al., 2017; Busse et al., 2018; Kim and Lee, 2019;

Obiero et al., 2019). As a result of low dry matter, the quality of the chips

and French fries decreases. The chips/fries absorb more oil when potatoes

have lower dry matter, as indicated by low specific gravity. Similar to our

results with specific gravity, the tuber dry matter also showed a decrease in

potatoes grown under high temperatures compared to normal

(temperature) conditions. Under similar heat stress temperatures of 35/

25°C day/night, it was reported that high temperature caused a reduction

in assimilate partitioning (radio labeling of 14C) to tubers in four clones

tested. This reduction in partitioning was evident with a significant

decrease in tuber dry matter percentage grown under high temperatures

compared to Normal (25/12°C day/night) (Gawronska et al., 1992). The

reduction of dry matter concentration under high temperatures has also

been associated with the synthesis of high levels of endogenous gibberellins,

which reduce the partitioning of assimilates to the tubers and impede the

synthesis of starch and tuber-specific proteins (Lovell and Booth, 1967).
4.3 Reducing sugars

Temperature-induced increase in soluble sugars was observed in

potatoes grown under moderately elevated temperatures in Chile
FIGURE 3

Phenotypic variance explained for some selected traits in potatoes grown under normal vs. heat stress conditions (2020 and 2021).
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(Ávila-Valdés et al., 2020). Soil temperatures of 23°C and 29°C during

tuber bulking have been reported to increase the reducing sugars

more than two folds, even in the Low-temperature sweetening-

resistant clone Premier Russet (Zommick et al., 2014). Heat stress

of just 14 days has been reported to increase the reducing sugar-

glucose in potatoes (Snowden, Lamoka, Megachip and Nicolet),

especially in the basal ends of tubers when grown under a high

temperature of 35/29°C day/night.
4.4 Protein

Heat stress increased the protein concentration (DW) in the

potatoes based on wet chemistry (Figures 1, 2). When plants were

grown at the high-temperature regime, a greater increase in protein

concentration due to heat stress was found compared to the normal

temperature regime. A decrease in individual tuber dry mass

accompanied a large part of the increase found in protein

concentration. Stone and Nicolas (1998) observed a similar case

and reported that heat stress increased grain protein percentage

even though the overall protein content per grain was reduced

by heat.

Dry matter accumulation drastically decreased under heat stress.

Since the average tuber dry mass decreased, it can be assumed that the

negative effect of heat stress on starch biosynthesis led to a lower level
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or dilution of tuber protein. The tuber dry matter is mainly starch,

and its greater reduction under heat stress would increase protein

percent on a dry basis. On the other hand, the protein percentage of

tubers, even if significantly higher at heated conditions than potatoes

under normal temperature, is very small in comparison to potatoes’

starch. Thus, the observation that the protein content of potatoes

under heat stress conditions is lower than that of normal conditions

based on the Raman spectrum is contrary to our wet chemistry

findings. Protein content in tubers based on wet chemistry was

calculated from total nitrogen content. Tuber dry matter and other

parameters decreased under heat stress conditions. Thus, it is likely

that the absolute protein content per plot/clone did not change or

even decrease despite the increase in percentage DW based on a

tuber sample.

Clones varying in temperature tolerance showed differential

responses with their root proteins. In a recent study, the sensitive

clone showed a twofold increase in defense and detoxification-related

proteins. In contrast, the tolerant clone showed more increase than

decrease in proteins related to energy and carbohydrate metabolism

(Boguszewska-Mańkowska et al., 2020). Stress-responsive proteins

like HSP17, 6-CI, HSP101, and eEF1A are associated with

microtubers under high-temperature stress. A higher level of eEF1A

in the experiment was putatively marked as lowering the negative

effects of heat in potato tuberization (Pantelić et al., 2018). It is

plausible to think that the protein content of potatoes would increase
FIGURE 4

Averaged Raman spectra of tubers of ten potato cultivars grown under normal vs. heat stress greenhouse conditions (2020).
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at the expense of starch under stress. However, total soluble protein

content (DW) was found not to be significantly different in potatoes

grown under different temperature conditions (Ávila-Valdés et al.,

2020). Also, the total protein content of strawberry plants decreased

under heat stress conditions (Gulen and Eris, 2004).
4.5 Raman spectra

RS determined the effect of heat stress on different cultivars of

potatoes. In most potatoes, the carbohydrate levels decreased when

plants were grown under heat stress. Phenylpropanoids were

significantly reduced in tubers produced under heat-stress conditions,

but there was no significant reduction in carotenoids. The strongest

Raman signal for starch around 477-479 cm-1 was used as a marker for

the quantification of total cellular starch (Kizil et al., 2002; Ji et al., 2014;

Morey et al., 2020). This main starch peak was also found in this

experiment to be expressed at a significantly higher intensity in

potatoes grown under normal conditions compared with the potatoes

grown under higher temperatures. Raman spectra can reveal differences

in the starch content of potatoes grown under different conditions, and

Raman spectroscopy has the potential to estimate starch content in

potatoes. In a previous study, Morey et al. (2020) verified that Raman

spectroscopy can predict the starch content of potato samples based on

the intensity of the 479 cm-1 band. Quantification of amylopectin and

amylose, as well as proteins, have been achieved in rice (Pezzotti et al.,
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2021), protein, and oil in soybean (Singh et al., 2019) through the use of

Raman spectroscopy. Tuber carotenoids do not seem to change in

response to heat stress. Similar to our results with Raman spectra,

Fogelman et al. (2019) reported that carotenoid levels did not change

with the heat treatment (33-35°C) of tubers for one week before harvest.

