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Wuhan, China, 4National Lab of Radar Signal Processing, Xidian University, Xi’an, China
Flowering is a crucial developing stage for rapeseed (Brassica napus L.) plants.

Flowers develop on the main and branch inflorescences of rapeseed plants and

then grow into siliques. The seed yield of rapeseed heavily depends on the total

flower numbers per area throughout the whole flowering period. The number of

rapeseed inflorescences can reflect the richness of rapeseed flowers and provide

useful information for yield prediction. To count rapeseed inflorescences

automatically, we transferred the counting problem to a detection task. Then,

we developed a low-cost approach for counting rapeseed inflorescences using

YOLOv5 with the Convolutional Block Attention Module (CBAM) based on

unmanned aerial vehicle (UAV) Red–Green–Blue (RGB) imagery. Moreover, we

constructed a Rapeseed Inflorescence Benchmark (RIB) to verify the effectiveness

of our model. The RIB dataset captured by DJI Phantom 4 Pro V2.0, including 165

plot images and 60,000 manual labels, is to be released. Experimental results

showed that indicators R2 for counting and the mean Average Precision (mAP) for

location were over 0.96 and 92%, respectively. Compared with Faster R-CNN,

YOLOv4, CenterNet, and TasselNetV2+, the proposed method achieved state-of-

the-art counting performance on RIB and had advantages in location accuracy.

The counting results revealed a quantitative dynamic change in the number of

rapeseed inflorescences in the time dimension. Furthermore, a significant positive

correlation between the actual crop yield and the automatically obtained rapeseed

inflorescence total number on a field plot level was identified. Thus, a set of UAV-

assisted methods for better determination of the flower richness was developed,

which can greatly support the breeding of high-yield rapeseed varieties.

KEYWORDS

rapeseed, deep learning, unmanned aerial vehicle, attention mechanism, rapeseed
inflorescence counting, seed yield
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1 Introduction

Rapeseed (Brassica napus L.) is one of the main oil crops, and the

development of the rapeseed industry is very important to secure oil

supply. The Chinese rapeseed oilseed crop accounts for around 20%

of world production. According to the yearbook of the China

National Bureau of Statistics, the rapeseed planting area has

decreased from 7,316,000 ha in 2010 to 6,765,000 ha in 2020, but

the yield per unit area and the total output rose to 2,077 kg/ha and

14.094 million tons in 2020, compared with 1,748 kg/ha and 12.788

million tons in 2010, respectively (National Bureau of Statistics of

China, 2021), which shows that the Chinese rapeseed industry has

made great achievements in recent years. Yet, rapeseed output is

comparatively low considering the consumption for more than 10

consecutive years, as the demand for rapeseed oil increases with the

development of the economy and the continuous improvement of

consumption level. Affected by the dual effects of rural labor transfer

and the shock of imported oil crops, domestic industry development

is under enormous pressure (Wang, 2018; Liu et al., 2019). Although

China is a major producer of rapeseed oil and rapeseed meal, it mainly

relies on inventories and imports to make up for the supply gap (He

et al., 2022). Breeding rape varieties with higher oil yield is essential.

Field-based phenotyping plays a vital role in the process of plant

breeding for plant performance evaluation (Yang et al., 2017; Jin et al.,

2021). The flowering stage of rapeseed lasts as long as 30 days,

accounting for almost one-fourth of the growth period. It is a critical

period for breeders to analyze the factors that affect the seed yield. The

yield components of rape include the number of seeds per pod, the

pods, and the weight of each seed (Tayo and Morgan, 1975; Mcgregor,

1981). The number of pods retained at maturity has the greatest effect

on the seed yield (Tayo and Morgan, 1975; Mcgregor, 1981;

Diepenbrock, 2000; Sonja et al., 2007; Faraji, 2010; Gan et al., 2016;

Kirkegaard et al., 2018), which is largely decided by flowering time and

flower production that can have potential to turn into pods (Tayo and

Morgan, 1975; Faraji et al., 2008; Faraji, 2010; Gong et al., 2018;

Kirkegaard et al., 2018; Zhang and Flottmann, 2018; Matar et al.,

2020; Zhang et al., 2021). Meanwhile, the amount of rapeseed flowers is

closely related to the number of rapeseed inflorescences. As a result,

counting rapeseed inflorescences is essential. It is of great significance to

explore the correlation between the total number of rapeseed

inflorescences of each plot and the seed yield in order to improve the

yield of rapeseed. Previous studies highlight the relevance of flowering

dates (Han et al., 2021), peak flowering (D’Andrimont et al., 2020), and

coverage (Zhang et al., 2021) in seed yield and quality. There is a lack of

quantitative description of the number of rapeseed inflorescences. A

huge number of rapeseed inflorescences make manual counting

impossible. Therefore, an automatic, rapid, and non-destructive

method of rapeseed inflorescence counting is useful in plant breeding.

