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Identification of genetic and
biochemical mechanisms
associated with heat shock
and heat stress adaptation in
grain amaranths
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Norma A. Martı́nez-Gallardo1, Lino Sánchez-Segura1,
Jazmı́n P. Padilla-Escamilla1, Paola A. Palmeros-Suárez2*

and John P. Délano-Frier1*

1Departamento de Biotecnologı́a y Bioquı́mica, Centro de Investigación y de Estudios Avanzados del
Instituto Politécnico Nacional, Unidad Irapuato, Irapuato, Guanajuato, Mexico, 2Departamento de
Producción Agrı́cola, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de
Guadalajara, Zapopan, Jalisco, Mexico
Heat stress is poised to become a major factor negatively affecting plant

performance worldwide. In terms of world food security, increased ambient

temperatures are poised to reduce yields in cereals and other economically

important crops. Grain amaranths are known to be productive under poor and/or

unfavorable growing conditions that significantly affect cereals and other crops.

Several physiological and biochemical attributes have been recognized to contribute

to this favorable property, including a high water-use efficiency and the activation of

a carbon starvation response. This study reports the behavior of the three grain

amaranth species to two different stress conditions: short-term exposure to heat

shock (HS) conditions using young plants kept in a conditioned growth chamber or

long-term cultivation under severe heat stress in greenhouse conditions. The latter

involved exposing grain amaranth plants to daylight temperatures that hovered

around 50°C, or above, for at least 4 h during the day and to higher than normal

nocturnal temperatures for a complete growth cycle in the summer of 2022 in

central Mexico. All grain amaranth species showed a high tolerance to HS,

demonstrated by a high percentage of recovery after their return to optimal

growing conditions. The tolerance observed coincided with increased expression

levels of unknown function genes previously shown to be induced by other (a)biotic

stress conditions. Included among them were genes coding for RNA-binding and

RNA-editing proteins, respectively. HS tolerance was also in accordance with

favorable changes in several biochemical parameters usually induced in plants in

response to abiotic stresses. Conversely, exposure to a prolonged severe heat stress

seriously affected the vegetative and reproductive development of all three grain

amaranth species, which yielded little or no seed. The latter data suggested that the

usually stress-tolerant grain amaranths are unable to overcome severe heat stress-

related damage leading to reproductive failure.
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Introduction

The genus Amaranthus consists of ca. 60-70 of annual herbaceous

plants with C4 photosynthesis (Kadereit et al., 2003; Hernández-

Ledesma et al., 2015; Das, 2016). They are further divided into three

sub-genera; Amaranthus Albersia (vegetable amaranth), Amaranthus

Amaranthus (grain amaranth) and Amaranthus Acnida (weedy

amaranth) (Sauer, 1950; Mosyakin and Robertson, 1996; Das,

2016). Their agricultural importance as vegetable and/or grain

crops or herbicide-resistant weeds is widely recognized, although

they may also be used as ornamentals or as a source of pigments

(Shukla et al., 2003; Tranel and Trucco, 2009; Shukla et al., 2010;

Achigan-Dako et al., 2014; Teng et al., 2015; Joshi et al., 2018; Hoidal

et al., 2019; Sarker and Oba, 2019). The three grain amaranth species,

i.e., Amaranthus cruentus, A. hypochondriacus and A. caudatus, are

greatly valued for their highly nutritional, protein-rich seeds that also

possess several nutraceutical properties (Pıśar ̌ıḱová et al., 2005;

Caselato-Sousa and Amaya-Farfán, 2012; Rastogi and Shukla, 2013;

Venskutonis and Kraujalis, 2013; Montoya-Rodrıǵuez et al., 2015; De

Ron et al., 2017). They are native of the American continent, although

their origin and taxonomic relationships remain uncertain (2020;

Trucco and Tranel, 2011; Kietlinski et al., 2014; Adhikary and Pratt,

2015; Stetter and Schmid, 2017; Stetter et al., 2017, 2020; Wu and

Blair, 2017).

Grain amaranths are climate-resilient and stress-tolerant plants able

to withstand drought, salinity, heat and ultraviolet irradiance. They also

sustain severe defoliation, insect and/or pathogen damage and thrive in

poor soils and low-input agricultural systems. This resilience has been

associated with various anatomical, physiological and biochemical

adaptations (2014; 2015; Miller et al., 1984; Lal and Edwards, 1996;

Brenner et al., 2000; Johnson and Henderson, 2002; Délano-Frier et al.,

2004; Liu and Stützel, 2004; Sánchez-Hernández et al., 2004; Omami and

Hammes, 2006; Omamt et al., 2006; Aguilar-Hernández et al., 2011;

Huerta-Ocampo et al., 2011; Caselato-Sousa and Amaya-Farfán, 2012;

Castrillón-Arbeláez et al., 2012; Vargas-Ortiz et al., 2013; Vargas-Ortiz et

al., 2015; Casarrubias-Castillo et al., 2014; González-Rodrıǵuez et al.,

2019; Jamalluddin et al., 2019; Cisneros-Hernández et al., 2021).

Additional data from a large-scale transcriptomic analysis of A.

hypochondriacus plants revealed the presence several orphan or

unknown function genes that changed their expression levels in

response to diverse stress conditions (Délano-Frier et al., 2011), a

number of which were found to significantly increase (a)biotic stress

tolerance when over-expressed in Arabidopsis thaliana (Massange-

Sánchez et al., 2015; Massange-Sánchez et al., 2016; Palmeros-Suárez

et al., 2015; Palmeros-Suárez et al., 2017; Cabrales-Orona, 2016;

Cabrales-Orona, 2017; Cabrales-Orona, 2016; Cabrales-Orona, 2017;

Cabrales-Orona and Délano-Frier, 2021; Cabrales-Orona et al., 2022).

Tolerance to heat stress is becoming an agronomic trait of critical

importance given the worrying predictions of an increasingly

endangered food security caused by damaging high-temperature

events linked to the rise in the average global temperatures (Hoegh-

Guldberg et al., 2018). These will inevitably affect worldwide crop and

ecosystem productivity considering the deleterious impact that high-

temperature stress has on practically all facets of plant development,

growth and reproduction (Dusenge et al., 2019; Li et al., 2019; Ortiz-

Bobea et al., 2019; Sun et al., 2022). Several studies have reported heat-

stress resilience in diverse amaranth species, which has been
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associated with their ability to repair damaged tissues and to re-

establish normal cellular and metabolic functions after heat stress

exposure (Gou and Al-Khatib, 2003; Moran and Showeler, 2005).

Regarding the latter, a recent study found that heat shock (HS) and a

combination of drought and HS had differential, species-specific

effects, on three grain amaranths and A. spinosus, a weedy

amaranth (Netshimbupfe et al., 2022). Thus, the higher heat and

drought tolerance shown by A. cruentus and A. spinosus compared to

A. caudatus and A. hypochondriacus was attributed to a more stress-

resilient photosynthetic apparatus, in addition to augmented proline

(Pro) accumulation, higher relative water contents and reduced

oxidative damage.

The present study further examined the response of grain

amaranth to different heat-related stress conditions. Recovery rates

and plant fitness after short- and long-term exposure to high

temperatures were also recorded. The latter, in order to explore the

potential climate resilience of grain amaranths, defined as their ability

to overcome high temperature-related damage once the plants return

to preferable conditions. Thus, A. cruentus, A. caudatus and A.

hypochondriacus plants were subjected to both short-term HS and

extended heat stress treatments (see Geange et al., 2021). All grain

amaranth species showed high recovery rates after ca. 26 to 30 h

periods of exposure to 45°C, although recovery was species-

dependent, being significantly higher in A. hypochondriacus. Higher

recovery from HS coincided with definite expression patterns of

unknown function genes, previously shown to be induced by

several other abiotic stresses, during both the HS treatment and the

recovery period. HS recovery was also concurrent with the activation

of certain antioxidant enzymes and the accumulation, Pro, phenols

flavonoids, non-structural carbohydrates and pigments. Despite the

fact the fatality rates were low, the performance of grain amaranths

was seriously affected when kept under long-term heat stress. The

overall negative effects observed were species specific, and included

substantial modifications in vegetative growth and reproductive

fitness. The evidence gathered indicates that grain amaranth may be

able to withstand short periods of high temperatures without suffering

major fitness penalties, but not sustained heat stress. It further

supports the notion that grain amaranths are climate resilient crops

that, similarly to other emerging crops like fonio (Digitaria exilis),

taro (Colocasia esculenta), quinoa (Chenopodium quinoa) and a

perennial wheatgrass (Thinopyrum intermedium), may readily adapt

to the rapidly changing climatic conditions of the planet.
Materials and methods

A summary of the experimental design of the present study,

involving the use of several analytical strategies, is shown in Figure S1

in Supplementary Materials
Plant material

Three grain amaranth species, Amaranthus hypochondriacus cv.

