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Introduction: Alfalfa (Medicago sativa L.) is a highly nutritious leguminous forage

that plays an essential role in animal husbandry. In the middle and high latitudes

of the northern hemisphere, there are problems with its low rates of

overwintering and production. The application of phosphate (P) is an important

measure to improve the cold resistance and production of alfalfa, but little is

known about the mechanism of P in improving the cold resistance of alfalfa.

Methods: This study integrated the transcriptome and metabolome to explain

the mechanism of alfalfa in response to low-temperature stress under two

applications of P (50 and 200 mg kg-1) and a control of none applied.

Results: The application of P fertilizer improved the root structure and increased

the content of soluble sugar and soluble protein in the root crown. In addition,

there were 49 differentially expressed genes (DEGs) with 23 upregulated and 24

metabolites with 12 upregulated when 50 mg kg-1 of P was applied. In contrast,

there were 224 DEGs with 173 upregulated and 12 metabolites with 6

upregulated in the plants treated with 200 mg kg-1 of P compared with the

Control Check (CK). These genes and metabolites were significantly enriched in

the biosynthesis of other secondary metabolites and the metabolic pathways of

carbohydrates and amino acids. The integration of the transcriptome and

metabolome indicated that P affected the biosynthesis of N-acetyl-L-

phenylalanine, L-serine, lactose, and isocitrate during the period of increasing

cold. It could also affect the expression of related genes that regulate cold

tolerance in alfalfa.

Discussion: Our findings could contribute to a deeper understanding of the

mechanism that alfalfa uses to tolerate cold and lay a theoretical foundation for

breeding alfalfa that is highly efficient at utilizing phosphorus.
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1 Introduction
As a cool-season perennial forage crop, alfalfa (Medicago sativa

L.) plays a variety of beneficial roles for livestock, soil coverage, soil

fertility, and human health (Gaafar et al., 2019). It has a high

biomass yield, excellent nutritional quality, and wide adaption, and

it can fix nitrogen (N) (Summers and Putnam, 2008). Alfalfa is

grown on approximately 30 million ha of land worldwide (Acharya

et al., 2020; Diatta et al., 2021), and the global production of alfalfa

hay was 210.9 million metric tons (Edde, 2022). North America is

the primary producer of alfalfa in the world; the United States has

the largest planting area with more than 7.23 million ha of alfalfa

grown annually, with Canada and Mexico close behind (Putnam

et al., 2001; Wechsler et al., 2017; Edde, 2022). The cultivated area of

alfalfa in China is approximately 3.77 × 106 hm2, which is

approximately 13% of the world’s total arable land used to grow

alfalfa. The growth of alfalfa is primarily distributed in

northeastern, northwestern, and northern China (Yang et al.,

2021). In these northern regions, the inability of alfalfa to

withstand low subfreezing temperatures remains one of its biggest

challenges (Castonguay et al., 2006; Rocher et al., 2015), which

hampers the development of the alfalfa industry and

animal husbandry.

The morphological and physiological characteristics of the roots

are strongly associated with the cold resistance of alfalfa. The root

types of alfalfa primarily include four types: tap, branch,

rhizomatous, and creeping roots (Goplen, 1987; Hong et al.,

1987). Tap-rooted types have a main root and a narrow,

protruding crown; the branch-rooted types of alfalfa have a

moderately wide crown and a number of primary roots; the

rhizomatous- and creeping-rooted types have a protected crown,

develop new roots readily, and can also develop stems from the

roots. The shoots can separate from the maternal parent plant and

become independent plants to survive; thus, they more easily

regrow after freezing damage and show strong cold resistance

(Goplen, 1987; Dou, 2011). A substantial amount of research has

documented that the root crown, lateral roots, and root biomass

affect the winter survival and persistence of alfalfa (Castonguay

et al., 2006; Liu et al., 2015b; Xu et al., 2022). Previous studies have

primarily focused on the root crown. It is a transitional plant

structure that is located between the shoots and the root system.