Nowadays, application of satellite remote sensing technology in

agriculture has become a trend (Marie et al., 2020). This method

obtains multispectral crop information in different periods and spaces

from a large area without destroying the crop structure of crops. As a

consequence, it has been widely used in precision agriculture (Jin et al.,

2017; Khanal et al., 2017; Yang, 2020), yield prediction (Arab et al.,

2021; He et al., 2021; Shuai and Basso, 2022), etc. Satellite images have

also been successfully applied to rapeseed monitoring. D’Andrimont

et al. (2020) combined optical and radar images captured by the
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Copernicus Sentinel-1 and Sentinel-2 satellite sensors to estimate the

flowering timing. Han et al. (2021) utilized the Landsat-8 and Sentinel-

1/2 selected from Google Earth to monitor flowering traits. However,

low spatial resolution and the period limited the development of

satellite images in precision agriculture. Flowering time may be

missed because the phenotype of flowers in image changes

significantly over a long period of time. Additionally, the size of

rapeseed inflorescence is relatively tiny, making it difficult to count

tiny objects from a low- resolution satellite image. Recently, the rapid

development of unmanned aerial vehicle (UAV) technology provides a

new opportunity for continuous acquisition of rapeseed data under

different growing stages and it supports different image resolutions. The

flexibility and convenience establish an easy way to monitor flowering

crops (Kumar et al., 2021; Xu et al., 2021). Wan et al. (2018) employed

Red–Green–Blue (RGB) and multispectral images to establish a model

to estimate yellow flower number. Zhang et al. (2021) indicated that

normalized difference yellowness index-based flowering pixel numbers

could estimate flowering intensity by UAV. Sun et al. (2022) extracted

spectral traits and structural traits to simultaneously predict wheat yield

and grain protein content by multispectral and LiDAR data. Indeed, a

lot of plant information is obtained from multispectral data, which is

helpful for phenotype analysis. However, multispectral acquisition is

greatly affected by weather. The flowering time of different rapeseed

materials is inconsistent, and the state of rapeseed flowers changes

rapidly in a field. When capturing spectral data, the weather conditions

need to be kept as constant as possible and the reliance on it limits

multispectral acquisition schemes. It is better to have a UAV scheme

that is less affected by the weather.

UAV equipped with RGB cameras (UAV-RGB) has the

advantages of higher resolution and less weather affection, which

makes it possible to acquire and process large-scale field information

conveniently. Recently, combined with the deep learning technology,

UAV-RGB system extracted purple leaves (Zhang et al., 2020a),

recognized frozen (Li et al., 2022), and estimated stand count

(Zhang et al., 2020b) of rapeseed effectively. Many experts are also

attracted to study crop counting. Plant counting is regarded as an

object- counting task in the computer vision area (Lu and Cao, 2020).

For example, Liu et al. (2020a) counted rice to estimate density using

the deep learning method. However, these methods discard location

information of the plant and the poor explainability limits the

counting performances (Lu et al., 2022). More researchers deal with

counting as an object detection task, in which target quantity could be

estimated from the number of detected bounding boxes. These

methods are proven to outperform some traditional machine

learning models in counting of maize (Kumar et al., 2021), cotton

bloom (Xu et al., 2018), sorghum heads and wheat ears (Lu and Cao,

2020; Lu et al., 2022), etc. Nevertheless, only little attention pays on

automatic counting of the rapeseed inflorescences using UAV-RGB

because counting rapeseed inflorescences is a challenging task.

Inflorescence varies in climate, cultivars, and agricultural management,

whose shapes have different degrees of adhesion and occlusion in RGB

images. Furthermore, the rape common data set is deficient due to the

limitation of rapeseed growth area and time-consuming data annotation,

which results in insufficient model training and generates significant

challenges to accurate counting.

In order to count rapeseed inflorescences accurately and quickly,

we treat the counting task as a detection task. Object detection is a
frontiersin.org
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fundamental task in the computer vision area. Current state-of-the-

art object detectors are generally divided into two categories, namely,

one-stage and two-stage. Faster R-CNN (Ren et al., 2017) is a

traditional two-stage network, which proves to be suitable for

various plants and plant-organ detection (Madec et al., 2019; Liu

et al., 2020b; Xu et al., 2021). These networks have the property of

proposal optimization mechanism. Consequently, two-stage

operation provides a high accuracy but slow speed and poor real-

time performance, which is difficult to meet the requirements of high-

throughput and efficient detection. Taking detection as a regression

process, the one-stage object detection network does not select

candidate regions separately but omits the candidate region

generation step. Instead, it integrates feature extraction, target

classification, and position regression into one stage for operation.

This single- stage network is represented by SSD (Liu et al., 2016),

RetinaNet (Lin et al., 2020), and YOLO series (Redmon et al., 2016;

Bochkovskiy et al., 2020; Ultralytics, 2021). It has the potential to be

faster and simpler (Marie et al., 2020; Yang et al., 2021) but has trailed

the accuracy of two-stage detectors (Subramanian and Selvi, 2021).

YOLOv5 (Ultralytics, 2021), as an one-stage classic deep recognition

end-to-end network model, is the latest version of YOLO series. The

model improves the detection speed while maintaining the detection

accuracy of existing models. It is one of the optimal choices for the

high-throughput detection. Consequently, the improved YOLOv5

model is proposed to enhance the effect of the model in detecting

rapeseed inflorescences in the state of dense adhesive occlusion.

This article aims to automatically quantify the total number of

rapeseed inflorescences of each plot precisely and quickly. To our

knowledge, this is the first time that the deep learning method and

UAV-RGB system have been combined to count rapeseed inflorescences.

Furthermore, we investigate the correlation between the number of

rapeseed inflorescence and the seed yield based on the proposed

method. The contributions of this paper are summarized as follows:
Fron
• We transformed the rapeseed inflorescences counting as a

detection problem and developed an improved YOLOv5

model.