“Revancha”, A. cruentus cv. “Dorada” and A. caudatus were employed

in this study. Plants were reproduced from seed stocks that originated

from certified seeds provided by Dr. Eduardo Espitia Rangel, INIFAP,
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México, curator of the Mexican amaranth germplasm collection.

Grain amaranth plants were used for experimentation at different

points after germination (see below). The plants were germinated and

grown in a conditioned growth chamber maintained under controlled

conditions of light (photosynthetically active radiation ≈ 300 mmol

m−2 s−1) photoperiod and temperature (16 h light/8 h dark at constant

28°C), as described previously (Palmeros-Suárez et al., 2015).
Abiotic stress in grain amaranths: Salt and
water deficit stress treatments

Five- to six-week-old A. hypochondriacus plants in the vegetative

2 (V2) stage, having 9-15 expanded leaves (Cisneros-Hernández et al.,

2021) were used to perform water-deficit and salinity stress

experiments, which were performed in the growth room conditions

mentioned above. Ten to twelve plants per stress treatment were

employed and each treatment was replicated twice. In brief, salt stress

was imposed by watering the 1.3 L pots for eight consecutive days

with 100 mL of a 400 mM NaCl solution. At this point, the electrical

conductivity of the soil, measured at field capacity, was ≈ 6.8 dS/m.

This is within the soil salinity range known to affect moderately salt-

sensitive crops (http://www.fao.org/docrep/005/y4263e/y4263e0e.

htm). Electrical conductivity was measured using a portable HI

98130 pH/conductivity/total dissolved solids water-proof tester

(Hanna instruments Inc., Woonsocket, RI, USA). Control plants,

maintained in the same conditions, were watered with deionized-

distilled (dd) water only. The water deficit stress (WDS) treatments

involved withholding irrigation for 8 days. The soil water potential

gradually fell with increasing soil water loss as follows: -0.48 to -0.63

MPa, after 4 days; -0.96 to -1.057 MPa, after 6 days, and -1.45 to -1.68

MPa, after 8 days. The soil water potential was measured using an

HR-33T dew point micro-voltmeter (Wescor Inc., Logan, UT, USA).

Pools of combined leaf samples produced from two groups of three

plants each were collected during both stress treatments at 4, 6 and

8 days and were immediately frozen in liquid N2 and subsequently

stored at -80°C until required. Prior to analysis, the frozen samples

were ground to a fine powder with mortar and pestle and under

liquid N2.
Abiotic stress in grain amaranths: Heat
shock treatment

Heat shock (HS) is defined as the short-term exposure of a plant

to severe high temperatures. The exposure lasts for minutes to a few

hours and the air temperature increase is often 20°C or higher than

the temperature range required for optimal plant development and

reproduction (Mittler et al., 2012). Thus, HS experiments were

performed with A. hypochondriacus, A. cruentus and A. caudatus

plants at the V1 development stage (Cisneros-Hernández et al., 2021)

which defines grain amaranth plants having 6 to 8 expanded leaves.

All HS experiments were performed in a growth chamber kept at 45°C

and under constant illumination. The exposure time to 45°C was

established independently for each grain amaranth species. It was

determined by the hours needed to produce evident heat stress-

related wilting in at least half of the population sample, which
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were as follows: 26 h for A. cruentus and 30 h for A. hypochondriacus

and A. caudatus. All plants were subsequently allowed to recover for 4

days under the optimal growth conditions mentioned above, time

after which the percentage of plants that recovered was recorded.

Additional time-course HS experiments were performed in which

pooled leaf samples from 2 groups of 3 grain amaranth plants each

were collected after different exposure periods to 45°C: 1, 3, 6, 12, 24

and 26 h, for A. cruentus, and 1, 3, 6, 12, 24 and 30 h, for A.

hypochondriacus and A. caudatus. Leaf samples of identical number

of plants from all three grain amaranth species were also collected 1

and 3 and days after recovery.
Abiotic stress in grain amaranths: Long-term
heat stress

Chronic heat stress experiments were performed with 12 plants of

each of the three grain amaranth species examined. Plants were

germinated in a germination tray as mentioned above. They were

transplanted to 1.5 L pots filled with a general soil mix (Palmeros-

Suárez et al., 2015) when the seedlings reached the V1 development

stage, 32 days after germination. The plants were immediately

transferred to the greenhouse where the heat stress experiment was

conducted (see below) and maintained as such for 14 days. They were

then transferred to 14 L plastic bags to finalize the stress treatment.

The stress treatment had a duration of 63 days; it was started in

August 1, 2022 and concluded in October 3, 2022. Seed harvest was

done sometime later, between October 11 and November 15, 2022.

The temperature and relative humidity (RH) inside the greenhouse

were recorded daily in the early morning (7 a.m.), in mid-afternoon (3

p.m.) and in the evening (6:30 p.m.). The average temperatures and

RHs for the duration of the stress treatment were the following: 23.9°

C and 75%, at 7 a.m.; 52.6°C and 21%, at 3 p.m., and 38.5°C and 35%,

at 6:30 p.m. The average temperatures and RHs under which non-

stressed control plants were maintained for the same time span were

the following: 21.7°C and 91%, at 7 a.m.; 35.2°C and 65%, at 3 p.m.,

and 32.6°C and 59%, at 6:30 p.m. Plant survival was recorded at the

end of the experiment. Plant height was recorded thrice, 10, 22 and 57

days after the start of the stress treatment and leaf number was

determined only once, after 57 days of stress. The days to panicle

emergence and subsequent panicle growth, flowering and seed

formation were also monitored. Photographic record of the control

and stressed plants was performed twice, on September 22, 2022 and

September 30, 2022. All plants were watered to field capacity for the

duration of the experiment.
Quantitative PCR assays

Total RNA was extracted and purified from 100-200 mg of frozen

and ground grain amaranth foliar tissues as described by Palmeros-

Suárez et al. (2015). The integrity of the purified RNA was assessed by

denaturing electrophoresis in ethidium bromide-containing

formaldehyde/formamide 1% agarose gels, while RNA purity and

concentration were determined in a NanoDrop 2000 apparatus

(ThermoFisher Scientific; Waltham, MA, USA). cDNA was
frontiersin.org

http://www.fao.org/docrep/005/y4263e/y4263e0e.htm
http://www.fao.org/docrep/005/y4263e/y4263e0e.htm
https://doi.org/10.3389/fpls.2023.1101375
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Reyes-Rosales et al. 10.3389/fpls.2023.1101375
synthesized from 4 mg of total RNA using 200 units of the SuperScript

II reverse transcriptase as instructed by the manufacturer (Invitrogen,

Carlsbad, CA, USA). The cDNA produced was diluted 25-fold with

dd water prior to quantitative PCR (qPCR) analyses, which were

performed using SYBR Green detection chemistry and a CFX96 Real

Time System (Bio-Rad, Hercules, CA, USA) and the primers listed in

Table S1 in Supplementary Materials. These were designed using the

following programs: Primer3 (http://bioinfo.ut.ee/primer3/), Beacon

Designer (http://www.premierbiosoft.com), UNAFold (http://www.

idtdna.com/UNAFold) and Oligo Evaluator (http://www.

oligoevaluator.com) (Thornton and Basu, 2011). Reaction mixtures,

20 mL total volume, contained 2 mL cDNA solution, 4 mL of each 2 mM
oligonucleotide solutions, 8 mL de Sybr Green Jumpstart TAQ Ready

Mix (Sigma-Aldrich St. Louis, MO, USA) and 2 mL of sterile dd water.
The amplification process was performed as follows: 15 min at 95°C

to activate the Taq Polymerase, followed by 40 cycles of denaturation

(95°C/15 s) annealing (60°C/1 min) and extension (72°C/30 s) and a

final extension step (60°C/1 min). The expression levels of several

unknown function grain amaranth genes were determined in leaves of

grain amaranth plants subjected to drought, salt and/or HS stress.