Also, no significant carotenoid changes were observed in heat stress-

treated potato plants compared to normal by Shah et al. (2020). Thus,

several studies showed evidence to conclude carotenoids are not being

changed with heat stress.

On the other hand, phenylpropanoids showed a significant

reduction under heat stress compared to normal (temperature)

growing conditions. Secondary metabolites are affected by high-

temperature stress. Their lower concentration in potatoes in the

heated conditions means that either phenylpropanoids were used to

protect other biochemical compounds like proteins and allow normal

functioning of the tuber, or their biosynthetic pathway was disrupted

by excess temperature. In both scenarios, phenylpropanoids seem to

be lower under heat stress. A more detailed investigation would be

required to pin down the types of phenylpropanoids significantly

affected by growing conditions. Although several factors contribute to

a location’s effect on a crop metabolite profile, the temperature

seemed to be one of the factors to lower the total phenylpropanoids

measured in Magic Molly potatoes across different sites in Alaska,

Texas, and Florida (Payyavula et al., 2012). One of the most abundant

phenylpropanoids, chlorogenic acid (CGA), decreased from locations

in Alaska to Texas and Florida. Anthocyanin was found to decrease
FIGURE 5

Averaged Raman spectra of tubers of ten potato cultivars grown under normal vs. heat stress greenhouse conditions (2021).
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with increasing temperature. A higher level of total phenolics in

potatoes was reported at a location with lower temperatures

(Reddivari et al., 2007).

Also, RS predicted the tubers’ growing condition based on the

model built with PLSDA. Since fewer good scans were obtained in

2020, a comparison of Raman spectra of individual cultivars and

construction of confusion tables were generated for 2021 datasets only

(Table 6). The percent accuracies in determining the presence of heat

stress in several cultivars (Reveille Russet and Vanguard Russet) was

low, indicating that these cultivars were not predicted as heat-

sensitive cultivars (thus, declaring them as heat tolerant).

The difference in TPR for different cultivars could be inspected to

see that some potato clones were more tolerant to heat stress than

others. Similar TPR % for both growing conditions when considering

a clone indicates that the model could distinguish between the

treatments; however, a large difference in the TPR% between the

conditions indicates that the spectrum of one condition overlapped
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with the other. The lower TPR % for clones like Reveille Russet and

Vanguard Russet indicated that their spectra of potatoes grown under

heated conditions overlapped with that of potatoes under normal

conditions, indicating their chemical signatures are similar. This

spectrum similarity under different conditions means that the

potatoes of these cultivars behaved similarly to the conditions.

Thus, we could assign them to be more heat tolerant than others of

heat stress. Similarly, heat-susceptible clones like Atlantic and Russet

Burbank could be differentiated with greater confidence for their

growth condition. They exhibited different signature spectrums under

different conditions when scanned with Raman.
5 Conclusion

In general, Raman spectroscopy could differentiate the chemical

composition of tubers based on the conditions in which potato plants
TABLE 4 Chemical assignments based on the vibrational mode of each band-Raman shift (modified from Morey et al., 2020).

Band (cm-1) Vibrational mode Assignment (References)

441 Skeletal modes of pyranose ring Carbohydrates (Kizil et al., 2002; Almeida et al., 2010)

479 C-C-O and C-C-C deformations; Related to glycosidic ring skeletal deformations
d(C-C-C) +t(C-O) Scissoring of C-C-C and out-of-plane bending of C-O

Carbohydrates (Almeida et al., 2010)

523 d(C-C-O) + t(C-O) of carbohydrates Carbohydrates (Almeida et al., 2010)

578 n(C-O) +n(C-C) +d(C-O-H) Cellulose, phenylpropanoids (Edwards et al., 1997)

615 d(C-C-O) of carbohydrates Carbohydrates (Almeida et al., 2010)

717 d(C-C-O) related to glycosidic ring skeletal deformations Carbohydrates (Almeida et al., 2010)

768 d(C-C-O) Carbohydrates (Almeida et al., 2010)

865 d(C-C-H) +d(C-O-C) glycosidic bond; anomeric region Carbohydrates (Almeida et al., 2010)