• We built a novel Rapeseed Inflorescence Benchmark (RIB),

containing 165 plot images with 60,000 manual labels.

• We assessed the accuracy and robustness of the proposed deep

learning algorithms from different rapeseed inflorescences

densities, sites, and years.

• We analyzed the correlation between the number of the

rapeseed inflorescences and yield and employed the

application of inflorescence number in breeding.
1 https://www.dji.com/cn/phantom-4-pro-v2

2 https://www.agisoft.com/
2 Platform and data preparation

2.1 Study area

Rapeseed is divided into winter rapeseed (planted at the end of

September and harvested in May of the following year) and spring

rapeseed (planted at the end of April and harvested in September).

Between them, the planting area and output of winter rapeseed account

for more than 90% of the country and one-fourth of the world, mainly
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located in the Yangtze River Basin region. Our study areas belonged to

these area. It is located at Yangluo Base (114.51409E, 30.71047N, at an

altitude of 24 m, subtropical monsoon climate) of Oil Crops Research

Institute of the Chinese Academy of Agricultural Sciences, Wuhan,

Hubei Province, China. The details are shown in Figure 1. Two

experimental fields (rapeseed field A and rapeseed field B) were

presented in this study area, of which 252 and 165 plots were chosen,

respectively. The training data were composed of the RGB images

obtained from rapeseed field B, from which our counting model was

obtained. The testing data, consisting of the images acquired from

rapeseed field A, were used for testing the robustness of the model with

24 materials planted. In field A and field B, there were two types of plots

of different sizes in each field, 8.0 m2 (2.0 m long × 4.0 m wide) and 6.0

m2 (2 m long × 3 m wide). Experiments were carried out during the

flowering stage, from February to May in 2021 and 2022.
2.2 Data acquisition

The original image data were collected by DJI Phantom 4 Pro

V2.0 1 equipped with an RGB camera. This UAV-RGB system was a

consumer-grade drone with a 20- MP (5,472 × 3,648 pixels) image

resolution. Rapeseed images were acquired once a week under sunny

and partly cloudy conditions in the noon hours (11:00–13:00), local

time. Details of the data acquisition environment are shown in

Table 1. The UAV was set in an automatic acquisition mode to

capture images at the speed of 1.9 m/s and a course overlap rate of

75%. Image data acquisition in the study area was completed within 2

h. To obtain images of different scales, we took flight altitudes of 10

and 15 m.
2.3 Image dataset

RGB images captured from the UAV were stitched and calibrated

automatically by Agisoft PhotoScan 2. Thereafter, we obtained six

orthophotos of experimental field A and four orthophotos of

experimental field B in different periods in 2021. In order to verify

the robustness of the model, we acquired a digital orthophoto map of

the field in 2022, which would also be applied for further analysis. The

deep learning method was a data-driven technique; thus, a large

number of samples were needed to train representatives of the

detection network model. Rapeseed inflorescence appeared in various

forms because of the different flowering time, weather condition, flower

size, location, cultivars, postures, colors, occlusions and adhesions, etc.

Therefore, enough samples from different flowering stages and

conditions were needed to prepare to extract the robust feature.

Details of the construction of the Rapeseed Inflorescence

Benchmark (RIB) were as follows. Adobe Photoshop was exploited to

crop the field orthophoto into plot sizes. The cropped image resolution

was 1,900 × 1,600 for the 8.0- m plot and 1,820 × 680 pixels for the 6.0-

m2 plot. The RIB dataset included 165 different plot images from field

B. The total number of rapeseed inflorescences of each plot varied from
frontiersin.org
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0 to 1,200. Each rapeseed inflorescence was manually labeled with a

rectangle using the LabelImg toolbox 3. Finally, 60,000 labels were

obtained as ground truth for our experiment.
3 Materials and methods

In order to address the problem of rapeseed inflorescence

counting automatically and efficiently, we proposed a count

approach based on deep learning using UAV-RGB imagery. This

paper defined a counting object from a top-down perspective. The

whole workflow of the proposed approach is presented in Figure 2.

Firstly, field images were captured during the flowering stage by

UAV-RGB imagery. Next, original images were spliced to generate an

orthophoto map by Agisoft PhotoScan. Then, the field orthophoto

map was cropped to produce plot images by Photoshop 4. Afterward,

the sample set consisting of all plot images was split to construct
3 https://github.com/tzutalin/labelImg

4 https://www.adobe.com/cn/products/photoshop.html
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train and test datasets to train the network using YOLOv5 combined

with the CBAM. After getting the counting results, this paper

presented the number difference of rapeseed inflorescences in

time series and in field. At last, we investigated the correlation

between the total number of rapeseed inflorescences of each plot

and the seed yield.
3.1 Deep learning method

3.1.1 YOLOv5 network
As a one-stage end-to-end detection network, YOLOv5

transferred detection as a regression process. The network

structure consisted of three parts: backbone, neck, and head. First

of all, the backbone part was a CSPDarknet53 network for feature

extraction and included the structures of Focus, Convolution, Batch

Normalization, and SiLU (CBS), C3, and Spatial Pyramid Pooling

(SPP). The Focus structure was mainly used for slicing operation. In

this way, the width and height information of the pictures was

concentrated in the channel space, which could obtain a double
FIGURE 1

The study area (114.51409E, 30.71047N) at Yangluo Base of Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China.
TABLE 1 Image acquisition at Wuhan, Hubei Province, China, in 2021 and 2022.