The criteria used to select the genes tested were the following: 1)

Previous experimental evidence of their induced expression in

response to several (a)biotic stress conditions in grain amaranth

(Délano-Frier et al., 2011) and other plants, and 2) presumable

participation in the regulation and/or responses designed to protect

plants from heat-related stress conditions. The analysis included

AhHAB4-PAI-1 (Phytozome 13, v2.1, accession number:

AH018279) coding for an RNA- and hyaluronan-binding protein;

AhRIP (Phytozome 13, v2.1, accession number: AH007263) coding

for an RNA-editing factor interacting protein involved in chloroplast

and mitochondrial RNA editing, similar to a protein recently found to

participate in mitochondrial development in salt-stressed A. thaliana

(Jiang et al., 2021); Ah2880 (Phytozome 13, v2.1, accession number:

AH015341) coding for a small unknown function protein that,

similarly to AhRIP, was shown to be differentially induced in grain

amaranths by various biotic and abiotic stress conditions (Délano-

Frier et al., 2011; Cabrales-Orona and Délano-Frier, 2021); AhBAMY

(Phytozome 13, v2.1, accession number: AH001114), coding for a b-
amylase that was shown to provide heat stress-resistance when over-

expressed in A. thaliana (Cabrales-Orona, 2016); AhDGR2

(Phytozome 13, v2.1, accession number: AH015369) coding for a

DUF642 protein that altered root growth and cell wall structure when

overexpressed in transgenic A. thaliana plants (Palmeros-Suárez

et al., 2017); AhTIL (Phytozome 13, v2.1, accession number:

AH014131) coding for a temperature-induced lipocalin, similar to

proteins known to provide thermo-tolerance in A. thaliana (Chi et al.,

2009); AhERD (Phytozome 13, v2.1, accession number: AH006452),

coding for a senescence/dehydration-associated protein similar to

EARLY RESPONSIVE TO DEHYDRATION 7, ERD7, one of several

proteins identified in lipid droplets, i,e. neutral-lipid-containing

organelles isolated from drought-stressed A. thaliana leaves (Doner

et al., 2021), and AhOEE (Phytozome 13, v2.1, accession number:

AH015200), coding for an oxygen evolving enhancer protein found to

be strongly affected by (a)biotic stresses in A. hypochondriacus

(Délano-Frier et al., 2011). This protein is similar to a photosystem

II component that regulates the function of photosystem II, via the

optimization of the manganese cluster during water photolysis, in A.
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protect the D1 reaction center against oxidative damage during

drought and heat stress in different algal and plant models

(Yamamoto, 2001; Kim et al., 2015; Cevik et al., 2019; Li et al.,

2021a). The expression levels of these genes were normalized in

relation to their expression in leaves of control plants, which was set

to a value of 1.0. Relative gene expression was calculated using the 2-

DDC
T comparative cycle threshold method (Livak and Schmittgen,

2001). The genes employed as normalizing controls were the AhACT7

actin and Ahb-tubulin housekeeping genes. In all cases, leaves for

qPCR assays were obtained from the grain amaranth plant pools

generated during the stress treatments, as described above. Each pool

was subsequently subjected to four independent sampling procedures

prior to analysis. qPCR data are reported as the mean of 4 technical

replicates ± SE of each experiment. qRT-PCR expression analyses

were validated in two independent experiments.
Measurement of biochemical parameters

Several biochemical parameters were analyzed in grain amaranth

plants subjected to HS and recovery treatments. The methods used

were described previously by Cabrales-Orona et al. (2022) and

Portillo-Nava et al. (2021). These included the following: total

betalains, carotenes and chlorophyll; soluble and insoluble non-

structural carbohydrates (NSCs) and Pro levels and total phenols

and flavonoids.

The same extracts used for the analysis of total phenol and

flavonoid leaf contents (Sakanaka et al., 2005) were used for the

subsequent HPLC analysis of phenylpropanoids and phenolic acids

(method 1, M1) and flavonoids (method 2, M2), respectively. These

analyses were performed only with leaf extracts obtained from A.

hypochondriacus plants maintained in optimal conditions, subjected

to HS for 30 h or after a 3-day recovery period following HS. M1 was

performed on a 250 × 4.6 mm I.D. (particle size, 5µm; pore size, 120Å)

YMC-Pack ODS-AM reversed-phase C18 column (YMC CO., LTD.,

Kyoto, Japan) equipped with a C18 guard cartridge, using an Agilent

1200 HPLC system (Agilent Technologies; Santa Clara, CA, USA).

The temperature of the column oven was kept at 25°C. A gradient

elution was employed with a mobile phase consisting of 1% glacial

acetic acid (solution A) and HPLC-grade acetonitrile (solution B) as

follows: linear gradient to 5% B, 0-5 min; linear gradient from 5% B to

10% B, 5-10 min; linear gradient from 10% B to 15% B, 10-30 min;

isocratic elution at 15% B, 30-40 min; linear gradient from 15% B to

50% B, 40-60 min, and linear gradient from 50% B to 100% B, 60-

90 min. A 2 min post-time linear gradient from 100% B to 0% B was

included before the next injection. The mobile phase flow rate and the

sample injection volume were 1.0 mL/min and 10 mL, respectively. All
quantifications were based on peak areas. Gallic acid (retention time,

[Rt], 9.36 min), hydroxybenzoic acid (Rt, 18.65 min), chlorogenic acid

(Rt, 19.97 min), catechin (Rt, 19.77 min), vanillic acid (Rt, 22.07 min),

caffeic acid (Rt, 23.68 min), epicathequin (Rt, 26.74 min), vanillin (Rt,

29.04 min), coumaric acid (Rt, 33.15 min), rutin (Rt, 83.89 min),

myricetin (Rt, 83.90 min) and kaempferol (Rt, 83.92) were used

as standards.

M2 was performed on a 150 × 4.6 mm I.D. (particle size, 5 µm;

pore size, 120Å) Zorbax Eclipse XDB reversed-phase C18 column
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(Agilent Technologies) equipped with a C18 guard cartridge, using an

Agilent 1200 HPLC system (Agilent Technologies). The temperature

of the column oven was kept at 25°C. A gradient elution was

employed with a mobile phase consisting of water: acetic acid:

acetonitrile (88:2:10 v/v/v; solution A) and water: acetic acid:

HPLC-grade acetonitrile (8:2:90 v/v/v; solution B) as follows: linear

gradient to 15% B, 0-5 min; linear gradient from 15% B to 50% B, 5-

20 min; linear gradient from 50% B to 70% B, 20-25 min; linear

gradient from 70% B to 100% B, 25-30 min; isocratic elution at 100%

B, 30-40 min. A 5 min post-time linear gradient from 100% B to 0% B

was included before the next injection. The mobile phase flow rate

and the sample injection volume were 1.0 mL/min and 20 mL,
respectively. All quantifications were based on peak areas.

