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Melatonin is a multifunctional molecule that has been widely discovered in most

plants. An increasing number of studies have shown that melatonin plays essential

roles in plant growth and stress tolerance. It has been extensively applied to alleviate

the harmful effects of abiotic stresses. In view of its role in regulating aspects of plant

growth and development, we ponder and summarize the scientific discoveries about

seed germination, root development, flowering, fruit maturation, and senescence.

Under abiotic and biotic stresses, melatonin brings together many pathways to

increase access to treatments for the symptoms of plants and to counteract the

negative effects. It has the capacity to tackle regulation of the redox, plant hormone

networks, and endogenous melatonin. Furthermore, the expression levels of several

genes and the contents of diverse secondary metabolites, such as polyphenols,

terpenoids, and alkaloids, were significantly altered. In this review, we intend to

examine the actions of melatonin in plants from a broader perspective, explore the

range of its physiological functions, and analyze the relationship between melatonin

and other metabolites and metabolic pathways.
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Introduction

Melatonin (N-acetyl-5-methoxytryptamine), a bioactive molecule, is pervasive in

organisms and has been well studied since it was first discovered in the pineal gland of

cows (Lerner et al., 1958). Previous studies have demonstrated that melatonin is essential for

maintaining human circadian rhythm, sleep, mood, body temperature, appetite, and

immunological responses (Socaciu et al., 2020). Furthermore, antioxidant, anti-

inflammatory, and other biological functions were also proven to be regulated by

melatonin; thus, melatonin has been employed extensively for disease pathogenesis and

drug development (Millet-Boureima et al., 2021).

A previous review on melatonin has provided insight into the biosynthesis, catabolism, and

physiological and biochemical functions of this important molecule. The biosynthetic and

metabolic pathways of melatonin, including tryptophan decarboxylase (TDC), tryptamine 5-

hydroxylase (T5H), serotonin N-acetyltransferase (SNAT), N-acetylserotoninmethyltransferase
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(ASMT), caffeic-O-methyltransferase (COMT), tryptophan hydroxylase

(TPH), and hydroxyindole-O-methyltransferase (HIOMT), have been

fully described by Zeng et al. (2022) and Kyoungwhan, (2021). It is

universally acknowledged that melatonin functions affect all aspects of

the plant life cycle from seed germination to growth, maturation, and

aging as well as aiding stressed plants in recovery (Zhang et al., 2022).

Currently, scientists have elucidated the mechanisms by which

melatonin alleviates stress by its function in antioxidants,

photosynthesis, ion regulation, and stress signaling. Those basic roles

of melatonin suggest that it could be an efficient method to ensure

sustainable crop production and food safety. Here we review the myriad

roles of melatonin and its possible molecular mechanisms integral to

acclimatizing plants to climate action and self-consumption in times of

stress. We examine the mechanisms of melatonin activities that

underpin plant growth under various conditions and their effect on

metabolic pathways and metabolites in response to stress.
The roles of melatonin in plant growth
and development

An increasing number of studies have shown that melatonin has

significant effects on growth and development, triggered by dramatic

changes in metabolic status and diverse molecular and cellular

processes (Wang et al., 2022a; Xie et al., 2022). The role of

melatonin in plant life is shown in Figure 1.
Effect of melatonin on seed germination

Seed germination is the initial stage in the plant life cycle and

involves the transportation of a series of signaling molecules and an
Frontiers in Plant Science 02
array of gene expression changes through multiple complex

physiological processes (Lee and Back, 2022). The crucial role of

melatonin in stimulating seed germination was described by Zhang

et al. (2022) and Wang et al. (2022), who reported that cell division,

shoot initiation, and seed dormancy of Arabidopsis, cucumber

(Cucumis sativus), bermudagrass (Cynodon dactylon), pepper

(Capsicum annuum), and sweet corn were modulated by melatonin.

Melatonin cooperates with hormones, such as indole-3-acetic acid

(IAA), abscisic acid (ABA), gibberellin (GA), cytokinins (CKs), and

salicylic acid (SA) (Yin et al., 2022)—for example, melatonin

improves the germination rate of seeds by mediating changes in

endogenous GA and ABA. Upregulating ABA catabolic genes

(CYP707As and 8′hydroxylase genes) and GA biosynthesis genes

(GA20ox and GA3ox) and downregulating ABA biosynthesis genes

(NCEDs, LpZEP, and LpNCED1) contribute to improving hydrolytic

enzyme activities (such as a-AMS and b-GAL) and provide the

energy needed for seed germination and thus against germination

constraints engendered by seed coat limits and embryo dormancy

(Chen et al., 2021; Wang et al., 2022a). Genes belonging to the

cytokinin-mediated signaling pathway (AtAHK2 and AtARRs) are

also upregulated to promote cell division and shoot initiation in the

presence of melatonin (Suzuki et al., 2002). The above-mentioned

results imply that melatonin has multiple functions in the fine-tuning

of hormone homeostasis and signaling in plants. Conversely, it should

be noted that melatonin concentrations used to regulate seed

germination are highly divergent among species, and its

cooperation with ABA, GA, and auxin may impact sprout

suppression (Dong D. et al., 2021; Yin et al., 2022). Furthermore,

seeds coated with melatonin before sowing had improved

germination rate and seed viability, which are specific to melatonin

as an antioxidant to remove excess reactive oxygen species (ROS)

accumulation and enhance the production capabilities of soluble
FIGURE 1

Summary of functional melatonin in plant vegetative growth and reproductive growth.
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sugars (Shi et al., 2015a; Wei et al., 2015; Teng et al., 2022). Under salt

stress, promoting the synthesis of both new proteins and secondary

metabolites is a key mechanism by which melatonin improves the

seed germination rate in cotton (Gossypium hirsutum) (Chen et al.,

2021), tomato (Solanum lycopersicum) (Xie et al., 2022), and

cucumber (Zhang et al., 2017). In addition, melatonin upregulates

protein levels, which are involved not only in stress tolerance but also

in cell elongation, glycolysis, citric acid cycle, and glyoxylate cycle

(Zhang et al., 2017). Therefore, melatonin works on seed germination

partly by promoting energy production and invoking cellular

processes and primary and secondary metabolism.
Regulation of melatonin on
root development

Previous studies support the point that melatonin positively

affects root developmental regulation (Park and Back, 2012; Mao

et al., 2020). Larger root biomass and longer seminal root length are

observed in many melatonin-treated plants, such as rice, tomato, and

apple (Malus prunifolia) (Chen et al., 2019; Mao et al., 2020). Park

and Back (2012) demonstrated the involvement of melatonin in

an intervention for lateral root (LR) formation. Melatonin regulates

the expression levels of the cell cycle-related genes SlCDKA1,

SlCYCD3;1, and SlKRP2 by stimulating SlPAO1-H2O2 (polyamine

oxidase) and SlRboh3/4-O2•
− (respiratory burst oxidase homolog),

leading to the initial development of lateral root primordia. Mao et al.