Year Acquisition dates Flight altitude Field Temperature Environment

February 19 15m Field A 12°C

February 26 15m Fields A and B 14°C

2021 March 3 10m Fields A and B 21°C 11:00 to 13:00, low/middle cloudy or cloudless, wind speed less than
4 m/s, good light conditions

March 14 10m Fields A and B 23°C

March 22 10m Fields A and B 24°C

April 5 10m Field A 15°C

2022 March 1 13m Field B 20°C
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downsampling feature map without information loss. The C3

structure is the combination of three convolutional blocks along

with the CSP bottleneck. This module is the main module for

learning the residual characteristics. The SPP part used different

pool kernels to maximize the pooling of the feature map and

subsequently spliced feature maps of different scales. This

operation combined local features with global features and

enriched the expression ability of the feature map. Accordingly,

the feature extraction structure that was input with a picture would

generate three kinds of scale feature maps. Next, the neck part

utilized for feature fusion included Feature Pyramid Network (FPN)

and Path Aggregation Network (PAN). FPN fused features through

top-down upsampling, whereas PAN transmitted features in a

bottom-up pyramid, which enhanced the feature fusion ability of

different layers and carried out multiscale prediction. Ultimately,

consisting of bounding box loss (regression loss function) and non-

maximum suppression (nms), the head structure predicted the

category and the location of the object. In addition, YOLOv5

chose Generalized Intersection over Union Loss (GIoU Loss) as

the loss function. Three scale feature maps were eventually

generated to predict large, medium, and small targets,

respectively, in the detection layer of YOLOv5.
Frontiers in Plant Science 05
YOLOv5 contained four different network structures, namely,

YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x. The depth and

width of the network were controlled by different numbers of

residual components in the CSP network, leading to four different

structures of YOLOv5. With the increase in depth and width of the

network, the ability of learning, feature extraction, and fusion also

improved, whereas it paid the cost of longer computing time. Among

them, YOLOv5x achieved the highest accuracy but the slowest

detection speed. YOLOv5s had the fastest detection speed, three

times that of YOLOv5x. As a result, YOLOv5s could better meet

the real-time requirements whereas YOLOv5x was able to conform to

the condition of high-precision detection.
3.1.2 The improved YOLOv5 network
Input with an image, YOLOv5 would generate bounding boxes

for predicting object location in the network. Basically, the rapeseed

inflorescence appeared tiny in UAV-RGB images and was in dense

overlapping occlusion state. YOLOv5 had the ability to detect small

objects. However, it was very difficult to extract enough features due

to the variety of the rapeseed inflorescences, especially for adhesion

and mutual occlusion. The attention mechanism was imitated from
FIGURE 2

General frame diagram of this study.
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the trait of human vision and widely used in the field of computer

vision (Zhu et al., 2019; Hu et al., 2020; Wang et al., 2022a), because it

enhanced the key information of the feature and improved the

detection accuracy to a certain extent.

The CBAM is a lightweight attention module proposed by Woo

et al. (2018), which can perform attention operations in spatial and

channel dimensions. It consists of two independent sub-modules,

named Channel Attention Module (CAM) and Spatial Attention

Module (SAM). CAM learns the weights of different channels and

then multiplies them with the weights to enhance the attention to the

key channel domain. SAM focuses on the location of the image target.

Miao et al. (2022) added the CBAM attention module to YOLOv5 to

enhance the feature extraction ability of the backbone network to

detect infrared ships. Hoang et al. (2022) utilized the YOLOv5 model

with the CBAM attention module to identify various small targets in

thermal images. Wang et al. (2022b) integrated the CBAM into the

YOLO network and proposed a lightweight one-stage network called

the Mobile Ghost Attention YOLO network to improve the

performance of the model and the detection of apple leaf diseases.

Ye et al. (2022) integrated Convolutional Block Attention Module

(CBAM) and Efficient Channel Attention (ECA) into the neck of the

latest YOLOv5 network to identify the terminal bud of Chinese fir

seedlings in complex backgrounds. The applications mentioned

above show that the CBAM attention module is extremely easy to

integrate into the YOLOv5 network structure for better

representation of objects by focusing on important features and

neglecting unnecessary ones without adding too much complexity
Frontiers in Plant Science 06
to the network (Hoang et al., 2022). Thus, to extract the

characteristics of the dense rapeseed inflorescences fully, we

embedded a CBAM attention mechanism to the YOLOv5 backbone

network to attract its attention to local small target features in UAV

images to detect dense rapeseed inflorescences well.

Different from the above improvement methods, we added the

CBAM between C3 and CBS in the backbone. Figure 3 presents the

detailed modification area of YOLOv5-CBAM. The Channel

Attention Module of the CBAM enhanced the feature expression

of the occluded target, and the Spatial Attention Module

highlighted the detecting areas in the feature map. This operation

improved the effectiveness and comprehensiveness of feature

extraction. It was also convenient for more sufficiency in feature

fusion. Moreover, this method worked for the four versions of

YOLOv5, making the deployment of YOLOv5-CBAM flexible. The

detection results of rapeseed inflorescences were presented in a

detection bounding box, whereas the counting results were shown

in the counting number.
3.2 Evaluation

For the interpretability of counting, this paper selected the

detection method for counting. The counting results came from

the number of detected bounding boxes. This method could

determine the location of rapeseed inflorescence while counting
FIGURE 3

Network structure diagram of the proposed method. The upper part is the YOLOv5 model, and the lower part is the improved backbone network and
composition of each module. The improved YOLOv5 generated detection map with the number of rapeseed inflorescences after inputting a rapeseed image.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1101143
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2023.1101143
and is helpful in analyzing the reasons for missing or error count.