Chlorogenic acid (Rt, 3.95 min), catechin (Rt, 5.15 min), rutin (Rt,

6.99 min), myricetin (Rt, 9.78 min) and kaempferol (Rt, 15.39) were

used as standards.
Antioxidant enzymes and H2O2

Catalase (CAT), superoxide dismutase (SOD) and glutathione

reductase (GR) enzyme activities, as well as hydrogen peroxide levels,

were also determined. The enzymology methods employed were

previously described by Cabrales-Orona et al. (2022) and Palmeros-

Suárez et al. (2015). H2O2 was determined by the colorimetric

quantification of a xylenol orange and ferric iron complex produced

after the peroxide-dependent oxidation of ferrous iron (National

Diagnostics, Atlanta, GA, USA).
Statistical analysis

All the experiments were performed using a completely

randomized design with at least 6 plants per genotype. Data

generated were analyzed using a one-way analysis of variance

(ANOVA) to examine: 1) the effect of HS stress on the expression

levels of the 8 unknown function genes in grain amaranth plants; 1)

the significance of the extent of recovery observed after HS, and 3) the

effect on various biochemical variables recorded in grain amaranth

plants subjected to HS. The means were compared using the Tukey-

Kramer test to identify statistically significant differences between

them. The statistical analysis was performed with the aid of R (http://

r-project.org/) Rstudio (https://www.rstudio.com) and JMT Pro13

(jmp.com) statistical software.
Results

Responsiveness of selected grain amaranth
unknown function genes to high salt and
water-deficit stresses

Further analysis of four stress-responsive unknown function

genes was performed in this work. The selected genes (i.e.,

AhHAB4-PAI-1, AhBAMY, AhTIL and AhOEE) were subjected to

excess salt and WDS treatments to corroborate the only reported

evidence of their responsiveness to these compromising conditions
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(Délano-Frier et al., 2011). Thus, the results from the quantitative

gene expression assays shown in Figure 1C show that AhBAMY was

strongly induced by salt stress, reaching ca. 6-fold higher expression

levels at the end of the treatment. Conversely AhTIL (Figure 1D) was

weakly induced after 8 days of salt stress, whereas AhOEE, and

particularly AhHAB4-PAI-1, were repressed (Figures 1A, B). AhOEE

was negatively affected by WDS, becoming repressed by the sixth day

of WDS exposure, whereas AhHAB4-PAI-1 responded positively to

WDS, reaching more than 2-fold higher expression levels at the same

time point (Figures 1A, B). AhTIL and AhBAMY were more

responsive to WDS than to salt stress, with both genes reaching

highest expression levels 4 days after water was withheld from the

plants. AhBAMY, in particular, showed a heightened response to

these two stress conditions, particular WDS (Figures 1C, D).
Responsiveness of selected grain amaranth
unknown function genes to heat shock and
subsequent recovery

The foliar expression of all the unknown function grain amaranth

genes tested in plants exposed to HS and subsequent recovery was

distinctly different (Table 1). HS tolerance in the three grain amaranth

species was associated with an early induction of the RNA binding

(AhHAB4-PAI-1) and RNA editing (AhRIP) genes. These were found

to peak between 3 and 6 h after the start of the HS treatment followed

by a gradual decrease of their expression levels that extended to the end

of the HS treatments (i.e., 26 to 30 h). These diminished gene

expression levels were, nevertheless, still significantly higher than

those recorded in control plants. A stronger induction of these two

genes, and ofAhHAB4-PAI-1 in particular, was also detected during the

recovery period, especially 1 day after returning to optimal conditions.

The AhERD gene was also found to be extensively induced in response

to the HS treatment in all grain amaranths. However, contrary to the

latter two genes, the expression levels were much more intensely

induced during the early stages of the HS treatment, except in A.

caudatus, rather than during recovery. AhTIL and AhDGR produced

expression patterns that were similar toAhERD, being expressed almost

exclusively during HS conditions, mostly at early time points, and

remaining unchanged, and even repressed in A. cruentus and A.

hypochondriacus, during the late HS stages and/or the recovery

periods. The expression pattern of these genes in A. caudatus differed

again from those recorded in the other two species. Ah2880 was

exclusively induced during the HS stress, but contrary to the above

three genes, its induction was detected at the late stages of the HS

treatment. AhBAMY was transiently expressed within the first 12 h of

the HS treatment and was later extensively repressed, except for the

brief induction recorded 1 day after recovery in A. hypochondriacus.

Finally, a strong repression of the AhOEE gene was first observed 6 h

after the onset of the HS treatment in A. cruentus and A. caudatus; this

effect extended for the rest of the HS treatment and included the

recovery period. In contrast, AhOEE was induced within the first 12 h

of HS stress in A. hypochondriacus and subsequently returned to levels

that were no different from those recorded in control plants, except for

a short-lived repression observed 24 h after HS treatment.

The highest recovery to HS, detected in A. hypochondriacus

(Figures 2A, B), coincided with defined differences in the magnitude
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TABLE 1 Effect of heat shock and subsequent recovery on the expression of grain amaranth unknown function genes.

Heat shock Recovery

A. hypochondriacus

GENE/time 1 h 3 h 6 h 12 h 24 h 30 h 1 day 3 days

AhHAB4-PAI-1 4.65 ± 0.29cde 15.20 ± 2.68b 11.88 ± 2.02bc 5.12 ± 0.60cde 8.17 ± 0.98bcd 0.05 ± 0.01e 47.62 ± 2.81a 4.15 ± 0.56bde

AhRIP 1.68 ± 0.23cd 3.25 ± 0.41b 2.48 ± 0.15bc 1.41 ± 0.09de 1.12 ± 0.05de 0.79 ± 0.05de 4.14 ± 0.17a 0.73 ± 0.01e

AhERD 13.34 ± 1.14a 5.07 ± 0.56b 1.71 ± 0.21c 1.41 ± 0.114c 11.37 ± 0.12a 0.96 ± 0.124c 1.90 ± 0.28c 0.83 ± 0.08c

AhTIL 3.08 ± 0.44a 1.36 ± 0.22bc 1.03 ± 0.3bc 1.77 ± 0.20b 0.91 ± 0.07bc 1.08 ± 0.07bc 0.62 ± 0.06c 0.99 ± 0.04bc

AhDGR 3.24 ± 0.53b 5.38 ± 0.29a 2.50 ± 0.24b 0.96 ± 0.07c 0.73 ± 0.13c 0.89 ± 0.13c 1.29 ± 0.15c 0.55 ± 0.02c

AhBAMY 0.55 ± 0.05c 1.34 ± 0.10b 1.04 ± 0.10b 1.08 ± 0.09b 0.16 ± 0.03c 0.24 ± 0.03c 1.85 ± 0.07a 0.23 ± 0.01c

Ah2880 1.14 ± 0.09d 1.43 ± 0.08cd 1.74 ± 0.12bc 1.59 ± 0.03cde 2.25 ± 0.10ab 2.57 ± 0.16a 1.35 ± 0.07cd 0.51 ± 0.06e

AhOEE 3.92 ± 0.21a 4.41 ± 0.19a 2.20 ± 0.06b 1.88 ± 0.24bc 0.02 ± 0.04e 0.70 ± 0.04d 1.46 ± 0.13c 0.79 ± 0.08d

A. cruentus

GENE/time 1 h 3 h 6 h 12 h 24 h 26 h 1 day 3 days

AhHAB4-PAI-1 2.61 ± 0.34cd 5.23 ± 0.82c 15.16 ± 1.88b 1.10 ± 0.21cd 0.63 ± 0.08d 2.47 ± 0.12cd 20.21 ± 0.49a 14.38 ± 1.10b

AhRIP 1.59 ± 0.08bcd 2.46 ± 0.09b 5.00 ± 0.20a 1.98 ± 0.81bc 0.74 ± 0.20cd 1.33 ± 0.20bcd 1.85 ± 0.44bcd 0.26 ± 0.02d

AhERD 40.86 ± 0.96a 26.12 ± 1.81a 7.50 ± 0.89d 18.04 ± 0.85c 5.52 ± 0.79de 14.44 ± 0.79c 2.85 ± 0.21e 1.56 ± 0.14e

AhTIL 4.76 ± 0.57a 3.34 ± 0.39b 2.11 ± 0.18b 0.53 ± 0.13c 0.61 ± 0.04c 0.52 ± 0.04c 0.28 ± 0.05c 0.28 ± 0.06c

AhDGR 1.83 ± 0.08b 3.71 ± 0.89a 3.40 ± 0.10a 0.48 ± 0.14bc 0.12 ± 0.02c 0.05 ± 0.02c 0.35 ± 0.06bc 0.11 ± 0.01c

AhBAMY 0.78 ± 0.051bc 2.41 ± 0.22a 2.43 ± 0.20a 0.82 ± 0.09b 0.52 ± 0.13bc 0.54 ± 0.13bc 0.97 ± 0.28b 0.05 ± 0.01c