940 Skeletal modes; d(C-O-C) + d(C-O-H) +v(C-O) a-1,4 glycosidic linkages Carbohydrates (De Gussem et al., 2005)

1007 In-plane CH3 rocking + C-C Carotenoids (Schulz et al., 2005)

1016 C-OH Carbohydrates (Edwards et al., 1997)

1054 n(C-O) +n(C-C) +d(C-O-H) Carbohydrates (Almeida et al., 2010)

1084 n(C-O) +n(C-C) +d(C-O-H) Carbohydrates (Almeida et al., 2010)

1126 n(C-O) +n(C-C) +d(C-O-H) Carbohydrates (Almeida et al., 2010)

1153 n(C-O-C), n(C-C) in glycosidic linkage, asymmetric ring breathing Carbohydrates (Wiercigroch et al., 2017)

1208 aromatic ring modes of phenylalanine and tyrosine; symmetric O-CH3 wag + C-
O-H bending

Proteins (Zheng et al., 2004), Phenylpropanoids (Larsen and Barsberg,
2010)

1261 d(C-C-H) +d(O-C-H) +d(C-O-H) Carbohydrates (Cael et al., 1975; Almeida et al., 2010)

1340 n(C-O); d(C-O-H) Carbohydrates (Almeida et al., 2010)

1383 d(C-O-H) - coupling of the CCH and COH deformation modes Carbohydrates (Almeida et al., 2010)

1398 d(C-C-H) Carbohydrates (Almeida et al., 2010)

1460 d(CH)+d(CH2) +d(C-O-H) CH, CH2, and COH deformations. Aliphatic (Almeida et al., 2010)

1530 -C=C- Carotenoids (Adar, 2017)

1600 n(C-C) aromatic ring + s(CH) Phenylpropanoids (Agarwal, 2006; Kang et al., 2016), proteins (Kang
et al., 2016)

1633 C=C-C(ring) Phenylpropanoids (Pompeu et al., 2018)

1660 amide I (C=O) Proteins (Egging et al., 2018)
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were grown (normal vs. heat stress). The intensities of vibrational bands

corresponding to carbohydrates and phenypropanoids were the most

significantly reduced under heat-stress. However, heat-tolerant clones

could be identified based on having similar (not significantly different)

intensities of vibrational bands independently of the growing conditions

(normal vs. heat stress). Raman spectra-based prediction TPR (True
Frontiers in Plant Science 12
Positive Rate) values > 70-80% could aid potato breeding programs by

identifying heat-sensitive clones. In contrast, if the TPR values are lower,

it would indicate that the clones are heat tolerant. We foresee the

application of Raman spectroscopy to study tolerance to abiotic (heat,

drought, cold, salinity) and biotic (bacterial, fungal, nematodes, insects)

stresses based on the chemical changes the stresses induce (in potato
A B

DC

FIGURE 6

Selected vibrational bands correspond to different chemicals (A) Starch, (B) Phenylptopananoids, (C) Carotenoids, (D) Proteins in the tubers (2021). Means
are indicated as a circle, and the bars indicate confidence intervals for the intensity (x axis) of the spectra. Statistically significant differences for a
particular Raman band when comparing clones growing under normal vs. heat stress conditions were denoted with red and blue colors.
FIGURE 7

Mean (circles) and confidence interval (bars) at 1527 cm-1 (carotenoids) for three yellow flesh potato clones.
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tubers, plants, or seeds – in other crops-). Additional areas of expansion

could include the study of chemical changes in produce postharvest in

response to different storage conditions, presence of storage diseases/

pests, and in response to different storage periods.
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TABLE 6 Confusion matrix for individual potato cultivars evaluated under
greenhouse conditions in 2021 to determine if the environmental
conditions in which potatoes were grown (normal vs. heat stress) can be
predicted (true positive rate - TPR) based on Raman shifts.

Clone (Variety) Stress TPR (%)

Atlantic Normal 80.3

Heat stress 75.6

COTX09022-3RuRE/Y Normal 86.5

Heat stress 77.1

Reveille Russet Normal 87.1

Heat stress 68.5

Russet Burbank Normal 83.3

Heat stress 81.3

Russet Norkotah Normal 86.9

Heat stress 73.5

Russet Norkotah278 Normal 87.9

Heat stress 90.8

Russet Norkotah296 Normal 91.7

Heat stress 86.2

Sierra Gold™ Normal 78.7

Heat stress 78.1

Vanguard Russet Normal 82.0

Heat stress 68.1

Yukon Gold Normal 79.1

Heat stress 78.6
TABLE 5 Confusion matrix for all-potato cultivars evaluated under greenhouse conditions in 2020 and 2021 to determine if the environmental conditions
in which potatoes were grown (normal vs. heat stress) can be predicted (true positive rate – TPR) based on Raman shifts.

Predicted as normal Predicted as heat stressed Total number of scans True Positive Rate (TPR)

2020

Normal 270 96 368 73.4%

Heat stressed 98 169 265 63.8%

2021

Normal 706 131 837 84.3%

Heat stressed 307 676 983 68.8%
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