It is also the uppermost dormant organ of the winter plant body,

which is crucial to overwintering and regeneration in the spring

(Marquez-Ortiz et al., 1999; Liu et al., 2015b). The overwintering

rate of alfalfa is closely related to the size and depth of the root

crown; they grow more deeply and thicker in the soil, which helps

the plants to successfully survive the winter (Wang, 2021b). This is

considered to be a cold-sensitivity escape mechanism to prevent the

exposure of the overwintering organ to low temperature. The major

alfalfa varieties with strong cold resistance have more lateral roots

because they help alfalfa plants to absorb more water and nutrient

elements from the soil to supply the demand of overwintering

plants for nutrients (Johnson et al., 1996; Wang et al., 2023). The

root biomass is related to the accumulation of organic matter, and

the herringbone branching is conducive to the absorption of deeper
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water by alfalfa, which contributes to improve the plant’s cold

resistance (Viands, 1988). Its physiology, including the contents of

soluble sugar and protein, is also closely related to cold resistance.

Soluble sugar acts as an osmotic regulator, a cryoprotectant, and a

signaling molecule to stabilize the cell membrane and scavenge

reactive oxygen species (ROS) under low-temperature stress, and its

contents increase during the freezing process to protect the plant

cells (Trischuk et al., 2014). Therefore, the accumulation of sugar at

the root crown before winter is related to the cold resistance of

alfalfa (Cunningham et al., 1998; Bertrand et al., 2017). Soluble

proteins are strongly hydrophilic and can enhance the water-

holding capacity of cells. The accumulation of soluble proteins

can bind more water to the cells and reduce the damage caused by

low temperatures (Kontunen-Soppela et al., 2002; Moieni-

Korbekandi et al., 2013). The increase in the soluble protein

content of alfalfa in autumn and winter helps to enhance its

resistance to low temperatures.

As an important means of regulating cultivation, nutrient

management not only can improve the production of alfalfa, but

it is also an essential measure to improve its stress resistance (Wang,

2021a). Phosphorus is one of the three essential nutrients for plant

growth and development, which is absorbed in the form of

phosphate (P) (Bhosale et al., 2018). It is an essential

macroelement that plays a role in an array of processes, including

energy generation, nucleic acid synthesis, photosynthesis, glycolysis,

respiration, membrane synthesis and stability, respiration,

carbohydrate metabolism, and N fixation (Vance et al., 2003;

Raghothama and Karthikeyan, 2005). In addition, it plays a vital

role in enhancing the adaptability of plants to the external

environment (Yan et al., 2022). P is also an important component

of phospholipids and ATP, which affect the resistance of plants to

low temperatures (Li et al., 2016). Phospholipids in the plant cell

membranes can interact with proteins, sugars, and other substances

to alleviate the cell dehydration caused by low-temperature stress

and protect the stability of cell membranes (Cheng, 2008). Plants

can be negatively affected by the low levels of phosphorus that affect

a variety of growing environments, particularly in soils that are

calcareous or alkaline (Yue et al., 2019). A deficiency in P will affect

plant photosynthesis, such as by limiting the distribution and

utilization of carbohydrates and the absorption and transport of P

(Terry and Tao, 1991). This can also cause an imbalance in the

production and clearance of ROS and an array of physiological,

biochemical, and metabolic changes resulting in damage to the

plants (Lin et al., 2010). The application of P can increase the

contents of soluble sugar in plants, and sucrose transport in the

phloem requires ATP hydrolysis to provide energy so that P can

regulate the metabolism and transport of sucrose in plant leaves

(Tian et al., 2017). Current studies have shown that the application

of moderate P fertilizer can promote the root growth of alfalfa and

increase the content of cold-resistant substances, such as starch and

soluble proteins, in the root crown of alfalfa to some extent (Shen

et al., 2017). However, the related molecular mechanism

remains unclear.

The recently developed technologies of high-throughput

sequencing, high-resolution mass spectrometry, and information

processing have made systems biology (omics) research a major
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focus of scientific investigation (Xin et al., 2019). The integrated

analyses of transcriptomic and metabolic data obtained from two

biological levels, i.e., transcript and metabolite levels, respectively,

can serve as a useful way to study complex biological phenomena

(Agarrwal et al., 2016). In addition, these integrated analyses have

been applied to various plant biological processes, including the

evolutionary adaption of poplar species (Populus L.) to salinity

stress (Janz et al., 2010), rice (Oryza sativa L.) insect interaction

research (Agarrwal et al., 2016), and the response of wild soybean

(Glycine max L.) to N starvation (Liu et al., 2020). However, to our

knowledge, there are few studies that have examined the

mechanisms of the effect of P fertilizer on the cold resistance of

alfalfa by integrating the analyses of transcriptomic and

metabolic data.