(Continued)
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FIGURE 1

Effect of high salt and water-deficit stress on the expression levels of four grain amaranth unknown function genes. Relative gene expression was
quantified in leaves of grain amaranth plants subjected to high salt or water deficit stress for 4, 6 and 8 days, respectively. The three recognized grain
amaranth species were analyzed: Amaranthus hypochondriacus cv. Revancha, A cruentus cv. Dorada and A caudatus. Foliar RNA was employed for the
qRT-PCR analysis of presumably stress-inducible unknown function genes, namely: (A) AhHAB4-PAI-1; (B) AhOEE; (C) AhBAMY, and (D) AhTIL. Threshold
cycles (CT) values for all genes were normalized to the CT value of the AhACT7 and AhEF1a housekeeping genes. Changes in gene expression were
calculated from 4 technical replicates of pools prepared from 10-to-12 plants sampled per time point using the 2-DDCT method (Livak and Schmittgen,
2001). Different letters over the box-and-whisker plots, showing high, low, and median values, represent statistically significant differences; one-way
ANOVA and Tukey Kramer test, P < 0.05.
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and timing of two of the genes analyzed: 1) a longer induction

period of AhHAB4-PAI-1 during HS, which was sustained for 24 h,

in addition to very high expression levels during the early recovery

period, which were ca. 2-fold higher than those recorded in the

other two grain amaranth species, and 2) a prolonged induction of

the AhOEE gene, which remained induced for 12 h under HS,

compared to A. cruentus and A. caudatus, where the expression of

this gene began to be strongly repressed by the sixth hour of

HS stress.
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Biochemical changes produced in heat-
shocked grain amaranth plants: Non-
structural carbohydrates and Pro

Most biochemical responses activated in response to heat stress

shared a certain degree of similarity in A. hypochondriacus and A.

cruentus and tended to differ, in some cases notably, in A. caudatus.

Glucose (Glc) levels were reduced ca. 2 to 10-fold in heat-shocked A.

hypochondriacus and A. cruentus plants (Figure 3A). The decrease in
TABLE 1 Continued

Heat shock Recovery

Ah2880 0.50 ± 0.05d 1.15 ± 0.04c 1.39 ± 0.08bc 1.89 ± 0.15ab 0.90 ± 0.07cd 2.33 ± 0.24a 0.86 ± 0.07cd 0.46 ± 0.05d

AhOEE 1.73 ± 0.05a 0.64 ± 0.05b 0.41 ± 0.05c 0.11 ± 0.01d 0.01 ± 0.00d 0.008 ± 0.00d 0.08 ± 0.01d 0.15 ± 0.02d

A. caudatus

GENE/time 1 h 3 h 6 h 12 h 24 h 30 h 1 day 3 days

AhHAB4-PAI-1 5.08 ± 0.60c 20.30 ± 0.89ab 24.09 ± 2.61a 1.19 ± 0.23c 0.76 ± 0.10c 0.06 ± 0.010c 26.36 ± 1.63a 14.38 ± 2.21b

AhRIP 0.74 ± 0.02d 1.59 ± 0.12cd 4.91 ± 0.38a 3.94 ± 0.22ab 2.35 ± 0.25bc 1.80 ± 0.25cd 3.15 ± 0.51bc 3.02 ± 0.38bc

AhERD 9.64 ± 0.70bc 6.26 ± 1.17bcd 12.08 ± 0.32b 26.24 ± 0.87a 26.47 ± 1.47a 28.38 ± 1.47a 4.70 ± 0.62cd 1.83 ± 0.07d

AhTIL 4.26 ± 0.38bc 1.31 ± 0.15ef 5.08 ± 0.24ab 6.11 ± 0.47a 3.19 ± 0.41cd 4.04 ± 0.41bc 2.63 ± 0.24de 0.99 ± 0.15f

AhDGR 0.68 ± 0.14c 1.25 ± 0.08b 1.88 ± 0.09a 1.35 ± 0.07ab 0.90 ± 0.01bc 0.54 ± 0.01c 0.99 ± 0.07bc 0.66 ± 0.03c

AhBAMY 0.23 ± 0.00de 0.03 ± 0.01ef 2.17 ± 0.15a 1.65 ± 0.11b 0.27 ± 0.00cde 0.14 ± 0.00e 0.55 ± 0.02c 0.57 ± 0.04cd

Ah2880 0.53 ± 0.05c 1.70 ± 0.14a 0.54 ± 0.07c 1.72 ± 0.10a 2.36 ± 0.23a 2.21 ± 0.13a 1.42 ± 0.17ab 0.45 ± 0.01bc

AhOEE 1.00 ± 0.02a 0.68 ± 0.09b 0.02 ± 0.00c 0.05 ± 0.00c 0.03 ± 0.00c 0.03 ± 0.00c 0.01 ± 0.00c 0.02 ± 0.00c
aRelative expression was quantified based on the 2-DDCT calculation (Livak and Schmittgen, 2001)
bNumbers in bold and in italics represent upregulated and down-regulated gene expression, respectively
Relative gene expressiona in leaves was quantified during heat shock treatment and subsequent recovery. Three grain amaranths species were employed: Amaranthus hypochondriacus, Amaranthus
cruentus and A. caudatus.
A B

FIGURE 2

Heat shock tolerance of young grain amaranth plants. (A) Young grain amaranth plants, at the vegetative 1 stage of development, were placed in growth chamber
and subjected to different heat shock (HS) periods, at 45°C and constant light: 30 h (Amaranthus hypochondriacus and (A caudatus) and 26 h (A. cruentus). The
aspect of the stressed plants (HS, middle panel) was compared with untreated control, (C), plants maintained in optimal growing conditions (left-hand panel) and
with plants that recovered from HS, shown after a 3-day period in optimal conditions (R3, right-hand panel). (B) The box-and-whisker plots show the percentage
of recovery recorded in each of the three grain amaranth species analyzed. Different letters over the box-and-whisker plots, showing high, low, and median
values, represent statistically significant differences; one-way ANOVA and Tukey Kramer test, P < 0.05 (n = 30).
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fructose (Fru) and starch contents followed a similar pattern, except

in A. cruentus plants, where these NSCs increased to levels similar to,

or higher (i.e., starch, at 12 h), than those detected in untreated plants

during the final stages of the HS treatment (24 to 26 h) (Figures 3B,

D). In contrast, a consistent increase of Glc, Fru and starch, that was

first detected 12 h after the start of the HS treatment and persisted

until its termination, was observed in A. caudatus. No species-specific

differences were observed for sucrose (Suc), whose HS-induced levels

started to increase significantly after 12 h and gradually reached

maximum levels at the end of the HS treatment (Figure 3C). Non-

species-specific effects also included the reduction of NSC contents

that was recorded during the recovery period, as follows: i) a peak of

Glc and Fru levels occurring 1 day after recovery followed to a return

to control levels after day 3; ii) maximum starch accumulation, 1 day

(in A. caudatus) or 3 days (in A. hypochondriacus and A. cruentus)

after recovery (Figures 3A, B, D), and iii) the return of Suc to similar,

or slightly higher levels, than those detected in control untreated

plants (Figure 3C). Parallel to Suc, Pro accumulated at the final stages

of the HS treatment and returned to levels similar to those in

untreated control plants during the recovery period (Figure 3E).
Total pigments: Carotenes, chlorophyll
and betalains

HS-induced changes in total carotene content differed between

species (Figure 4A). In A. hypochondriacus, carotene content reached
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significantly higher levels than untreated controls 6 to 24 h after HS,

only to decline at the end of the HS treatment and during recovery. In

A. cruentus, total carotene content remained mostly unchanged

during HS and peaked briefly, 1 day after recovery, whereas

carotene content was similarly unaffected by HS in A. caudatus but

was reduced during recovery. In all grain amaranths, carotene content

was significantly lower than untreated controls 3 days after recovery.

Total chlorophyll steadily increased concomitantly with HS, for the

duration of the treatment in A. hypochondriacus and A. cruentus, and

only for the first 6 h of HS exposure in A. caudatus (Figures 4B).

Chlorophyll contents were reduced to similar or lower levels than

those detected in untreated controls during the recovery period.

Betalain pigments, and their betalamic acid precursor, showed a

similar accumulation pattern, gradually increasing concomitantly

with the duration of the HS treatment followed by a drastic

reduction occurring 1 and/or 3 days after recovery (Figures 4C–E).