(2020) showed that melatonin also promotes adventitious root

formation. Additionally, the developmental process and correlations

between melatonin and hormones (IAA, ABA, GA, and zeatin

ribosid) are crucial for AR development—for instance, apple root

formation is related to the melatonin-induced expression of

WUSCHEL-RELATED HOMEOBOX GENE 11 (WOX11) along

with IAA synthesis (Wang et al., 2022). However, the crosstalk

is intricate—for example, melatonin impedes taproot growth

regardless of its concentration in monocot canary grass (Phalaris

canariensis) and oat (Avena sativa) (Wang et al., 2022a). Moreover,

the advance of root development by melatonin is the discovery of

novel signaling networks consisting of H2O2, NO, G protein,

ROS, and Ca (Chen et al., 2019; Hu C. Z. et al., 2020). In

melon (Cucumis melo), A. thaliana, and alfalfa (Medicago sativa),

signal transduction provides deep insights for understanding the

protective effects of exogenous and endogenous melatonin on LR

formation in response to external stimuli (Hu Z. C. et al., 2020; Wang

et al., 2022a).

Melatonin induces young branches, cuttings, calli, and in vitro

cultures of sweet cherry and pomegranates to root (Wang et al.,

2022a). Melatonin regulates the physiological and biochemical

processes of callus regeneration and improves the differentiation of

embryogenic cells, thus improving the regeneration rate under

drought stress conditions (Zhou et al., 2022). Taken together, the

fluctuation of endogenous melatonin contents may be a candidate

determinant to reveal the seasonal effect on the tissue culture response

and regeneration frequency of barley explants, which needs further

study (Yang S. J. et al., 2022).
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Various roles of melatonin in plant growth

Melatonin plays an indispensable role in plant growth. The

growth, root yield, and sugar content of sugar beet seedlings were

promoted when melatonin was applied (Zhang et al., 2021). Zhong

et al. (2020) found that grape seedlings grew better when melatonin

was applied by activating sucrose-decomposing enzymes and sucrose

phosphate synthase to hydrolyze and synthesize sucrose as well as the

transport of sucrose to nonphotosynthetic “sink” tissues (e.g., flowers,

fruits, seeds, and roots). Furthermore, the regulation of melatonin in

its own biosynthesis and degradation promotes specific mineral

nutrition signal transduction, and within relatively stable ratios, it

can balance the acquisition and appropriate of mineral nutrients, thus

improving plant growth (Bawa et al., 2020; Sun et al., 2022).

Regardless of whether nutrients (K, Fe, N, and S) are lacking or

there is an excess of nutrients (N, Zn, Cu, and AI), there are detectable

signs of optimization after melatonin application (Sun et al., 2022).

Moreover, positive effects of external melatonin treatments under

abiotic stress on seedling growth parameters and plant mineral

contents (P, K, Ca, Mg, Fe, Zn, Cu, and Mn) were also observed by

Bawa et al. (2020) and Sezer et al. (2021)—for example, when exposed

to saline soil conditions, the exogenous application of melatonin to

seedlings restores nutrient concentrations (Na+, Ca2+, and K+) and

significantly increases Cu2+, Mn2+, and Zn2+ contents (Sezer

et al., 2021).

Additionally, melatonin has been considered a circadian oscillator

that affects the rhythm of the biological clock system and some

physiological indicators in both mammals and plants (Chang et al.,

2021). In the majority of plants (e.g., A. thaliana, rice, and barley), the

melatonin concentrations are high at night (Chang et al., 2021; Ahn

et al., 2021). Melatonin biosynthesis genes (TDC, T5H, SNAT, and

particularly ASMT) are the core factors in adjusting the circadian

clock of plant growth (Ahn et al., 2021). Consisting of light-

dependent processes, melatonin production has regulatory

relationships with some photoreceptors (such as phytochromes),

whose deficiency will influence the gene expression duration of

melatonin biosynthesis (Ahn et al., 2021). It is also worth noting

that exogenous melatonin application restores the rhythmic

expression of core circadian clock genes, while the absence of

GIGANTEA genes leads to the non-rhythmic expression of ASMT,

implying a potential melatonin-mediated signaling network (Chang

et al., 2021; Ahn et al., 2021).

Additionally, melatonin influences plant growth by regulating the

nitrogen (N) metabolism pathways. The nitrate transporter gene

OsNPF6.5, glutamine synthetase gene OsGS2, and amino acid

transporter gene OsAAP14 involved in N metabolism are induced

in response to melatonin, and hence tiller number, nitrate uptake, and

N use efficiency are affected (Wang et al., 2020). Melatonin regulates

relevant key enzymes for N absorption and metabolism (such as S-

nitrosoglutathione reductase and nitrate reductase) that are integral

to triggering NO accumulation and its feedback (Zhang et al., 2022;

Wang et al., 2022a). These valuable hints allow us to further

appreciate the contribution of melatonin to plant growth and

development, including but not limited to roots, stems, and leaves,

which are apt to absorb nutrients and compete for resources.
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The improvement of melatonin in plant
reproductive growth

Melatonin has multiple functions in flowering. Melatonin is

involved in distinct flowering pathways, including ambient

temperature, vernalization, photoperiod, autonomous, GA, and age

pathways (Wang et al., 2022a). In the autonomous pathway, it has been

indicated that the effect of melatonin requires Flowering Locus C,

which implies an innovative pathway in regulating floral transition in

A. thaliana, with interconnectivity between melatonin and

strigolactone (Yang et al., 2019). In GA pathways, the stabilization of

transcriptional regulator DELLA proteins mediated by melatonin

results in delayed translation (Yang et al., 2019; Wang et al., 2022a).

