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The selenium (Se) applications in biomedicine, agriculture, and environmental

health have become great research interest in recent decades. As an essential

nutrient for humans and animals, beneficial effects of Se on human health have

been well documented. Although Se is not an essential element for plants, it does

play important roles in improving plants’ resistances to a broad of biotic and abiotic

stresses. This review is focused on recent findings from studies on effects and

mechanisms of Se on plant fungal diseases and insect pests. Se affects the plant

resistance to fungal diseases by preventing the invasion of fungal pathogen

through positively affecting plant defense to pathogens; and through negative

effects on pathogen by destroying the cell membrane and cellular extensions of

pathogen inside plant tissues after invasion; and changing the soil microbial

community to safeguard plant cells against invading fungi. Plants, grown under

Se enriched soils or treated with Se through foliar and soil applications, can

metabolize Se into dimethyl selenide or dimethyl diselenide, which acts as an

insect repellent compound to deter foraging and landing pests, thus providing

plant mediated resistance to insect pests; moreover, Se can also lead to poisoning

to some pests if toxic amounts of Se are fed, resulting in steady pest mortality,

lower reproduction rate, negative effects on growth and development, thus

shortening the life span of many insect pests. In present manuscript, reports are

reviewed on Se-mediated plant resistance to fungal pathogens and insect pests.

The future perspective of Se is also discussed on preventing the disease and pest

control to protect plants from economic injuries and damages.
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Introduction

Mineral nutrients have important benefits for the growth and

development of many organisms, and are essential factors influencing

plant growth and development (Ahn et al., 2005; Cabot et al., 2013;

Crane et al., 2014; Elmer and Datnoff, 2014). The essentiality of Se as a

nutrient has been proven for humans and animals only, while for

higher plants it is a beneficial element (Hasanuzzaman et al., 2020).

Both the organic and inorganic forms of Se are available in nature. The

available organic forms are selenocysteine (SeCys), selenocystathionine

(SeCysth), and selenomethionine (SeMet), etc., and the inorganic forms

are mainly elemental Se, selenide (Se2−), selenite (Se4+; SeO3
2−), and

selenate (Se6+; SeO4
2−) (Bodnar et al., 2012). Although Se is not an

essential nutrient element for plants, it acts as an antioxidant to

improve the tolerance of plants to drought and salt stress (Nawaz

et al., 2021; Regni et al., 2021), and it reduces the absorption of toxic

metal elements and reduces their oxidation (Jiang et al., 2021), which

plays a positive role in plant growth and development and helps to

improve the yield and quality of grain (Feng et al., 2015; Andrade et al.,

2018). Furthermore, recent studies show that Se can also assist plant

resistance to pest and pathogen (Xu et al., 2020; Zang et al., 2022). Since

the interactions between Se and viruses/bacteria remain largely

underexplored, this review paper focuses on the roles of Se in plants

against fungal diseases and insect pests, and on the related mechanisms

and novel strategies for the application of Se in crop protection.
Selenium-mediated plant resistance to
disease pathogens

Plant resistance to diseases refers to the characteristic or ability of

plants to prevent the establishment of diseases ensued by the

pathogens (Andersen et al., 2018). There are generally two stages of

plant resistance to pathogens: (1) resistance to infection and (2)

resistance to parasitism. Table 1 and Figure 1 show the different

relationships between Se and fungal diseases reported previously in

different studies.
i. Se induces structural and functional
changes of soil microbial community to
prevent fungal pathogen invasion

Species composition or biodiversity of soil microbial community,

functional profiles, and their interactions have been connected to

plant soil-borne disease outbreaks (Trivedi et al., 2017; Wang et al.,

2017; Xiong et al., 2017). The species diversity of soil microbial

community of healthy plants is generally higher than that of infested

plants. Se content (≥ 0.4 mg kg-1) in the soil significantly enhanced the

microbial diversities and the relative abundance of plant growth

promoting rhizobacteria (PGPR). The bioconcentration of Se in

plant tissues and the improvement of microbiome diversities are

related to the enhancement of plant resistance to pathogen infection,

showing that the Se content in the soil could indirectly affect the

occurrence and transmission of soil-borne diseases (Liu et al., 2019).

Meanwhile, Se can decrease the relative abundance of pathogenic
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fungi, such as Olpidium sp., Armillaria sp., Coniosporium sp.,

Microbotryomycetes and Chytridiomycetes (Liu et al., 2019). While

Se can inhibit the growth and decrease the relative abundance of

fungal pathogens in the soil, it can also improve the biodiversity of

beneficial microorganisms in soil (Liu et al., 2019), which might vary

from fungal pathogens types, Se concentrations as well as the

dominant chemical form(s) of Se.
ii. Se enhances the ability of plants to
prevent the invasion of fungal pathogens

As the first line of plant defense, the surface structure can hamper the

entry of plant pathogens. However, some pathogens can break through

the surface barriers and successfully reach the interior of plant tissues.