Thus, the accuracy of the counting was closely related to the

detection performance.

3.2.1 Detection performance
The paper used Precision, Recall, F1-score, and mean Average

Precision (mAP) to evaluate the detection performance. Precision is

the ratio between the number of accurately predicted samples and the

number of actually detected samples in the predicted samples; Recall

is the ratio between the number of accurately predicted samples and

the total number of samples.

F1-score is a comprehensive evaluation index that assesses the

detection accuracy of the model and denotes the harmonic average of

Precision and Recall. mAP is a measure of the performance of object

detectors. The four evaluation metrics are defined as:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1 − score = 2� Precision� Recall
Precision + Recall

(3)

mAP =
1
Co

N

k=i

P(k)DR(k) (4)

where True Positive (TP) denotes the total number of rapeseed

inflorescences correctly predicted in each plot, demonstrating that

the correct detection result and the ground truth coincide. False

Positive (FP) indicates the total number of rapeseed inflorescences

that is incorrectly predicted in each plot, which means that the

detection result is rapeseed inflorescence but the ground truth is

not. False Negative (FN) is the number of non-flower samples that is

incorrectly predicted as rapeseed inflorescences. C is the number of

categories. Since we only need to detect one category, this value is set

to 1. N represents the number of all pictures in the test set. P(k) means

the Precision when k pictures can be recognized, and DR(k) denotes
the change of the Recall value when the number of recognized

pictures changes from k-1 to k.
3.2.2 Counting performance
To verify the accuracy of the counting, the coefficient of

determination (R2) and the root mean square error (RMSE) are

used as evaluation indicators to measure the counting performance

of the model. The coefficient of determination means the degree of fit

of the regression model and represents the correlation between the

predicted value and the true value. The higher the value of R2, the

better the fitting effect of the model is. RMSE denotes the degree of

deviation between the true number and the predicted number. The

lower the value of RMSE, the better the counting performance of the

model is. They are defined as follows:

R2 = 1 − o
n
i=1(mi − ci)

2

on
i=1(mi −  m)2

(5)
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RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(mi − ci)

2

s
(6)

where n represents the number of plots, mi and ci represent the

total number of rapeseed inflorescences manually labeled and

counted by the model in the ith image, respectively, and m

represents the average number of inflorescences manually labeled

in all plots.
4 Results and discussion

4.1 Network performance

4.1.1 Training details
In this study, the operating system used was the Ubuntu 20.04

operating system with an NVIDIA GTX 3090 GPU. The

implementation based on PyTorch 1.8.0 with torchvision 0.9.0.

We divided the sample sets into training set, test set, and validation

set according to 7:2:1. The initial learning rate and batch size were

set to 0.01 and 8, respectively. In order to better optimize the

objective function, cosine annealing was utilized to reduce the

learning rate in the process of model training. With the increase

in the number of iterations, the learning rate first decreased slowly,

then accelerated, and then slowly decreased again with the change

trend of cosine. Adam optimizer was exploited to train the

detection methods. In the training process, the CIoU loss value of

the model gradually decreased as the number of iterations

increased. The validation loss values changed greatly at the

beginning and fell gradually before 150 epochs. After around 400

epochs, both of the loss values tended to be stable and close to a

convergent state. Trained for 400 epochs, the final network model

of detection was obtained and utilized to detect and count

rapeseed inflorescences.
4.1.2 Ablation study
To verify the effect of the CBAM attention mechanism on

network detection, we performed ablation experiments in this

part. Four network structures of YOLOv5 and the network model

with the CBAM attention mechanism were tested on the RIB

dataset. From the evaluation results in Table 2, we observed that

the Precision of the four YOLOv5-CBAM models improved from

0.6% to 1.0% compared with the model without the CBAM. Notably,

only the Recall of YOLOv5x-CBAM increased whereas the Recall of

the other three YOLOv5 models with the CBAM attention

mechanism decreased due to the interaction between Precision

and Recall. Compared with the non-CBAM model, the F1-score

values of YOLOv5m, YOLOv5l, and YOLOv5x with the CBAM were

increased except for the decline of YOLOv5s-CBAM because these

two indicators restricted each other in actual situations. Based on

the above, mAP was exploited to evaluate the detection performance

of the model.
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After embedding the CBAM, themAP of YOLOv5x, as the largest

improvement in the four YOLOv5 structures, was up to 2.5%. For the

counting indicators, R2 varied from 0.943 to 0.966. Error and missing

detection led to inaccuracy in this value because R2 was an overall

statistic. The RMSE decreased more than the model without the

CBAM, showing that adding an attention mechanism to the

traditional network was effective in improving the counting

accuracy of rapeseed inflorescence. The model parameters increased

by 10,787, 32,683, 51,763, and 74,940, respectively, but the FPS of the

model with the CBAM changed slightly. These means that the target

detection time remained basically unchanged after adding a

lightweight attention module. From the above analysis, we

concluded that it was feasible to count the rapeseed inflorescences

using UAV images and deep learning.