Murch et al. (2009) and Lee and Back, (2019) found that the melatonin

biosynthesis gene SNAT2 is significantly induced inArabidopsis flowers

and achieves the highest content in reproductive organs but gradually

decreases as flowers mature. Fluctuations in melatonin levels also

induce flowering delays, as shown in some algae and photoperiodic

plants. In Antirrhinum majus, the number, size, and quality of flowers

are improved by different concentrations of melatonin (Xiang et al.,

2020). Furthermore, it is argued that melatonin influences volatile

synthesis gene expression (such as TPS, DXS, BSMT, HAT, GGPS, and

PAL in the terpenoid and benzenoid/phenylpropanoid pathways), thus

regulating floral volatile compound content (Farhat et al., 2021).

Melatonin reverses the inhibitory effect of stress on pollen

viability and germination (Hu W. et al., 2020). This might be

attributed to exogenous melatonin at an appropriate dose, thus

improving carbohydrate transport into the anthers (Hu et al., 2022).

Melatonin promotes the transport of carbon assimilate from leaves

to sink tissues by inducing the expression of sucrose transporters

(SUT1 and SUT2) related to sucrose phloem loading under drought

stress (Hu et al., 2022). Conversely, melatonin maintains

carbohydrate metabolism in male and female tissues by

accelerating sucrose decomposition and improving the availability

of carbohydrates (Hu W. et al., 2020). In cotton anthers, the

addition of 100 and 200 mM melatonin markedly stimulates the

activities of the main rate-limiting enzymes of starch biosynthesis

(AGPase and SSSase), and SuSy, cell wall, and vacuolar invertase

activities are also elevated in wheat and tomato (Wang et al., 2022a).

Further research revealed that melatonin contributes to higher male

fertility of crops by increasing autophagy-related gene expression

and autophagosome formation to restore the stability of tapetum

cells under high temperature conditions (Qi et al., 2018). Similarly,

Nguyen et al. (2010) also showed that melatonin regulates the

tricarboxylic acid cycle to meet the energy demand under negative

environmental conditions. As mentioned above, rather than being

irretrievable, the losses of flower and crop yields recover due to

melatonin regulation in multiple fields.
Melatonin regulates fruit maturation and
post-management

Fruiting period and quality
Melatonin plays a role in the complicated process of fruit

ripening, production, and quality (Wang et al., 2022). This stage is

characterized by remarkable changes in the aroma, color, and flavor
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of the ripening fruit. Compared with control plants, the contents of

organic acids, phenolics, flavonoids, peonidin derivatives, and

apoptotic inhibitor proteins increased with melatonin treatment

(Sun et al., 2016; Xie et al., 2022). Simultaneously, melatonin

influences the expression of sucrose invertase genes and the net

photosynthetic rate, thus increasing the solute content (e.g., soluble

sugars) and pigment content (anthocyanins and carotenoids) in

tomato, pear (Pyrus communis), and grape (Vitis labruscana)

(Wang et al., 2022a; Xie et al., 2022). Melatonin triggers the

metabolism of most hormones, e.g., melatonin increases ABA,

H2O2, and ethylene content, participates in signaling molecules, and

coordinates biochemical and developmental pathways that change the

texture and nutritional quality (Xie et al., 2022). In apple, grape,

tomato, and blackberry (Rubus fruticosus), the content of endogenous

melatonin is changeable and accumulates the most in the flesh during

the rapid growth phase, which coincides with the change trend of

ethylene in the skin, suggesting its role in regulating phytohormone

synthesis (Verde et al., 2022). Furthermore, melatonin-treated fruits

have higher quality, number (e.g., higher 6.6% in blackberry), weight

(e.g., higher 6.6% in grapes and 47.8% in pears), and size (Liu et al.,

2019; Verde et al., 2022). Therefore, melatonin does have superior

effects on all aspects of fruit development.

Post-management of fruit
After maturation, the occurrences of chilling injury, decay, moths,

andmicrobes are the major limiting factors for post-management of the

fruit, while melatonin has a unique superiority in maintaining fruits

with good storability and quality (Xie et al., 2022). The present studies

depict that, in banana, apple or pear, the exogenous application of

melatonin distinctly reduces ethylene production during postharvest

(Liu et al., 2019; Verde et al., 2022). Delay of senescence in cold-stored

mangoes and tomato fruit by exogenous melatonin is attributed to the

postponement of the climactic peak of ethylene due to a higher

expression of biosynthesis-related genes (SlACS4), ethylene receptor

genes (SlNR and SlETR4), and ethylene signaling-related genes (Sun

et al., 2020; Dong J. X. et al., 2021). Additionally, during cold storage,

melatonin reduces water runoff to regulate ethylene release (Anna and

Petriccione, 2022). This view is justified based on two pieces of

evidence: one is that melatonin-based coatings influence the

expression of several genes, such as wax synthesis genes (CER1),

cutin monomer genes (GPAT4/8), and aquaporin genes (PIP1;4,

PIP2;7, and PIP22), which all determine the formation of a surface

barrier composed of cuticle to reduce water outflow (Miranda et al.,

2020; Anna and Petriccione, 2022). Another is that melatonin benefits

metabolic processes (respiration and transpiration), which help to

reduce the water vapor pressure gradient between the fruit and the

surrounding atmosphere (Rastegar et al., 2020).

Fruits, such as mango and guava, treated with melatonin can

maintain significantly higher unsaturated fatty acid levels and higher

activities of enzymes (cytochrome c oxidase, H-ATPase, and Ca-

ATPase) for the sake of a constant energy supply (Dong et al., 2021;

Renu et al., 2022). Crucial enzymes of other processes activated by

melatonin, such as the lipid metabolic pathway (LPS, LOX, and PLD),

phenylpropanoid metabolic pathway (4CL and PAL), and shikimic

acid pathway (P5CR, P5CS, and OAT), attenuate phosphoinositide

and chlorophyll degradation or promote polyamine (PA)

accumulation to aid in the fluidity and function of the cell
frontiersin.org

https://doi.org/10.3389/fpls.2023.1100827
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Pan et al. 10.3389/fpls.2023.1100827
membrane, particularly chloroplast membrane integrity (Aghdam

et al., 2019; Silin et al., 2022; Renu et al., 2022). On the other hand,

melatonin treatment improves the activities of antioxidant enzymes

such as ascorbate peroxidase, glutathione S-transferase, and

phenylalanine ammonia-lyase and upregulates genes coding for

catalase, manganese superoxide dismutase, copper–zinc superoxide

dismutase, monodehydroascorbate reductase, dehydroascorbate

reductase, and glutathione reductase, which all decrease ROS,

H2O2, and MDA production and polyphenol oxidase and

lipoxygenase activities, resulting in the suppression of mildew and

the visual symptoms (pitting, blackening, wrinkling, and browning)

that are caused by microorganisms, insects, and brown pigments

(Dong J. X. et al., 2021; Ze et al., 2021).
Melatonin functions against
abiotic stress