Most of fungal pathogens can form various specialized structures such as

haustoria to penetrate the cell for absorbing nutrients, but the obligate

fungi will not penetrate through the plasma membranes of plant cells

(Pearson et al., 2009). Such fungi make use of the haustoria or

intracellular structures at some locations to release effector proteins,

which can be recognized by pattern recognition receptors (PRRs) on the

plant cell surface or intracellular resistance (R) proteins of the nucleotide-

binding domain and leucine-rich repeat (NLR) class, resulting in deeper

and stronger immune effects (Jones and Dangl, 2006; Lyu et al., 2019).

The increase of mesophyll cell density is critically important in

enhancing plant photosynthetic capacity (Ren et al., 2019). The low Se

concentrated treatment (17 mg L-1) significantly increased the number of

mesophyll cells (Feng et al., 2015), which was reportedly helpful in

maintaining normal chloroplast structure (Xu et al., 2020). In particular,

Se can protect the photosynthetic process from pathogen stress by

increasing the chloroplast size and reconstructing chloroplast

ultrastructure of rape leaves (Filek et al., 2010). In addition, with Se

levels (e.g. 0.1 mg kg-1 and 0.5 mg kg-1) in soil, the degree of

mitochondrial permeability transition pore was significantly decreased

after inoculation with S. sclerotiorum, indicating that Se could be helpful

in maintaining plant cell structures (Xu et al., 2020). The soil Se

treatments (0.1 mg kg-1 and 0.5 mg kg-1) also significantly reduce the

lesion diameter and the incidence of sclerotinia stem rot caused by S.

sclerotiorum due to improving the defense ability and antioxidant

capacity of rape leaves (Xu et al., 2020). Overall, Se enhances the

ability of plants to prevent the invasion of pathogens via maintaining

the plant cell or organelle structures, improving photosynthesis, and

reducing oxidative stress.
iii. Se inhibits fungal pathogen growth

Se is reported to inhibit mycelial growth of S. sclerotiorum,

damage sclerotial ultrastructure, reduce the capacity of acid

production, decrease superoxide dismutase and catalase activities,

and increase the content of hydrogen peroxide and superoxide anion

in mycelium, all of which result in the reduction of sclerotial

formation in Oilseed rape (Cheng et al., 2019). Moreover, the study

also revealed that the Se treatment increased the Se concentration in

sclerotia, which inhibited sclerotial germination (Cheng et al., 2019).

Regarding for B. cinerea, the selenite treatment at 24 mg L-1

significantly inhibited the spore germination of fungal pathogen
frontiersin.org
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and the germ tube elongation in harvested tomato fruit (Wu et al.,

2014; Wu et al., 2015). The membrane integrity, spore germination,

germ tube elongation and mycelial spread of P. expansum were

decreased significantly after the conidia were treated with Se of 20

mg L-1 for 9 h, and the inhibitory effect was positively related to the Se

concentration in the growth medium (Wu et al., 2014). When

spraying selenate on the leaves during fruit occurrence and

development, Se can effectively control tomato gray mold via

stimulating the antioxidant defense system of tomato plants (Zhu

et al., 2016).

It has been reported that high levels of Se treatment led to the

reduction of the proliferation and growth rate of A. flavus, and the
Frontiers in Plant Science 03
decrease of the production of aflatoxin, which might be due to the toxic

effects of Se on fungi (Pacheco and Scussel, 2007). The vegetative

growth of A. flavus was inhibited with the increasing of the Se

concentration, but the spores could not likely be damaged by selenite

but only inhibited during germination (Zohri et al., 1997). In addition,

high Se concentrated treatments led to the morphological distortion of

fungal structure and deformities (Ragab et al., 1986; Li et al., 2003).

Addition of different Se compounds to the toxin induction medium not

only delays the growth of F. graminearum and reduces the diameter of

colony, but also significantly inhibits the accumulation of

deoxinivalenol (Mao et al., 2020b). Similarly, selenite has a certain

inhibitory effect on Fusarium oxysporum, and the application of selenite
FIGURE 1

Various effects of Se on the specific fungal diseases observed in the previous studies. Each pie represents a specific type of impact. The pink, orange,
blue, and green pies indicate the different impacts, including the Se-induced structural and functional changes of soil microbial community limiting
fungal pathogens invasion, enhancing the ability of plants to prevent the invasion of fungal pathogens, growth inhibition of fungal pathogens, and
inhibiting the extension of fungal pathogens after invasion, respectively. The overlap of blue and green pies shows that Se has interactive impacts on
Fusarium graminearum, and the overlap of all pies shows the overall impact of Se on Sclerotinia sclerotiorum.
TABLE 1 Applications of Se treatments to study plant-pathogen interactions.