For visual comparison, we utilized a similar image to visualize the

detecting results in Figure 4. The left image and the subimage in

Figure 4 were produced by YOLOv5x, and the right one was

generated by YOLOv5x-CBAM. Because the flight height of the

UAV was more than 10 m, rapeseed inflorescence presented

different degrees of blur in the image. Under these circumstances,

even though targets occluded and stuck, both methods could detect

correctly most of rapeseed inflorescences. However, YOLOv5x had
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obvious missed detection in some cases shown in enlarged subimages

with red arrows. After adding the attention mechanism, the model

could distinguish the difference in adhesion of rapeseed inflorescences

and reduce the possibly of missing detection.
4.2 Comparison with different networks

To verify the comprehensive performance of the improved

network in detection and counting, a study was conducted to

compare the performances of several other classical network

models, including Faster R-CNN, YOLOv4, CenterNet, and

TasselNetV2+. Faster R-CNN (Ren et al., 2017), a traditional two-

stage detecting method, utilized the Region Proposal Network (RPN)

to generate candidate regions and then combined candidate region

generation, feature extraction, target classification, and position

regression to achieve an end-to-end structure target detection

model. YOLOv4 (Bochkovskiy et al., 2020), a one-stage detecting

method and a state-of-the-art object detector, improved and

optimized various parts of YOLO series before. Instead of detecting

object bounding boxes, TasselNetV2+ (Lu and Cao, 2020) was
TABLE 2 Experimental results of four YOLOv5 network structures before and after improvement.

Model CBAM Precision (%) Recall (%) F1-score (%) mAP (%) R2 RMSE Parameters FPS (f/s)

YOLOv5s – 90.4 84.8 87.5 90.0 0.943 68.1 706,3542 83.8

√ 91.4 82.9 86.9 90.9 0.960 56.8 707,4329 83.4

YOLOv5m – 89.9 85.9 87.9 90.7 0.951 69.2 214,25046 64.8

√ 90.5 85.8 88.1 91.9 0.948 65.1 214,57729 61.7

YOLOv5l – 91.2 84.7 87.8 90.1 0.962 55.4 472,86710 52.3

√ 92.2 83.9 87.9 91.6 0.964 54.3 473,38473 51.2

YOLOv5x – 89.5 87.0 88.1 91.1 0.954 60.9 882,68374 44.1

√ 90.1 87.4 88.7 93.6 0.966 52.1 883,43313 44.8
fro
Bold means best value.
FIGURE 4

Comparison of detection results between YOLOv5x and YOLOv5x-CBAM. On the left is the YOLOv5x detection result and the partial enlarged view. On
the right is the YOLOv5x-CBAM detection result and the partial enlarged view.
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another plant counting method that directly regressed the number of

objects in an image.

As shown in Table 3, quantitative results were obtained by using

a default parameter setting. The results presented that the proposed

approach achieved the best performance in F1-score and mAP, both

of which were up to 88.7 and 93.6, respectively. Although CenterNet

obtained the highest Precision and FPS, its F1-score and Recall were

extremely low. It means that the detection speed of CenterNet was

the fastest among the five networks, but it failed to correctly predict

the rapeseed inflorescence as target in the case of more dense objects
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and led to a large number of false inspections. The R2 and RMSE

value of our method were 0.966 and 52.1, respectively. The counting

performance was better than other classical networks. To further

prove the validity of the counting, we conducted the experiment to

explore the correlation between manual counts and network

inferred counts. As shown in Figure 5, our method had a strong

correlation between manual counts and network model inferred

counts. Results in the sixth row of Table 3 presented that the

proposed approach outperformed the state-of-the-art detection

methods in RMSE. We could clearly see that our method provided
TABLE 3 Comparison of experimental results between the proposed method and other classical networks.

Methods Precision (%) Recall (%) F1-score (%) mAP (%) R2 RMSE FPS (f/s)

Faster R-CNN 68.9 53.5 60.0 62.3 0.821 120.2 21.6

YOLOv4 94.0 74.2 83.0 91.4 0.926 180.9 40.5

CenterNet 95.1 61.3 75.0 86.3 0.964 53.9 77.9

TasselNetV2+ – – – – 0.951 63.3 22.0

The proposed method 90.1 87.4 88.7 93.6 0.966 52.1 44.8
fro
Bold means best value.
FIGURE 5

Fitting curves of predicted and true values of five network models. The R2 value represents the fitting effect. The orange dotted line represents the 1: 1 fitted line.
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not only interpretable counting results but also detection boxes,

providing a basis for subsequent counting improvements.

To compare with the ground truth, shown in Figure 6, six

heatmaps were produced to visualize the counting results. First of
Frontiers in Plant Science 10
all, we output the coordinate value of the prediction box of each

traditional network for the same image, then calculated the center

point coordinate, and generated the heatmap through Gaussian blur.