In nature, the environment changes constantly, which is a huge

challenge for plants suffering drought, fire, flood, and temperature

stress. Melatonin has emerged as a defense potentiator to keep plants

adapting by inducing the synthesis of endogenous melatonin or by

improving the accumulation of metabolites (Zhang et al., 2022). By

analyzing the transcriptional profile, the expression patterns of related

genes (COMT, HIOMT, TDC, T5H, SNAT, and ASMT) under various

abiotic conditions are shown (Ahn et al., 2021; Xing et al., 2021).

Simultaneously, studies have reported that melatonin application

modulates a variety of physiological processes to enhance plant

tolerance, which is attributed to the increased endogenous

melatonin content (Fan et al., 2018; Arnao et al., 2022). The

subsequent chapters are organized according to the role of

melatonin and related metabolites in determining plant stability

under different stresses and how these changes occurred.
The effect of melatonin on photosynthesis

It is well known that plants gain energy through photosynthesis

due to the sensitivity of chloroplasts to abiotic stresses; thus, the

function of the photosystem and production yield are severely limited

(Yang S. J. et al., 2021). Interestingly, the occurrence of

photosynthesis and melatonin biosynthesis in the same organelle

shows a complex connection, which is considered a natural self-

protection strategy in plants to ensure stable photosynthesis and

maximal food production under unstable environmental conditions

(Marino et al., 2022). This result is supported by the phenotype of

Arabidopsis overexpressing ASMT9, showing strong resistance to

stress, in which melatonin concentrations, photosynthetic rate, fresh

biomass, and dry biomass are significantly increased (Kang et al.,

2010). Simultaneously, COMT1 knockout Arabidopsis exhibits

reduced photosynthesis, carbon fixation, energy absorption and

distribution, and heat stress reactions (Ahammed et al., 2018).

Melatonin has shown excellent protective effects on the integrity

of the photosystem (Zhang et al., 2022)—for example, high salinity

causes injury to the D1 subunit of PSII, but melatonin application is

accompanied by a decline in the content of 34-kDa PSII reaction
Frontiers in Plant Science 05
center protein (D1) and an increase in the content of PSII subunit S

protein, which helps tomato and maize achieve high photosynthetic

efficiency (Zho X. et al., 2016). Interestingly, melatonin reduces the

photosystem protein levels under normal light but increases the PSII

and PSI protein contents to cure photosystem damages under high

light conditions (Yang S. J. et al., 2021). Melatonin is essential in

maintaining a delicate balance between the breakdown and the

synthesis of chlorophyll in plants (Khan et al., 2019). A

comprehensive analysis of current results shows that melatonin

protects chlorophyll from breakdown under stress in several ways,

including the acceleration of de novo synthesis of chlorophyll or

alleviation of chlorophyll loss (Yang S. J. et al., 2021). As mentioned

above, those processes involve the expression of chlorophyll

degradation-associated (NYC1, NOL, CLH, PPH, and PAO in

melatonin-treated broccoli) and synthesis-associated genes (POR,

CAO, and CHL G in tomato) as well as the accumulation of ABA

and jasmonic acid (JA) to embody the renewal and stability of

chlorophyll in the long term (Wu et al., 2021; Li et al., 2021).

Melatonin substantially improves energy flux, which consists of

absorption (ABS/RC), trapping energy (TRo/RC), and electron

transport (ETo/RC), helping two Brassica napus cultivars reduce

the toxic effects of polymetals (Ayyaz et al., 2021). Furthermore, in

SNAT1-deficient Arabidopsis, the gene expression of chloroplast heat

shock proteins (CpHSP70.1 and CpHSP70.2) and caseinolytic

proteases (ClpR1, ClpR4, and ClpP1) is suppressed, while exogenous

melatonin application reverses this response, implying that melatonin

might participate in the quality control of chloroplast proteins (Lee

and Back, 2018). Under the combined stress of low temperature and

high humidity, melatonin pretreatment promotes the uptake and

translocation of N, Mg, and Fe, which are responsible for chlorophyll

biosynthesis and other physicochemical reactions (Amin et al., 2022).

Evidence indicates that, when tomato is exposed to darkness for 4

days, melatonin increases the chlorophyll content, Fv/Fm value, and

starch content and ameliorates carbon starvation-induced leaf

chlorosis by activating the expression of miR171b or inhibiting

glucan water dikinase gene expression (Wang et al., 2022b).

Moreover, melatonin is involved in the process of the exchange

between gas and water by changing the area and the density of

stomata (Yang X. X. et al., 2022). Collectively, with the help of

melatonin, photosynthetic mechanisms run smoothly, and

cooperation efficiency and effectiveness are on the rise to adapt to

ensuing changes under environmental stress.
Enhanced antioxidant system by melatonin

Studies have shown that melatonin is superior in equalizing the

production and scavenging of ROS and reactive nitrogen species

(RNS) (Lee and Back, 2022; Zhang et al., 2022). The mechanisms

underlying the alleviation effects of melatonin on oxidative stress

mainly involve crosstalk among various defensive response pathways

(Zhang et al., 2022). One of the most effective ways to eliminate

reactive oxygen species is to synthesize melatonin as a result of the

enhanced antioxidant system (Zhang et al., 2022). In indirect ways,

melatonin modulates antioxidant enzyme activities to improve their

efficiency in ROS (H2O2 and O2−) detoxification. A series of
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antioxidant enzymes, POD, APX, SOD, and CAT, are induced by

exogenous melatonin to dispose of excessive ROS accumulation

(Zeng et al., 2022). Several studies have proposed that, under

various abiotic stresses, the melatonin-mediated ascorbate–

glutathione (AsA–GSH) cycle serves a crucial role in scavenging

reactive oxygen species in cells (Xie et al., 2022; Zhang et al., 2022).