HS-induced betalain pigment accumulation was ostensibly weaker in

A. caudatus.
Total phenols and flavonoids, antioxidant
enzyme activity and H2O2 accumulation

Total phenols and flavonoids gradually increased in response to

HS in all grain amaranths tested and peaked at the latter stages of their

respective treatments. Flavonoid and phenol levels did not increase

further during recovery, but remained significantly higher than those
A B

D

E

C

FIGURE 3

Fluctuation in the levels of non-structural carbohydrates and proline recorded during heat shock and subsequent recovery in grain amaranth plants.
Changes in the levels of (A) glucose, (B) fructose, (C) sucrose, (D) starch and (E) proline detected in leaves sampled from grain amaranth plants at the V1
development stage subjected to heat shock (HS) for 0, 1,3, 6, 12, 24, 26 (Amaranthus cruentus) or 30 h (A. hypochondriacus and A caudatus) and after 1
(1 d R) and 3 (3 d R) days of recovery from HS under optimal conditions. The bars represent the mean value (n = 30) ± SE. Asterisks over the bars
represent statistically significant differences within species at P ≤ 0.05 (*), P ≤ 0.01 (**) or P ≤ 0.001 (***); one-way ANOVA and Tukey Kramer test.
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detected in untreated control plants, except in A. hypochondriacus

and A. caudatus sampled 1 and 3 days after recovery, respectively

(Figures 5A, B). This tendency was replicated in the HPLC analysis of

A. hypochondriacus leaf extracts obtained from control and heat-

shocked plants, respectively, sampled at the end of the HS treatments

and after a 3-day recovery period. Thereby, the results shown in

Tables S2, S3 indicate that the leaves of heat-shocked plants produced

the largest number of peaks, the majority of which had higher peak

areas than those detected in control and recovered plant leaf samples.

Only a handful of peaks were more abundant, or exclusive of, control

and/or recovered plants. Curiously, none of the most abundant peaks

produced in response to HS could be identified by comparison with

the retention times of standard compounds. Also, the presence of late-

eluting peaks using the M2 separation was indicative of possible

modifications of phenols and/or flavonoids by methylation, acylation,

glycosylation, conjugation, oxidation and/or other chemical reactions.

The identification of these compounds is now in progress.

Antioxidant enzyme activities responded differently, and in a

species-dependent manner, to the HS treatment and subsequent

recovery. SOD activity was mostly reduced or unaffected during HS

but underwent an increase in activity during the recovery period in all

grain amaranths (Figure 5C). GR, in contrast, reached highest levels

of activity at the end of the HS treatment and subsequently receded

during recovery, except in A. cruentus, where the increase in GR

activity during HS did not follow a uniform pattern and where no

decrease in GR activity was detected during recovery (Figure 5D).

CAT activity was predominantly unresponsive to HS and also
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remained unchanged during recovery, except in A. caudatus, where

significant peaks in activity were observed 30 h after HS and during

the following recovery period (Figure 5E). No H2O2 was detected in

any of the grain amaranth leaf samples analyzed.
Morphological and physiological alterations
produced in chronically heat-stressed grain
amaranth plants

Although the survival to prolonged and severe heat stress in the

three grain amaranth species tested was elevated (i.e., between 85 and

100%), the plants nevertheless showed severe responses to this

condition that were manifested during both vegetative and

reproductive development stages (Table 2; Figure 6). Heat-stressed

plants were, in average, 1.5 to 2-fold shorter than control plants kept

under optimal conditions (Table 2; Figures 6A–I). Plant height

hindrance started early, being already evident 10 days after the

exposure to stress (Table 2). Some heat-stressed A. hypochondriacus

and A. caudatus plants ramified into two or three-stemmed plants

(Figures 6A–I); the additional stems were always generated from

early, and usually irreversible, heat stress-derived damage to the apical

meristem of the main stem.

In contrast, all heat-stressed plants produced a greater number of

leaves, a parameter that was determined 57 days after the beginning of

the heat stress treatment (Table 2). However, the leaves showed

evident signs of damage, particularly in A. caudatus (Figures 6J, N,
A B
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FIGURE 4

Fluctuation in the levels of different pigments recorded during heat shock and subsequent recovery in grain amaranth plants. Changes in the levels of (A)
total carotenes, (B) total chlorophyll, (C) betalamic acid, (D) betaxanthins and (E) betacyanins detected in leaves sampled from grain amaranth plants at
the V1 development stage subjected to heat shock (HS) for 0, 1,3, 6, 12, 24, 26 (Amaranthus cruentus) or 30 h (A. hypochondriacus and A caudatus) and
after 1 (1 d R) and 3 (3 d R) days of recovery from HS under optimal conditions. The bars represent the mean value (n = 30) ± SE. Asterisks over the bars
represent statistically significant differences within species at P ≤ 0.05 (*), P ≤ 0.01 (**) or P ≤ 0.001 (***); one-way ANOVA and Tukey Kramer test.
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TABLE 2 Effect of extended, severe heat stress on vegetative and reproductive development parameters in grain amaranth species.

A. hypochondriacus A. cruentus A. caudatus

Plant survival (%)a 88 100 82

Plant height (cm), 10 daysb (control, C) 34.33 32.50 19.1

Plant height, 10 days (heat stress, HS) 18.21 19.38 13.6

Plant height, 22 daysc (C) 61.61 66.70 57.0

Plant height, 22 days (HS) 41.43 56.38 31.0

Plant height, 57 daysc (C) 144.13 149.85 135.4

Plant height, 57 days (HS) 100.43 115.43 90.4

Leaf number (C)d 35.86 20.40 35.6

Leaf number (HS) 53.00 32.43 40.6

Panicle emergence (C)e 42 56 52

Panicle emergence (HS) 67 86 77

Panicle size, cm (C)f 40.94 26.80 41.3

Panicle size, cm (HS) 10.86 1.14 6.8

Flowering (C)g 8 14 16

Flowering, (HS) 10 22 20

Immature seed formation, (C)h 20 27 35

(Continued)
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FIGURE 5

Fluctuation in the levels of antioxidant compounds and enzymes recorded during heat shock and subsequent recovery in grain amaranth plants. Changes in the
levels of (A) total flavonoids, (B) total phenols, (C) glutathione reductase, GR, activity (D) superoxide dismutase, SOD, activity and (E) catalase, CAT, detected in
leaves sampled from grain amaranth plants at the V1 development stage subjected to heat shock (HS) for 0, 1,3, 6, 12, 24, 26 (Amaranthus cruentus) or 30 h (A.
hypochondriacus and A caudatus) and after 1 (1 d R) and 3 (3 d R) days of recovery from HS under optimal conditions. The bars represent the mean value (n =
30) ± SE. Asterisks over the bars represent statistically significant differences within species at P ≤ 0.05 (*), P ≤ 0.01 (**) or P ≤ 0.001 (***); one-way ANOVA and
Tukey Kramer test.
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O), whereas some A. cruentus´ leaves developed a morphological

alteration characterized by the division of the leaf into two sections,

which emerged from a profound partition, resembling a mechanical

rupture, that emerged along the middle of the leaf surface (Figures 6K,

L). The reproductive performance of heat-stressed grain amaranths

was also profoundly perturbed. Thus, panicle emergence was greatly

delayed, or sometimes completely suppressed (i.e., in A. cruentus,

Figure 6M), and, later, the emerging panicles had, in average, an

extremely slow growth rate (i.e., in A. cruentus; Figure 6R) and some

were deformed (i.e., in A. hypochondriacus; Figure 6P). Moreover,

flowering in the panicles produced by A. cruentus and A. caudatus

was delayed (Figures 6R–U), whereas flowering panicles in A.

hypochondriacus were slow to produce mature seeds, as determined

60 days after heat stress (Figure 6Q; Table 2). At this stage, all control

plants had produced mature seeds. Another striking effect associated
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with the reproductive performance of grain amaranths was the

profuse branching that occurred concomitantly with panicle

emergence in most plants of all 3 species (Figures 6Q, S, U). Seed

yields in A. hypochondriacus and A. cruentus were 3.5 to 7-fold lower,

respectively, than those produced by equivalent control plants,

whereas no seeds were produced by heat-stressed A. caudatus

plants (Table 2).
Discussion

Grain amaranths have been demonstrated to be climate-resilient

crops capable of adapting to harsh ambient conditions that are usually

unfavorable to several commercial crops, including most cereals, on

which the world´s food security depends. Various previous studies
FIGURE 6

Effects of prolonged, severe heat stress on vegetative and reproductive development in grain amaranth plants. Severe long-term heat stress stunted plant
growth, leading to plants that were, in average 1.5 to 2-fold shorter than control plants kept under optimal conditions (A–I). Some heat-stressed plants
ramified into two-stemmed plants, as shown in A. hypochondriacus (A) and A. caudatus (I); Heat stress conditions caused leaf damage in A. caudatus (J,
N, O), or led to a morphological alteration characterized by the division of the leaf into two parts along the middle of the leaf surface (K, L). Panicle
emergence was greatly delayed or suppressed (i.e., in A. cruentus) (M), and subsequent development was very slow (i.e., in A. cruentus) (R) or produced
deformed panicles (i.e., in A. hypochondriacus) (P). Flowering in the panicles produced by A. cruentus and A. caudatus was also delayed (R, U), whereas
flowering panicles (i.e., in A. hypochondriacus (Q) and A. cruentus) produced very low numbers of immature/mature seeds, or no seeds at all (A.
caudatus). Heat stress also led to profuse branching, a modification that occurred concomitantly with panicle emergence in most plants of the three
grain amaranth 3 species (Q–U).
TABLE 2 Continued