The heatmap of each traditional network denoted its counting results
FIGURE 6

Comparison of visualization results between five networks and the ground truth.
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and the density of rapeseed inflorescences. From the heatmaps, we

observed that the detection results of YOLOv4 and the proposed

method were closer to ground truth. However, YOLOv4 missed many

adhesive rapeseed inflorescence targets, leading to low accuracy of the

rapeseed inflorescences counting. For CenterNet, the total counting

result was near the ground truth. However, it had duplicate count in

the area with dense rapeseed inflorescences and missing count in

other areas. This visual result was consistent with the low value of the

F1-score indicator shown in Table 3. Compared with Faster R-CNN

and TasselNetV2+, the detection and counting results of rapeseed

inflorescences obtained with our method in the heat map were almost

the same as those of the ground truth, indicating that our method was

more accurate in detecting and counting rapeseed inflorescences.
4.3 The accuracy in different
rapeseed densities

In order to further explore the factors affecting the accuracy of

counting, we performed tests using three datasets with different

rapeseed densities. As shown in Figure 7, we took images of sparse,
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medium-density, and dense rapeseed from the three datasets that

contained 11, 13, and 12 plot images, respectively, as samples. It is

observed that green leaves accounted for a large proportion in the

sparse rapeseed inflorescence dataset. On the contrary, only yellow

rapeseed inflorescences were seen in the dense rapeseed image

dataset. The medium-density rapeseed inflorescence dataset

contained at least one-third of the visible green leaves from the

image and a part of blooming rapeseed.

Table 4 lists the evaluation results. The mAP in the three datasets

were 79.6%, 91.5%, and 92.1% and the R2 reached 0.888, 0.930, and

0.927, respectively, meaning that the method proposed by this paper

could be applied at any flower stages. However, in the dense rapeseed

inflorescence test dataset, the mAP decreased to 79.6%. This result

further suggested the difficulty of detecting and counting rapeseed

inflorescences in occlusion and adhesion areas.
4.4 Experiment on the new test site in 2022

To validate the robustness and effectiveness of our method, we

conducted experiments at the two novel test sets that were called test
FIGURE 7

Distribution of rapeseed inflorescence under different densities. The figures on the left, middle, and right represent sparse rape inflorescence, medium-
density, and dense rape inflorescences, respectively.
TABLE 4 Experimental results of the proposed method at different densities.

Density Precision (%) Recall (%) F1-score (%) mAP (%) R2 RMSE (%) Speed (ms)

Dense 85.7 74.0 79.4 79.6 0.888 83.2 12.3

Middle 92.2 84.6 88.2 91.5 0.930 45.9 12.5

Sparse 89.4 87.8 88.6 92.1 0.927 30.2 11.3
Bold means best value.
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set A and test set B with manually annotated bounding boxes. Test

set A was randomly selected from field A in 2021. Test set B

included 30 plot images at the early flowering stage, which we

presented in Figure 8 with the red box area in the digital orthophoto

maps. A strong correlation was found between manual counts and

predicted counts on these two test sets. As shown in Figure 8, the

value of R2 on test sets A and B rose up to 0.96 and 0.97, respectively.

Our method could well detect and count the rapeseed inflorescences

not only in the year of experiment but in the years to come.

Therefore, it is applicable to most scenarios of rapeseed

inflorescence detection and counting and will meet the needs of

conventional farmland management.
4.5 The application of counting number

4.5.1 The trend of the number of rapeseed
inflorescences in the flowering period

The trend of the number change of rapeseed inflorescences is very

important for breeding, because we can observe the flowering and

withering times of materials. We chose 40 plots from field A

randomly and counted the number of rapeseed inflorescences of

each plot in six different periods by utilizing the proposed method.

The data of six periods are shown in the x-axis, beginning in February
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13, 2021, and ending in April 9, 2021. As shown in Figure 9A, the y-

axis is the rapeseed inflorescence number. The range varied from 0 to

1000. Figure 9B presents the minimum and maximum temperatures

of the flowering period in the study area. The maximum temperature

during the day was around 20C, and the minimum temperature at

night was around 5C, which was suitable for the growth of rapeseed.

The paper exploited dotted lines of different colors to fit the change in

the number of rapeseed inflorescences in different plots in the

flowering period. From Figure 9A, we observe that most of the

plots bloomed around February 18 and withered after March 20,

and the peak flowering time was around mid and late March.

4.5.2 The differences between the quantity of the
rapeseed inflorescences in field

In addition to observing one material in time order, we compared

the differences between the quantity of the rapeseed inflorescences in

field. One picture of test field A in March 3, 2021, was chosen. The

number of rapeseed inflorescences in different plots was quickly and

quantitatively obtained by the proposed method. The counting results

are shown in Figure 10. The red box and its enlarged subimage

included 30 plot images, and each number marked on these images

represents its corresponding counting result. Compared with visual

observation, the counting results were consistent with the growth

trend of the rapeseed. We quantified the change of flowering stage by
Field B in 2022
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FIGURE 8

Comparison between inferred counts and manual counts on two novel test sets. Test set B from field B in 2022 is represented by the red box area in the
figure’s upper left corner, whereas test set A from field A in 2021 is represented by the red box area in the figure’s lower left corner. The fitting curves of
test set B and test set A between the predicted value and the ground truth obtained by the proposed approach in different fields and years are
respectively shown on the right. The orange dotted line represents the 1: 1 fitted line.
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automatic counting, which brought convenience for breeders to

analyze the material performance in the flowering period.