Specifically, melatonin enhances the AsA/DHA and GSH/GSSG

ratios and antioxidant capacity by stimulating the AsA–GSH cycle,

thereby improving the scavenging capacity of O2·
− and H2O2,

reducing oxidative stress and providing an approach to reduce

organic residues through plant detoxification mechanisms (Dong

et al., 2018; Hodžić et al., 2021; Yan et al., 2022). In addition,

melatonin could make a direct connection with various oxidizing

agents, particularly with hydroxyl radicals, to reduce the damage to

cell structures (one molecule of melatonin neutralizes a maximum of

10 molecules of ROS/RNS) (Simlat et al., 2018; Kyoungwhan, 2021).

This evidence ties in neatly with the identity of melatonin as a

direct antioxidant.

Transcription factors (TFs) are indispensable for regulating gene

expression and cover stress-induced biological processes and related

metabolic pathways that include cellular processes and primary and

secondary metabolism (Xie et al., 2022). In cellular processes,

melatonin-mediated gene expression requires TFs to further

modulate metabolic processes during the aging of various seeds and

maintain higher antioxidant enzyme activities than aging treatment

alone (Biswojit et al., 2020). In particular, TFs such as WRKY, AP2/

ERF-ERF, MYB, NAC, bZIP, and bHLH have a larger impact

(Biswojit et al., 2020; Shi et al., 2015a; Zhao et al., 2021). Wei et al.

(2018) confirmed that melatonin synthesis enzymes (MeTDC2 and

MeASMT2/3) interact with MeWRKY20/75 to form a protein

complex that extends the complex signaling of melatonin

modulation. Not only ROS reduction in PSII but also circadian

rhythm fluctuations have been mediated in melatonin-treated

tomato, according to the weakened interaction between SlCV and

SlPsbO/SlCAT3/SlM3H (Yu et al., 2022). In addition, a set of miRNAs

(such as miR8029-3p, miR159-5p, miR858, and novel-m0048-3p) is

able to negatively regulate target mRNAs in response to melatonin-

mediated cold resistance (Li et al., 2016). Biswojit et al. (2020)

observed the noticeable expression of secondary metabolite genes in

the transcriptome profile. Similarly, phenolic compounds, flavonoids,

and other representative nonenzymatic antioxidant compounds

accumulate to control ROS levels via the NO-dependent pathway

(Kim et al., 2010) and carotenoids (Sharma et al., 2020),

Carbohydrates/fatty acids and amino acids are well known to

work as osmoprotectants and ROS scavengers (Marino et al., 2022).

Iqbal et al. (2021) emphasized that melatonin initiates carbohydrate

metabolism to resist oxidative stress by regulating related genes and

repairing damaged membranes and proteins. A correlative study

indicated that melatonin induces HSPs and autophagy and reduces

oxidized proteins to promote cellular protein protection for the

purpose of surmounting biological hurdles (Shi et al., 2015a; Xu

et al., 2016). Furthermore, tobacco BY-2 cells, throughout the culture

period, are able to synthesize starch by absorbing exogenous

melatonin in large quantities to counteract stress-induced damage

(Kobylińska et al., 2018). Several reports have shown that melatonin

induces higher levels of 18 metabolites (such as cellobiose, galactose,

and gentiobiose), 10 amino acids, five sugars (arabinose, mannose,
Frontiers in Plant Science 06
maltose, glucopyranose, and turanose), five polyalcohols (dulcitol,

galactinol, glycerol, myo-inositol, and sorbitol), one organic acid

(propanoic acid), two sugar alcohols of the carbon metabolic

pathway, and more expressed genes related to carbohydrate

transcripts, including glycosyl-transferases, glycosyl-hydrolases,

glycosyl-phosphatases, glycosyl-invertases, and glycosyl-mutases,

hexokinases, mannosidases, a- and b-amylases, a- and b-glucan
related-enzymes and several dehydrogenases (3-phosphoglycerate-,

UDP-glucose-, alcohol- and aldehyde-), among others (Fan et al.,

2015; Hernández-Ruiz et al., 2021). Specifically, in seeds, amid abiotic

stress, plants generate important compatible solutes (such as starch

and sucrose) to improve osmosis by advancing the expression of

pectinesterase, malZ, sucrose-phosphate synthase, glgC, and PYG

with the support of melatonin (Su et al., 2018). As previously

described, it has been clearly demonstrated that melatonin mediates

carbohydrate, polyalcohol, and other metabolite levels in response to

osmoregulatory adaptation.
Melatonin-regulated signaling pathways in
response to stress

Signal molecules significantly activate antioxidant responses when

plants confront various environmental stress factors (Zhang et al.,

2022). First, the regulation of defense-related gene expression, stomatal

movement, root morphogenesis, and germination is evidently based on

melatonin/NO-mediated signal cascades involving ROS, mitogen-

activated protein kinase (MAPK), phytohormones, protein kinases

(cyclic adenosine diphosphate ribose and cyclic guanosine

monophosphate), and second messengers such as Ca2+ and cyclic

guanosine monophosphate (Zhu et al., 2019). On the one hand, the

multiple effects of NO and melatonin depend on their concentrations

(Zhu et al., 2019)—for example, NO can regulate melatonin-related

biosynthetic enzymes by forming N-nitrosomelatonin (a kind of NO

donor in vitro as well) to promote melatonin production (Kaur and

Bhatla, 2016). Melatonin improves nitrate reductase (NR) and NO

synthase activities and related gene expression to regulate NO

production, which further affects a variety of systems (Pardo-

Hernández et al., 2020). In rapeseed under saline conditions, a signal

cascade of NR and NO associated-1 is triggered by melatonin and NO

in a concentration-dependent manner and influences the

intensification of melatonin-induced S-nitrosylation that decreases

because of the removal of NO (Zhao et al., 2018). Nitrosylation and

NO2-Tyr are both NO-mediated posttranslational modifications that

are related to the activities of some antioxidant proteins, thus helping to

maintain the antioxidant capacity (Pardo-Hernández et al., 2020).