Treatment Pathogens Host Disease Reference

Na2SeO3

(0.052 – 4.0%)
Na2SeO3

(0.5 – 40 mg L-1)

Aspergillus flavus Brazil nut Aspergillus flavus
disease

(Ragab et al., 1986; Zohri et al., 1997; Li et al., 2003; Pacheco and
Scussel, 2007)

Na2SeO3, Na2SeO4 (10 mg L-1)
Se-nanoparticles
(100 mg L-1)

Alternaria solani Tomato Early blight of tomato (Razak et al., 1991; Joshi et al., 2019)

Na2SeO3

(20 mg L-1)
Fusarium oxysporum Tomato Fusarium wilt (Companioni et al., 2012)

Na2SeO3

(24 mg L-1)
Na2SeO4

(1 mg L-1)

Botrytis cinerea Tomato Gray mold disease (Wu et al., 2015; Zhu et al., 2016)

Na2SeO3

(20 mg L-1)
Penicillium expansum Apple Blue mold rot (Wu et al., 2014)

Na2SeO3

(5 mg L-1)
Na2SeO3

(0.1 mg kg-1; 0.5 mg kg-1)

Sclerotinia
sclerotiorum

Oilseed
rape

Sclerotinia stem rot (Cheng et al., 2019; Liu et al., 2019; Xu et al., 2020)

Na2SeO3, Na2SeO4, SeMet,
SeCys2
(20 mg L-1)

Fusarium
graminearum

Wheat Fusarium head blight (Mao et al., 2020a; Mao et al., 2020b)
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substantially reduces the number of wilted leaves per plant in

susceptible tomato plantlets, and also results in wilt symptoms in the

tomato plantlets (Companioni et al., 2012). As revealed above, Se can

damage the cell structure of fungal pathogens and the plasma

membrane of conidia, affect the osmotic regulation, reduce the

vitality of pathogenic fungi, and finally inhibit mycelium growth.
iv. Se limits the extension of fungal
pathogens after invasion

The extension of pathogens after invasion can be inhibited by Se

through changes of cell tissue characteristics and physiological and

biochemical reactions. The application of Se in soil can significantly

increase the contents of tyrosine, tryptophan, pyroglutamic acid,

histidine, glutamine, L-glutamic acid, aspartic acid and g-
aminobutyric acid in rape inoculated with S. sclerotiorum (Xu et al.,

2020). Se (e.g. 0.1 mg kg-1 and/or 0.5 mg kg-1) increased the activities

of antioxidant enzymes such as catalase, polyphenol oxidase and

peroxidase in plants. Particularly, Se leads to the up-regulation of

defense genes including CHI, ESD1, NPR1, and PDF1.2 in rapeseed

leaves (Xu et al., 2020). Clearly, Se treatments are greatly beneficial for

plants to defend against pathogens. Spraying organic Se solution

(SeMet and SeCys2) can inhibit the extension of F. graminearum in

wheat ears and also reduce the percentage of diseased spikelets (Mao

et al., 2020a). It was speculated that Se regulates the toxin production

of F. graminearum by inhibiting the secretion of toxic substances,

which was mediated by ATP-binding cassette transporter to reduce

the accumulation of deoxinivalenol. The treatments with Se-

nanoparticles (e.g. 10, 25, 50, and 100 mg kg-1) could effectively

inhibit the invasion and extension of A. solanacearum on pepper and

tomato leaves pre-infected by A. solanacearum (Joshi et al., 2019). Se

can stimulate plants to develop mechanistically important defense

processes against pathogen, including the activation of defense genes
Frontiers in Plant Science 04
and the production of secondary metabolites to mediate the host

immunity and signal transduction regulation to resist pathogens (Xu

et al., 2020).
Selenium-mediated plant resistance to
insect pests

According to the response of plants to insect pests (Table 2 and

Figure 2), the influence mechanisms of Se on plant resistance to insect

pests are summarized as follows: (1) Se accumulated in plants can be

metabolized into volatile compounds primarily DMSe and/or DMDSe

as insect repellents, which negatively affect the ovipositing and

feeding behaviors of insect pests; (2) The high concentration of Se

accumulated in plants cause direct toxic effects on some pests,

resulting in the increase of pest mortality, the decrease of

reproduction rate, the inhibition of growth and development, and

the shortening of adult life span.
i. Effects of Se on antixenosis

Traits that deter herbivores from feeding or oviposition (a

phenomenon also referred to as antixenosis) can improve plant

reproductive success by reducing the herbivore load of a focal plant

while increasing herbivory on competitors (Erb, 2018). Often,

antixenosis is rapid and conveniently determined, and it is

sometimes more sensitive than performance as herbivores have

potent sensory systems to choose between different food sources

and oviposition sites (Reisenman et al., 2009).