4.5.3 The number of rapeseed inflorescences and
the seed yield

The number of rapeseed inflorescences in the flowering period is

an important predictor for its seed yield. To further study the effect of

rapeseed inflorescence number on yield, we analyzed the correlation
Frontiers in Plant Science 13
between the number of rapeseed inflorescences and the seed yield. We

used the data from five flowering periods of field A. The total number

of rapeseed inflorescences predicted by the proposed network model

for each plot and the corresponding seed yield were recorded to

explore the correlation between them. The coefficient of

determination (R2 ) was exploited to reflect the fitting degree of the

linear regression model, representing the interpretation degree of the

total number of rapeseed inflorescences of each plot to the seed yield.
B

A

FIGURE 9

The growth of rapeseed progress during the flowering stage. (A) Change curve of the total number of rapeseed inflorescences of each plot. (B) Fluctuation
curve of maximum temperature and minimum temperature.
FIGURE 10

Experimental results of 30 test plots randomly selected in the new field obtained by the proposed method during the flowering stage in field A, March 3,
2021. The red box represents test plots, and the enlarged subimage represents count results.
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Initially, we utilized some representative plots that included two

different area sizes to perform a regression analysis between the sum

and max of the total number of rapeseed inflorescences of each plot in

the five periods and the seed yield. As shown in Figure 11, the R2 value

in Figures 11A, B reached 0.2714 and 0.3874, respectively. The R2 of

the sum of the rapeseed inflorescences in the five periods was slightly

lower than that of the max of the rapeseed inflorescences in the five

periods. It might be that we collected data at a low frequency. There

was a sequence in flowers blooming, different materials, and planting

methods leading to different flowering times that led to the omission

of many rapeseed inflorescences in the whole flowering period.

Although flower formation at different stages contributed less or

more, they might still have the potential to affect the seed yield.

Consequently, some plots with equal plant area, good growth, and

relatively high yield were selected to further investigate the correlation

between the maximum of the total number of rapeseed inflorescences

of each plot in the five periods and the seed yield. The results are

shown in Figure 12. The R2 value, reaching 0.4418, indicated that

there was a significant correlation between the maximum of the total

number of the rapeseed inflorescences of each plot in the five periods

and the seed yield.
5 Conclusion

The flowering stage of rapeseed is a critical period for breeders to

analyze the factors that affect the seed yield. In this paper, we apply

the YOLOv5-CBAMmethod to quantify the total number of rapeseed

inflorescences of each plot automatically, precisely, and quickly. The

results show that the detecting precision is up to 91.7% in the RIB

dataset. Additionally, we verify the robustness of the proposed

method in the datasets of sparse, medium-density, and dense

rapeseed inflorescences and found that our method is suitable for

rapeseed inflorescences with different densities. Moreover, we

conduct comparative experiments on several classical counting

networks, including YOLOv4 for one-stage detection networks,
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Faster R-CNN for two-stage networks, CenterNet for a detection

method without an anchor box, and TasselnetV2+ for a counting

method without detection boxes. The experimental results verify the

effectiveness of the proposed method. In fact, due to its strong

robustness and effectiveness, our method suits most scenarios and

can also be applied to the detection and counting of other crops that

are manually labeled, such as apple, wheat, cotton, and sunflower.

However, inflorescences on the same rapeseed plant have different

performances in different periods. In this paper, only several periods

of rapeseed are selected as representatives, and a problem of

insufficient sample performance appears. Subsequent studies will

consider sample diversities and enrich the benchmark. On the other
BA

FIGURE 11

Scatter plots between the seed yield and the total number of rapeseed inflorescences of the representative plots. (A) Correlation between the seed yield
and sum of all rapeseed inflorescences of each plot in five periods. (B) Correlation between the seed yield and maximum count of all rapeseed
inflorescences of each plot in five periods.
FIGURE 12

Correlation between the seed yield and maximum number of all
rapeseed inflorescences of each plot in five periods in field A in 2021.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1101143
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2023.1101143
hand, the accuracy of detection directly affects the effect of counting.

In the case of dense rapeseed inflorescences, the detecting accuracy is

only 85.7%, showing that a lot of room for improvement still remains

to be done in this case, in which we will further consider designing

more attention modules for the rapeseed inflorescence detection to

increase the accuracy.

Finally, we perform regression analysis between the total

number of rapeseed inflorescences of each plot and the seed

yield to find out their correlation. Under the multiperiod factor,

there is a significant correlation between the maximum of the total

number of rapeseed inflorescences of each plot in five periods and

the seed yield. The total number of rapeseed inflorescences

obtained with our method in each plot is the primary factor that

affects the yield. However, the seed yield is also affected by many

other factors, such as seed weight, seed number per silique,

photosynthetic capacity of silique wall, and the abiotic resistance

of plants. Thus, we will focus on the pod stage of rapeseed in the

future. Lodging after flowering and UAV combined with multi-

spectrum are considered to estimate pods. Then, combining the

different factors was done to conduct multiple regression analysis

to predict yield more accurately.

Based on the nature of the rapeseed growth process, the number

of rapeseed inflorescences gradually increases until the flowers

withered. During this period, the number of rapeseed inflorescences

is closely related to the seed yield. However, we can only capture

images of the rapeseed inflorescences in six different periods of

flowering. Considering the insufficient data of the whole flowering

period, we will increase the sampling frequency in flowering period to

better fit the change curve of the number of rapeseed inflorescences in

future work.
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