Inextricably, melatonin stimulates endogenous NO content with a

downregulation of s-nitroglutathione reductase expression in tomato

seedlings, and an increased expression of glutathione S-transferase

genes and AsA/GSH cycle genes (GR, APX, DHAR, and MDAR) in

kiwifruit makes melatonin play a protective role in defending against

damage by regulating antioxidant pathways (Liang et al., 2018; Xie

et al., 2022). However, NO and melatonin interact in complex ways

(Zhu et al., 2019). The reaction of compounds (such as serotonin, N-

nitroso-melatonin, and sodium nitroprusside) releases NO, which

interacts with melatonin to maintain oxidative homeostasis through

the modulation of SOD isoforms (Cu/Zn SOD and Mn SOD) and the
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Na+/K+ ratio through the reprogramming of sodium hydrogen

exchanger and salt overly sensitive 2 expression (Zhu et al., 2019). In

Haematococcus pluvialis, the induction of melatonin enhanced light

tolerance and nitrogen starvation resistance by activating the NO-

dependent MAPK signal cascade (Zhu et al., 2019). Alleviation of salt-

induced damage was also achieved effectively with the correlation factor

of melatonin and nitric oxide signaling pathways and the accumulation

of ONOO− (peroxynitrite anion) and O2·− (Arora and Bhatla, 2017).

Hormone signal transduction is essential for inducing biological

processes and responses to environmental factors, which are known

to activate gene transcription and regulate downstream metabolic

processes (Su et al., 2018). Typically, melatonin helps to acclimate to

thermal shock not only through the differential regulation of HSPs

(HSFB3, HSFA1a, HSFA2b, HSP23, HSP70, HSP80, and HSP90) but

also stimulates Ca2+ and hormone signal transduction to accelerate a

general response to improve resistance (Xing et al., 2021). Eight

subpathways (viz., IAA, ABA, CTK, GA, ETH, BR, JA, and SA) were

also found to have genetic responses and were analyzed by Zhao et al.

(2021)—for example, in the JA synthesis pathway, melatonin

significantly regulates the transcripts of nine a-linolenic acid

metabolism-related genes in maize seedling leaves (Zhao et al.,

2021). In parallel, Jahan et al. (2021) presents a strong cross-

connection among three signaling molecules (melatonin, GA, and

ABA) and demonstrates that melatonin treatment repressed heat-

induced leaf senescence either directly or indirectly by regulating the

GA levels. The role of melatonin in the heat stress signaling response

is evident in functioning upstream of H2S to reduce oxidative stress

and increase antioxidative metabolism (Teng et al., 2022). This may

suggest that melatonin traces the endogenous H2S-dependent

pathway, wherein H+-ATPase-energized secondary active transport

operates K+–Na+ homoeostasis (Teng et al., 2022). Siddiqui et al.

(2021) refers to the stimuli of melatonin-mediated L-DES activity,

endogenous H2S content, K+, and RWC retention that relies on the

synergistic effect of melatonin and H2S on NaCl stress tolerance.

Furthermore, in melatonin-induced plants, sugars act as signaling

molecules, while they positively or negatively regulate the expression

of a variety of genes and enzyme activities of sugar-exporting (source)

and sugar-importing (sink) tissues for the optimal synthesis and use

of carbon and energy resources (Hernández-Ruiz et al., 2021). Teng

et al. (2022) observed that treatment with 100 µM melatonin or high

sucrose levels can trigger the downregulated expression of HXK and

the upregulated expression of PFK7 so that source-to-sink phloem

transport is promoted. Carbon metabolic flux of primary metabolism

will be rebalanced as a consequence of elaborate management

through these processes (TCA cycle and glycolysis) to meet the

metabolism demand in organisms at risk (Teng et al., 2022). It is

clear for melatonin-based mechanisms that various signal pathways

are important for the integrity and fitness of living organisms.
Accumulation of secondary metabolites
regulated by melatonin

To cope with plant stress signals, various melatonin-regulated

metabolic pathways are accompanied by the accumulation of
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substances (such as flavonoids, polyamines, and phenolic

compounds) and the improvement of organelle function (Marino

et al., 2022). More attention to physiological and transcriptomic

analyses of the effects of exogenous melatonin on stress tolerance

has proven this perspective (Figure 2).

Effects of melatonin on polyamine biosynthesis
PAs, namely, putrescine (Put), spermidine (Spd), and spermine