A. hypochondriacus A. cruentus A. caudatus

Immature seed formation (HS) 25 30 ND

Seed yield per plant, in g (C)i 11.98 7.6 6.13

Seed yield per plant, in g (HS) 3.43 1.07 ND
aPlant survival: determined 67 days after the start of the heat stress treatment.
bAverage plant height: recorded 10 days after the start of the heat stress treatment, in plants grown in 1.5 L pots.
cPlant height, recorded after different heat-stress periods, in plants grown in 14 L plastic bags.
dLeaf number recorded after 57 days of the heat stress treatment, in plants grown in 14 L plastic bags.
ePanicle emergence was registered in days after germination.
fPanicle size was recorded 57 days after the start of the heat stress treatment.
gFlowering was recorded in days after panicle emergence (dape).
hSeed formation/maturation was recorded in dape.
iSeed yield represents the average seed yield per plant calculated from groups of 10-11 control plants and 7 surviving heat-stressed plants.
ND = Not detected.
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using grain amaranths as model plants have demonstrated that abiotic

stress tolerance is highly species specific. This trait appears to occur as

a consequence of the differential manifestation of various

biochemical, molecular and physiological responses designed to

reduce, for example, the negative impact of severe defoliation (2015;

Vargas-Ortiz et al., 2013; Cisneros-Hernández et al., 2021), WDS

(González-Rodrıǵuez et al., 2019) and long-term flooding and

hypoxia/anoxia (J.P. Padilla-Escamilla, personal communication),

among other damaging ambient conditions. This study extended

this perspective by concentrating on the effects and species-specific

responses of grain amaranths to HS and heat stress conditions. A

number of previous reports have recognized the capacity of amaranth

plants, mostly vegetable and weed types, to withstand high-

temperature stress, usually together with water-deficit conditions.

For instance, studies performed with various Amaranthus species,

revealed a differential capacity to repair damaged tissues after heat

stress exposure and to subsequently reactivate normal metabolic

functions, such as photosynthesis. Thus, part of the greater growth

of A. palmeri at higher temperatures, compared to A. retroflexus and

A. rudis was attributed to its extensive root growth and to the greater

thermostability of its photosynthetic apparatus (Gou and Al-Khatib,

2003). Further species-specific differences in heat tolerance were

recently associated with a higher tolerance of the photosynthetic

apparatus of A. cruentus and A. spinosus to combined heat and

drought stress, compared to A. caudatus and A. hypochondriacus. The

difference observed was linked to a higher PSII photochemical

efficiency and to an increased pool size of the final electron

acceptors of PSI. Additional contributing factors were the

accumulation of higher Pro levels and a higher membrane stability,

which was correlated to a significantly reduced propensity to

electrolyte leakage (Netshimbupfe et al., 2022). Another

investigation found that seeds of A. tricolor and A. spinosus were

able to germinate in conditions of extreme ground temperatures and

low soil water potentials. This ability was interpreted as an adaptative

trait to the high-temperature conditions of their natural tropical

habitats, similar to several other intrusive plant species that take

advantage of this capacity to enhance their invasive capacity (Ye and

Wen, 2017). In this respect, a recent study suggested a link between

the extent of the globulin seed protein fraction and the suitability of

seeds of diverse grain amaranth species for use in arid regions of

Mexico and other world regions (Barba de la Rosa et al., 2009). This

proposal was based on the high homology of the globulin seed protein

fraction with the Cupin domain of seed storage proteins of other plant

species, considering that the latter has been associated with resistance

to extreme heat and WDS (Khuri et al., 2001).

In the present study, a significantly higher tolerance to HS was

observed in A. hypochondriacus. This characteristic was in accordance

with the superior tolerance of this grain amaranth species to WDS

compared to A. cruentus and A. caudatus (González-Rodrıǵuez et al.,

2019). Several biochemical responses, mostly detected in roots, were

associated with the latter trait, including a stronger expression of

abscisic acid marker genes, a more robust sugar starvation response

and an enhanced osmotic adjustment. The latter was proposed to

result from higher basal and WDS-induced hexose levels and hexose/

sucrose ratios that coincided with a depletion of starch reserves in

leaves and roots and augmented levels of raffinose family

oligosaccharides and Pro. Although most of the biochemical and
Frontiers in Plant Science 12
enzymatic parameters analyzed in this study were found to change

drastically during HS and subsequent recovery, it was nevertheless

found that, similar to WDS, greater HS tolerance in A.

hypochondriacus compared to the other two grain amaranth species

coincided with a number of specific parameters such as: i) a very

pronounced depletion of leaf starch reserves during the HS treatment,

and ii) a significantly higher accumulation of foliar Pro, Suc, total

phenols and flavonoids and betalains and other pigments at the latter

stages of the HS treatment. This pattern coincided with the greater

accumulation of redox-sensitive phenols and flavonoids recently

reported in WDS-tolerant accessions of A. hypochondriacus (Aditya

et al., 2022). Likewise, a comparison of thermosensitive and

thermotolerant lettuce cultivars revealed that the latter differentially

accumulated specific phenylpropanoid and flavonoid compounds

known to have strong antioxidant activity, upon heat treatment

(Oh et al., 2009; Wei et al., 2021). Augmented Pro levels were also

congruent with this compound’s role in the mitigation of high

temperature stress and subsequent recovery due to its quenching of

singlet oxygen and superoxide radicals (Kavi Kishor et al., 2022).

Modified levels of soluble sugars are similarly known to be altered

during heat stress in order to regulate osmotic pressure within the cell

(Wang et al., 2020). Moreover, soluble carbohydrate accumulation,

mostly as Suc, is related to heat stress-activated starch degradation

(Thalmann et al., 2016) coupled to enhanced sucrose phosphate

synthase activity (Der Agopian et al., 2011). Starch breakdown has

also been linked to the activation of b-amylase gene expression (see

below) and activity, which is known to be induced by several stress

conditions, including heat (Dreier et al., 1995). b-amylase activity also

leads to the accumulation of maltose, which acts as a precursor of

soluble sugar metabolism and as a protective agent of proteins,

membranes and the photosynthetic electron transport chain under

either heat or freezing stress (Kaplan and Guy, 2004; Kaplan et al.,

2006). In general, the fluctuation of NSCs levels in leaves of heat-

shocked grain amaranths was in agreement with the significant effect

that high-temperature stress is known to have on photosynthesis,

starch synthesis, Suc synthesis and transport, and photo-assimilate

accumulation (Lal et al., 2022).

Regarding pigment levels, prior studies have revealed that wheat

cultivars resistant to heat stress maintained higher total chlorophyll

levels in addition to other favorable responses such as higher Fv/Fm

ratios and increased photosynthetic and transpiration rates and

stomatal conductance (Sharma et al., 2015). These findings were in

accordance with previously reported data linking delayed senescence

and heat tolerance in wheat (Reynolds et al., 1997; Vijayalakshmi

et al., 2010). Further, transgenic sweet-potato plants overexpressing a

modified Orange gene encoding a plastid-localized DnaJ protein

known to regulate carotenoid synthesis and abiotic stress resistance,

accumulated significantly higher total carotenoid and b-carotene
contents in storage roots and leaves. Transgenic plants also showed

greater tolerance to heat stress compared to untransformed WT

plants. This finding agreed with the role of carotenoids in

protecting the photosynthetic apparatus from photo-oxidative stress

(Stanley and Yuan, 2019; Kim et al., 2021). Finally, stress-induced

accumulation of betalain pigments, usually found in red-leafed

betalain-accumulating plants adapted to harsh ambient conditions,

was congruent with their protective effect against oxidative damage, a

property linked to their to their superior ability to scavenge oxygen
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free radicals and to regulate cell osmotic pressure, similarly to Pro

(Sdouga et al., 2019).