The effects of Se on antixenosis have been reported in several insect

pests. The Se-enriched diet acts as antifeedant for larvae of S. exigua and

influences their selection of plants and feeding tissues or sites (Trumble

et al., 1998; Vickerman and Trumble, 1999). S. litura is a polyphagous
TABLE 2 Applications of Se treatments to study pest-plant interactions.

Treatment Insect pests Effects Reference

Na2SeO3

(0.125, 0.25, or 0.5%)
Tenebrio molitor Antibiosis (Hogan and Razniak, 1991)

Na2SeO3, Na2SeO4, SeMet, SeCys2
(10, 30, 50, 70 mg kg-1)

Spodoptera exigua Antixenosis and Antibiosis (Trumble et al., 1998; Vickerman and Trumble, 1999; Vickerman et al., 2002)

Na2SeO4

(2 mg kg-1)
Pieris rapae Antixenosis and Antibiosis (Hanson et al., 2003)

Na2SeO4

(2, 40 µM)
Acheta domesticus Antixenosis (Freeman et al., 2007)

Na2SeO4

(10 mg kg-1)
Myzus persicae Antixenosis and Antibiosis (Hanson et al., 2010)

Na2SeO3

(11.9 mg kg-1; 27.7 mg kg-1)
Centroptilum triangulifer Antibiosis (Conley et al., 2011)

Na2SeO3

(0.5, 0.75, 1, 2.5, 5 mg kg-1)
Ostrinia furnacalis Antibiosis (Han et al., 2017)

Na2SeO4

(6.5 ± 1.5 µM)
Nilaparvata lugens Antibiosis (Scheys et al., 2020)

Se-nanoparticles
(25, 50, 75, 100 mg L-1)

Spodoptera litura Antibiosis (Arunthirumeni et al., 2022)
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pest that causes extensive harm to cotton, peanut, tobacco, rice, corn,

tea, broccoli, and cabbage (Senthil-Nathan, 2013; Lalitha et al., 2018). A

study on S. exigua revealed that inorganic Se has antifeedant property

to the older or over-matured larvae, but not with organic Se

compounds (Vickerman et al., 2002). In particular, selenate is a

deterrent agent against the plant’s feeder, and organic Se compounds

are less commonly used to avert pests, but biogenic volatile Se

compounds (mainly DMSe or DMDSe) might act as the deterrent

(Zayed, 1998). A choice feeding experiment demonstrated that crickets

prefer eating plants with a lower Se content of 230 mg kg-1 rather than

the plants with a higher Se content of 447 mg kg-1 (Freeman et al.,

2007). Similarly, the choice feeding experiment using P. rapae showed

that the larvae strongly preferred leaves without Se, and the feeding

rates of leaves without Se was higher than that of Se-containing leaves

(Hanson et al., 2003). In the experiment with mustard infected by

M. persicae, the infection rate of plants without Se was significantly

higher than that of plants with Se. After one week, the infection rate of

plants without Se was close to 100% (Hanson et al., 2010). A recent

study revealed that Se-nanoparticles exhibited a maximum antifeedant

activity of 78.77%, and had toxic effects on larvae of S. litura

(Arunthirumeni et al., 2022).
ii. Effects of Se on antibiosis of
phytophagous insects

Antibiosis includes the adverse effect of the host-plant on the

biology of the insects and their progeny (survival, development, and

reproduction), and both chemical and morphological plant defenses

mediate antibiosis (Padmaja, 2016). When plants absorb Se from the

soil, Se can be transported from plants to insects through the food

chain. Overall, for the possible harm or damages caused by

phytophagous insects, the chemical protection mechanism of plants

can be realized through the accumulation of Se, which can be

explained using element defense hypothesis (Trumble and

Sorensen, 2008).
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It has been reported that the increasing concentrations of selenite