(Spm), are considered a class of important regulators and have been

shown to be involved in mitigating deleterious effects when plants

suffer (Marino et al., 2022). Studies have demonstrated the association

of melatonin and PA metabolism in response to environmental stress,

as described in Bermuda grass (Shi et al., 2015b), carrot (Lei et al.,

2004), peach (Cao et al., 2016), and Malus hupehensis (Gong et al.,

2017)—for instance, melatonin, as a resistant initiator under diverse

environmental stress conditions, including water shortage, low

temperature, salt, and nutrient deficiency, can not only upregulate

the synthesis genes (ODC, ADC, NCA, and SPDS) and downregulate

the degradation genes (PAO and DAO) of PA but also stimulate the

activities of related enzymes, including NR, ADC, ODC, nitrite

reductase, glutamine synthetase (GS), glutamate synthase

(GOGAT), and S-adenosylmethionine decarboxylase, inducing a

significant increase in polyamines and endogenous melatonin

content (Zhou C. et al., 2016; Talaat, 2021; Lei et al., 2022; Wang

et al., 2022a). In addition, melatonin was found to accelerate the

synthesis of amino acids (such as arginine and ornithine), which are

precursors of bioactive compounds (such as Spd, Spm, Put, and

GABA compounds) (Wang et al., 2022a). Therefore, by accelerating

polyamine biosynthesis, melatonin attenuates apoptosis and

disintegrates the membrane in cold-induced carrot and tomato

(Ding et al., 2017; Aghdam et al., 2019). In melatonin-treated

samples, the accumulated arginine and polyamine contents are also

beneficial for nitrogen distribution and recycling, modulation of ion

channel activities (specific polyamine-binding proteins) and Ca 2+

homeostasis, as well as the activation of NO signaling pathways,

which are of prime importance to improve the resistance of Fe-

deficient plants (Zhou C. et al., 2016; Wang et al., 2022a). Otherwise,

the interplay between melatonin and SA, ABA, and ethylene

accumulation plays crucial roles in the stress management of

polyamines (Zhao et al., 2017). Both ABA and PA contents are

increased in the crosstalk of melatonin and ABA, which upregulates

an important stress-related gene, CsZat12, leading to the mitigation of

chilling stress in cucumber (Zhao et al., 2017). However, in water-

logged alfalfa, melatonin antagonizes ethylene production by

suppressing ethylene biosynthesis-related gene expression and

moves to PA biosynthesis (Zhang et al., 2019). Interestingly,

melatonin metabolites (2-hydroxymelatonin) provide utility for

regulating metabolism, particularly for enhancing Put, Spm, and

Spd synthesis, and this exhibits a preferred orientation for studying

the mechanism of melatonin to counteract environmental stress

(Shah et al., 2020). A profound influence on plant resistance

exerted by melatonin is evident herein through the elevated

polyamine content, which scavenges free radicals, preserves nucleic

acid and protein structures, and consequently improves

membrane stability.
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Effect of melatonin on flavonoid biosynthesis
Flavonoids have a main effect on protecting plants from abiotic

stress by acting as a backup for peroxide production to eliminate

various types of ROS (Dong et al., 2018). Studies designed with

various stress conditions (such as cold, water deficiency, salt, etc.)

show that melatonin promotes secondary metabolite accumulation,

including flavones, flavanone, luteolin, and isoflavone (Ithal and

Reddy, 2004; Song et al., 2022). It was also reported that the

transcriptional levels of PCL, CHS, DFR, FNS, C4H, F3H, ANR,

LAR, UFGT, CHI, and IFS genes involved in flavonoid biosynthesis

were significantly increased by melatonin treatment (Dong et al.,

2018; Song et al., 2022). In addition, PAL and PPO have been shown

to be upregulated in Dracocephalum moldavica, Vigna radiata, and

Sesamum indicum treated with melatonin, and damage inhibition was

observed (Naghizadeh et al., 2019). In heat-treated chrysanthemum

and kiwifruit, cold-stressed white clover and kiwifruit, and salt-

induced pigeon pea, similar data have also been obtained—that is,

melatonin favors the production offlavonoids, carotenoids, carotenes,

xanthophylls, and chlorophyll II to protect the photosynthetic

potential and mitigate adverse effects (Sun et al., 2016; Liang et al.,

2018; Dong et al., 2018; Sun et al., 2020; Xing et al., 2021; Song et al.,
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2022). Isoflavone biosynthesis responds to melatonin profoundly

through hormone biosynthesis involving upregulated genes (AOS,

AAO, SAMA, and ACCO), which has conferred a broader

understanding of the melatonin regulatory mechanism (Gyanendra

et al., 2021). Otherwise, it has been verified by Song et al. (2022) that

melatonin greatly decreases genomic DNA methylation and modified

gene expression. Therefore, the outcome of increased disease

resistance and flavonoid biosynthesis is at least partially achieved by

utilizing melatonin to decrease the methylation of related gene

promoters, such as EDS1 (Gao et al., 2020). Conversely, in some

cases, among gardenia and apples, melatonin decreases the related

gene expression levels of flavonoids but with a greater retention of

carotenoids so that plants remain greener and have brighter leaves

after 24 days in dark conditions. This internal indication illustrated

that melatonin-treated plants adapted better to the adverse

environment (Wang et al., 2018). Similarly, overexpressing

MsASMT1 in alfalfa makes it grow faster and have higher

endogenous melatonin levels, which, in turn, suppress flavonoid

biosynthesis (28 downregulated genes), mainly quercetin,

kaempferol, formononetin, and biochanin (Cen et al., 2020).

Notably, flavonoids are potent in inhibiting in vivo melatonin
B

A

FIGURE 2

Synthesis and metabolism patterns of melatonin-induced secondary metabolites in response to stress. (A) Melatonin modulates various mechanisms
against abiotic stresses (salt, cold, heat, and drought). (B) Melatonin induces common changes in gene expression in secondary metabolic pathways.
PLD, phospholipase D; TCS1, tea caffeine synthase 1; CHS, chalcone synthase; DFR, dihydroflavonol 4-reductase; TIDH, inosine 5′-monophosphate
dehydrogenase; LOX, lipoxygenase; AMS, S-adenosyl-l-methio-nine synthase; FNS, flavone synthase; C4H, cinnamic acid 4-hydroxylase; F3H, flavanone
3-hydroxylase; ANR, anthocyanidin reductase; LAR, leucoanthocyanidin 4-reductase; UFGT, UDP-glucose: flavonoid 3-O-glucosyltransferase; CHI,
chalcone isomerase; GR, glutathione reductase; GSH, glutathione; GSNOR, S-nitrosoglutathione reductase; TS1, theanine synthase; ASMT,
acetylserotonin O-methyltransferase; SNAT, serotonin N-acetyltransferase; COMT, caffeoyl-O-methyltransferase; TDC, tryptophan decarboxylase; OMT1,
flavone 3′-O-methyltransferase 1; PAL, phenylalanine ammonia-lyase; CAD, cinnamyl alcohol dehydrogenase; POD, peroxidase; 4CL, 4-coumarate-CoA
ligase; CCR, cinnamoyl CoA reductase; NACs, IAA-related factors; MYBs, regulator of CBF; PDS, phytoene desaturase; ZDS, z-carotene desaturase;
bHLHs, basic helix–loop–helix; PCL1, phenylalanine ammonia lyase 1; PDH, pyruvate dehydrogenase; P5CDH, delta-1-pyrroline-5-carboxylate
dehydrogenase; P5CS, pyrroline-5-carboxylate synthetase; OAT, ornithine aminotransferase; F5H, ferulic acid 5-hydroxylase; HCT, hydroxycinnamoyl
transferase; HMGR, HMG-CoA reductase; CDNS, (+)-d-cadinene synthase; DH1, alcohol dehydrogenase; 2-ODD-1, 2-oxoglutarate/Fe(II)-dependent
dioxygenase; DS, dammarene diol-II synthase; SE, squalene epoxidase; CAS, cyclohexene synthase.
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biosynthesis by abolishing the activities of ASMT, SNA, and COMT

(Kyungjin et al., 2018). In terms of the objective use of melatonin,

some notable changes in flavonoids are used to establish the ideal dose

to influence plant resistance to develop effective solutions and to

provide a fresh perspective that explores the connection between

melatonin and secondary metabolites.