This study also expanded the information regarding the stress-

responsive nature of various grain amaranth unknown function genes

reported in prior studies (Délano-Frier et al., 2011; Cabrales-Orona

and Délano-Frier, 2021). Thus, WDS was found to induce the

expression of AhHAB4-PAI-1, AhBAMY and AhTIL, which reached

their highest levels at an intermediate stage of the WDS treatment

applied, whereas these genes, except AhBAMY, were mostly

unsensitive to high salt stress. Conversely, AhOEE was strongly

repressed by WDS and was also quite insensitive to salt stress.

These results coincided with the perceived role of these genes in the

regulation of drought tolerance in other plant models (Todaka et al.,

2000; Levesque-Tremblay et al., 2009; Abo-Ogiala et al., 2014;

Ambrosone et al., 2015; Zanella et al., 2016) and with the high

stress sensitivity and concomitant inhibition of the oxygen-evolving

complex (Hajheidari et al., 2005; Zadražnik et al., 2019).

The expression pattern of the genes analyzed in this work was also

greatly affected during the HS treatment and the subsequent recovery

period. The expression of several of them was congruent with strong

experimental evidence describing their role in the protection of plants

against abiotic stress, including heat-related damage, such as AhERD,

commonly used as a marker for stress responses in other plant models

(Cheng et al., 2013; Doner et al., 2021; Huang et al., 2021) and AhTIL

(Levesque-Tremblay et al., 2009; Boca et al., 2014; Wahyudi et al.,

2020). The heat responsiveness of the Ah2880 gene was unexpected.

However, this gene codes for a small protein that, similarly to

lipocalins, could function by binding to other proteins and/or

hydrophobic molecules during stress-amelioration cellular processes

(Sanchez et al., 2006). This possibility remains to be tested

experimentally, although its overexpression in transgenic A.

thaliana plants led to significantly increased recovery to HS

conditions, similar to the overexpression of AhHAB4-PAI-1 coding

for RNA-binding protein (Cabrales-Orona et al., in preparation; see

below). Other genes examined showed a species-specific expression

pattern that could offer clues as to the mechanisms leading to the

higher HS tolerance observed in A. hypochondriacus plants.

Therefore, the expression AhHAB4-PAI-1 in leaves of heat-shocked

A. hypochondriacus leaves was stronger and more persistent

compared to A. cruentus and A. caudatus. Furthermore, the

prominent expression peak of this gene, detected during the first

stages of recovery in the three grain amaranths tested, was ca. 2-fold

higher in A. hypochondriacus. The high AhHAB4-PAI-1 expression

detected in response to HS was congruent with recent data showing

that the D2 and D4 RNA-binding and glycine-rich proteins from A.

thaliana, coded by the RBGD2 and RBGD4 genes that share similarity

with AhHAB4-PAI-1, are essential for heat tolerance in this plant

model via their role in the organization of specific proteins and

transcripts into stress granules. These are membrane-less condensates

that assemble as a result of protein liquid-liquid phase separation in

response to stress and are composed of un-translated mRNAs,

translation initiation factors, proteins with intrinsically disordered

regions and RNA-binding domains, in addition to several other

components. Stress granules have been demonstrated to be crucial

for adaptative cellular responses to stress and for post-stress recovery,

when the release to the cytoplasm of mRNA and proteins from
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disassembling stress granules reactivates translation to restore cell

growth and development (Maruri-López et al., 2021; Zhu et al., 2022).

This proposal is supported by the highly increased recovery after

heat-shock observed in transgenic A. thaliana plants overexpressing

AhHAB4-PAI-1 (Cabrales-Orona et al., in preparation). Other

differences in the expression pattern of grain amaranth unknown

function genes that coincided with the increased HS-tolerance

detected in A. hypochondriacus were the slightly higher expression

levels of the AhRIP and AhDGR genes during the first 3 h of the HS

treatment, the more persistent induction of the AhOEE during the HS

period and the induction of AhBAMY observed 1 day after recovery,

but not during the HS treatment. These results are supported by data

suggesting that RNA editing rates may affect heat stress responses in

plants, such as A. thaliana and grape (Chu et al., 2020; Zhang et al.,

2020). RNA editing proteins have also been recognized as part of the

stress granules assembled in the cytoplasm and in the chloroplasts in

response to HS conditions (Chodasiewicz et al., 2020). The proposed

contribution of the AhDGR gene to increased HS tolerance in grain

amaranths coincides with experimental evidence showing that cell

wall remodeling through the regulation of its methylesterification

levels influences plant responses to heat stress, e.g., by regulating the

flexibility of the guard cell walls that is needed for their appropriate

response to high temperature conditions (Wu et al., 2017, 2018;

2022;). Induced expression of AhOEE in leaves of A. hypochondriacus,

after HS exposures that repressed this gene in the other two grain

amaranth species, may have reflected an increased ability of its

photosynthetic machinery to withstand anomalously high

temperatures, considering that PSII, including the oxygen evolving

complex, is considered to be one of the primary targets of high

temperature stress, together with ATP generation and carbon fixation

(Allakhverdiev et al., 2008; Barta et al., 2010). Thus, increased

tolerance to HS in grain amaranths could be related to a higher

photosynthetic activity under heat stress conditions, similarly to what

was recently reported in maize and transgenic glycine-betaine-

accumulating transgenic tomato plants (Doğru, 2021; Li et al.,

2021b). Apart from the functional properties mentioned above,

differential AhBAMY expression patterns could have favored the

superior recovery of heat-shocked A. hypochondriacus plants by

increasing the photochemical efficiency of the PSII in the

chloroplast, similar to certain plastidic BAMY genes that have been

found to enhance freezing stress in A. thaliana plants via this

mechanism (Monroe et al., 2014).

Finally, the prolonged exposure to intense heat stress conditions

had a negative effect on the vegetative and reproductive development

of grain amaranth plants (Hedhly et al., 2009; Zhao et al., 2020). The

impact observed was, once again, species dependent. Thus, A.

caudatus showed a stronger susceptibility to heat stress, a trait

possibly associated with its origin in the higher-altitude regions of

Bolivia, Peru, and Ecuador, and/or to the fact that, in contrast to A.

hypochondriacus and A. cruentus, it appears to have weaker

domestication traits (Stetter et al., 2017). The strong influence that

heat stress had on the reproductive phase of grain amaranths was in

accordance to observations made in most other crop plants, in which

a drastic reduction of seed yield was produced once their range of

tolerable temperatures was exceeded (Porter, 2005). This is a sobering

finding that should be taken into account when considering the use of
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grain amaranths as crops fit to sustain the increasingly warm

conditions caused by the ongoing global climate change.
Conclusions

The present study presents further experimental evidence supporting

the resistance to heat-stress related damage usually attributed to grain

amaranths. Several biochemical and molecular factors were found to be

possible contributors to heat stress tolerance in these plants. Nevertheless,

the species-specific rates of recovery observed after aggressive HS

conditions that are lethal to several other model plants were in

accordance with previously reported differences in grain amaranth

tolerance to WDS and defoliation, among others. They further support

the notion that grain amaranths have gradually acquired differential

strategies to cope with (a)biotic stress despite their common ancestry, as

suggested, for instance, by the association found between the differential

expression levels of genes coding for RNA binding and RNA editing

proteins, believed to play a crucial role in the plant’s responses to heat

stress and to augment HS tolerance. Conversely, grain amaranths were

strongly affected by chronic and severe heat stress conditions that are

predicted to prevail in certain regions of the planet if the increase in

global temperatures is not controlled. This is a cause for concern,

considering that grain and vegetable amaranths have been lately

proposed as heat-resilient candidate crops that may be able to thrive in

the adverse climatic scenarios predicted for the near future.
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Sánchez-Hernández, C., Martıńez-Gallardo, N., Guerrero-Rangel, A., Valdes-Rodrıǵuez,
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