or selenate solution significantly increased the time needed for

development of S. exigua into the pupal and adult stages (Trumble

et al., 1998). The time required to complete the larval stage was

increased by 25%, and the time from egg to adult emergence was

extended by 22-30% (Trumble et al., 1998). In a nonchoice feeding

with mustard infected by M. persicae, aphid population growth was

inversely correlated with the leaf Se concentrations (Hanson et al.,

2010). It is worth noting that high levels of Se treatment could inhibit

the development of aphid, but it also improved the resistance to virus

in a different test (Shelby and Popham, 2007). Similarly, high Se

concentrated treatments significantly affect the growth of S. litura

larvae. When larvae were fed on treated plants with 25 mg L-1 selenite,

the larvae weight was reduced by 40%. When the Se concentration

was increased up to 50 mg L-1, the growth of larvae was inhibited by

62%, and further, the growth of larvae was inhibited by 75% with the

Se treatment of 100 mg L-1 (Popham et al., 2005). In addition, high Se

concentrated treatments also inhibited the growth and development

of O. furnacalis, which was characterized by reduced pupation and

eclosion rates, decraesed pupae weights of both male and female,

shortened longevity, and prolonged pupal duration (Han et al., 2017).

S. exigua larvae fed with Se-treated plant showed reduced body

size and fecundity of adult moths from these larvae thereafter

(Rothschild, 1969). It’s reported that Se had negative effects on the

reproduction of peach aphid (Hanson et al., 2010). Similarly, the Se

concentration of 4.2 mg kg-1 decreased the fecundity of C. triangulifer

(Conley et al., 2011). With the artificial diet containing 75 mg kg-1 of

Se, O. furnacalis female had a lower courtship percentage and

duration than the control, and the courtship peak time was delayed

by 1 to 2 hours (Han et al., 2017). After larvae were fed with the

artificial diet containing Se, it is possible that Se disrupts the

biosynthesis and release of sex pheromones of O. furnacalis, which

indeed affects its reproductive behavior (Han et al., 2017).

The mortality of terrestrial herbivores such as T. molitor due to Se

toxicity could be significantly high (Hogan and Razniak, 1991;

Trumble et al., 1998). When the Se concentration in leaves was 1.5
A B

FIGURE 2

The defense model of plants against insect pests under high Se concentrated treatments. (A) High Se concentration and antixenosis and (B) High Se
concentrations and antibiosis.
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mg kg-1, the growth of M. persicae population was decreased by 50%,

and aphid began to die when the Se concentration was ≥ 10 mg kg-1

(Hanson et al., 2010). The newly hatched P. rapae larvae fed on plants

with the Se concentration of 1300 mg kg-1 died within 9 days, and the

9-d-old caterpillars died at 2 days after exposure to plants with the Se

concentration of 1600 mg kg-1 (Hanson et al., 2003). A recent study

revealed that exposure of nymphs of N. lugens to 10.6 µM sodium

selenite led to >80% mortality at 3 days after treatment, suggesting

direct toxicity of selenium against this notorious insect pest (Scheys

et al., 2020).
Conclusions and future research
perspectives

Se plays an important role in plant growth and development,

particularly enhancing the antioxidant capacity and increasing stress

resistance of plants. The capacity of plants to inhibit pathogens and to

resist diseases is related to maintaining the plant cell/organelle structure,

reducing oxidative stress, inhibiting the mycelia growth and spore

germination of pathogen, destructing the plasma membrane of conidia,

and interfering pathogen’s metabolism. In addition, the plant resistance

to insect pests is also affected by selenium through deterring herbivorous

insects from feeding or oviposition and leading to the death of early

instars, reduced size or weight, prolonged periods of development of the

immature stages, reduced adult longevity and fecundity, and the death in

the prepupal or pupal stage. Based on the element defense theory, Se has

been demonstrated to be effective in regulation and controlling of plant

fungal diseases and insect pests. However, the specific effect may be

related to the bioavailability, application methods and suitable sources

(organic/inorganic/nanoparticles etc.).

The future research on Se and plant immunity needs to focus on

mechanisms regarding the beneficial and toxic properties of different

chemical forms of Se in plants. The practical exposure and dose

ranges of Se on different fungal pathogens and insects also need to be

well determined. The plant Se tolerance in relation to the biological

characteristics of pathogens and phytophagous insects should be

addressed when determining effects of different Se concentrations in

different chemical forms. Previous studies primarily focused on fungal

diseases, with only a few on bacterial and/or viral diseases. One might

speculate that the effects of Se on bacteria and viruses would be similar
Frontiers in Plant Science 06
to the effects of Se on fungi in plants, providing a research hypothesis

that needs to be tested in future research. Due to potential

biomagnification of Se through food chains, it may also be

important to carefully monitor the Se accumulation in insects to

ensure ecological safety during pest control particularly with Se-

biofortified crop production.
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