Effect of melatonin on other
secondary metabolites

Multiple secondary metabolisms are associated with plant stress

tolerance, while in many persuasive studies, melatonin application

shows an increase in total phenolic content, total flavonoid content,

rosmarinic acid, luteolin flavone, apigenin flavone, photosynthetic

pigment, ascorbic acid, phenol, and essential oil (EO) yield (Saad and

Salem, 2019; Farinaz et al., 2020). Taking phenolic compounds as an

example, the levels of resveratrol, caffeic, chlorogenic, and gallic acids

can be redistributed by melatonin in stressful situations (Xu et al.,

2018). Scientists have clearly demonstrated that melatonin function in

moderately high-temperature-stressed tea is accompanied by

increased contents of catechins, theanine, and caffeine, which are

related to upregulated genes, including AMS, IDH, TCS1, ANS, LAR,

GS, GOGAT, GDH, and TS1 (Xin et al., 2020).

As a crucial secondary metabolite generated through the

phenylalanine metabolic pathway, lignin has practical effects on

protective barriers (Wang et al., 2019). Melatonin addition can

compensate for the blockaded lignin accumulation and the

decreased oxidase activities (such as PAL, CAD, and POD) caused

by low temperature. This evidence indicates that, under cold stress,

melatonin regulates lignin synthesis genes (ZlPAL1/2/3/4, ZlCAD1/2/

3, and ZlPOD1/2/3/4/5) and TF expression (NAC andMYB family) in

bamboo and therefore is expected to benefit from horticultural

management with melatonin application (Li C. T. et al., 2019). This

result is consistent with that of Wang et al. (2021). Additionally,

melatonin acts as a positive signal that enhances P. lactiflora stem

strength and lignin accumulation by regulating the expression of

genes (PAL, 4CL, CCR, and CAD) in lignin biosynthesis (Zhao et al.,

2022). Given the resistance of V. dahliae, the gossypol and lignin

contents in cotton were increased by melatonin through changes in

the metabolic flux of different pathways [mevalonate (MVA),

phenylpropanoid, and gossypol pathways] (Li Z. et al., 2019).

Other secondary metabolites, such as glucosinolates, are known to

defend against herbivores and pathogenic attacks (Selmar, 2010).

Some secondary metabolites are relevant to maintaining plant

commercial life when florets of broccoli treated with melatonin can

raise physical–chemical parameters, including color, texture, shine,

and rates of weight loss (Arnao et al., 2022). Saponins and alkaloids,

both mediated by melatonin, are beneficial for the self-protection of

plants (Ptak et al., 2019; Yang Q. et al., 2021). For chromium-treated

rosemary, melatonin applications will increase its yield and EO yield

by up to 25% and 100%, respectively (Farouk and Al-Amri, 2019).

Moreover, as an active phytosterol, b-sitosterol significantly lowers

stress caused by high salt levels in tomato and sunflower (Helianthus

annuus) and is contained in many plant species, and its density and

production are significantly increased in dehydrated plants when

exposed to melatonin treatment, thus hinting at the underlying

relationship (Fawzia et al., 2016; Gamel et al., 2017; Ramadan et

al., 2018).
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Further exploration of the role of melatonin may greatly enhance

specific secondary metabolite synthesis, thereby improving defense

capability and leading to less cell death and disease in living

organisms, instead of some stress-induced processes, such as

lipid peroxidation.
Melatonin functions against
biotic stress

Melatonin is unique in the mitigation of plant biological stress.

First, the identification of melatonin as a scavenger has cleaned not

only ROS and RNS but also viruses (Mohamed et al., 2019). Apples

infected with apple stem grooving virus shed light on this discovery in

such a way that melatonin eradicates the virus from previously

infected shoot tips (Mohamed et al., 2019). The second is

melatonin-activated bioactivity, such as phagocyte and plant

resistance (R) proteins (Mohamed et al., 2019; Rahul et al., 2022).

Relatedly, regulated genes are mapped to signal transduction

networks (Rahul et al., 2022). Melatonin upregulates defense genes

through SA, ethylene, and NO signaling, and another hormonal

crosstalk (CKs, ABA, IAA, and GA) also involves melatonin in

systemic acquired resistance (Mohamed et al., 2019; Rahul et al.,

2022). Additionally, melatonin stimulation induces a response from

the MAPK cascade as confirmed in (Pst)-DC3000-infected

Arabidopsis and SlMPAK3-deficient tomato infected with Botrytis

cineraria, which also leads to the initial PAMP-triggered immunity

response and effector-triggered immunity response (Rahul et al.,

2022). Thirdly, plants will gain strengthened physical obstacles in

that more complex chemicals are generated, and genes of dammarene

diol-II synthase (DS), squalene epoxidase (SE), and cyclohexene

synthase in saponin biosynthesis, HMG-CoA reductase (HMGR),

(+)-d-cadinene synthase, alcohol dehydrogenase in the MVA and

gossypol pathways, and other genes in melatonin, flavonoid, lipid,

and lignin biosynthesis are upregulated by melatonin stimuli

(Mohamed et al., 2019; Gao et al., 2020; Yang Q. et al., 2021).
Conclusions

Melatonin has a unique role in every stage of the plant life cycle,

particularly in reversing environmental pressure. It is produced in the

cytoplasm, chloroplasts, and mitochondria, which may be conducive to

easy movement and prompt response. Several interpretations to explain

the stress protective function of melatonin in plants have been

proposed in this paper and zeroes in on the regulation of primary

and secondary metabolism with the objective of capturing its versatile

role in the plant hormone network and general physiological processes.

At the same time, melatonin regulates a wide range of molecular

mechanisms, not only interacting with proteins and affecting nutrient

metabolism in plants but also having functional effects on noncoding

RNA. This potential gives melatonin priority over pesticides and

fertilizers to become a sort of pollution-free solution maintaining the

supply for plant-based foods and products. To varying degrees,

melatonin and its precursors and metabolites help to enhance plant

immunity and development. These data indicate another pioneering
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work on melatonin pathway application that provides multiple options

for breeding work. Overall, the study of the real risks and benefits of

many secondary metabolites in different plants is a way to decipher

their genetic structures and inherent gifts. It would be a marked

progress if we knew how they work with melatonin in such a way

that arouses strong resistance toward stresses in unexpected ways.
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