In this study, alfalfa was exposed to three P treatments for 90

days. We measured the contents of the soluble sugar and protein of

root crowns and some root indices. In addition, we performed

transcriptomic and metabolomic studies among the three P

trea tments under co ld temperature . Our integra ted

transcriptome–metabolome analysis allowed us to gain a deeper

understanding of alfalfa’s response to the application of P in terms

of cold tolerance. We sought to identify the strategies used by alfalfa

to respond to the application of P during the increase in cold stress,

which could be used to improve the cold tolerance and yield of

alfalfa and breed new alfalfa varieties.
2 Materials and methods

2.1 Field design and sampling

The variety of alfalfa used in this study was Zhongcao No. 3,

which was provided by the Grassland Research Institute of the

Chinese Academy of Agricultural Sciences (GRI of CAAS) (Beijing,

China). On September 5, 2020, an alfalfa plant that had grown for 5

years in the Agro-pastoral Experiment Station (40°34′E; 111°45′N;
1,050 m a.s.l.) of the GRI of CAAS was transferred to the

greenhouse, and the seedlings were raised by stem cuttings in

seedling trays on May 10, 2021. On July 15, 2021, cloned plants

were selected and transplanted into pots that were 18 cm in

diameter and 19 cm in depth. Each pot had only one plant and

5 kg of gray cinnamon soil from the field as a substrate. The

physiochemical properties of the soil included an organic matter

content of 6.25 g kg-1, total N content of 1.09 g kg-1, available N

content of 69.45 mg g-1, available P content of 20.5 mg kg-1,

available potassium content of 425.0 mg kg-1, and a pH of 8.5.

Three levels of P levels were established according to P2O5 contents

of 0, 50, and 200 mg kg-1 (designated CK, P1, and P4, respectively).

Each treatment had 10 pots, which were placed into the field. The

root crowns of alfalfa were collected on October 15, 2021. Three

clones served as biological replicates. The root crowns were rinsed

with clean water, wiped with absorbent paper, cut into small pieces

of 3–5 mm, quickly placed into frozen tubes, stored in liquid N, and

then preserved in at -80°C for further analysis (Ye et al., 2018). The

temperature during the sampling period is shown in Figure S1.
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2.2 Analyses of morphological and
physiological indices

The phenotypic characteristics of alfalfa were measured as

previously described (Wang et al., 2022). The root dry weight was

measured by weighing the dried roots, which were oven-dried at

105°C for 30 min and then at 65°C for 48 h. The contents of soluble

sugar were determined using anthrone–sulfuric acid colorimetry

(Yemm and Willis, 1954). The contents of soluble protein were

determined using Coomassie brilliant blue (Wu et al., 2013). Three

plants were used as biological replicates for each treatment.
2.3 RNA extraction and sequencing

Samples treated with different levels of P were fully ground in

liquid N. Total RNA was extracted using the TRIzol reagent (Life

Technologies, Carlsbad, CA, USA) according to the manufacturer’s

instructions. The RNA was purified, reverse-transcribed, used to

construct a library, and sequenced according to the manufacturer’s

instructions. To prepare Illumina RNA-seq libraries, the poly(A)

mRNA was isolated from purified total RNA using biotin-Oligo

(dT) magnetic beads and fragmented into small pieces using an

RNA fragmentation kit according to the manufacturer’s

instructions (Illumina, San Diego, CA, USA) (Hu et al., 2020).

Fragmented RNA was then used as a template, and random

oligonucleotides were used as primers to synthesize single-

stranded complementary DNA (cDNA) by reverse transcription

(Du, 2021). RNase H was then used to degrade the RNA strands,

and a QiaQuick PCR extraction kit (Qiagen, Venlo, The

Netherlands) was used to synthesize double-stranded cDNA (Du,

2021). The purified double-stranded cDNA was repaired by

terminal repair. A tail was added and connected to the

sequencing junction, and the cDNA that was approximately 200

bp was screened by ampure (AM) Pure Extraction-Purification

(XP) beads. PCR amplification was conducted, and the PCR

product was purified by AM Pure XP beads, which provided the

cDNA library used for sequencing (Bao et al., 2020). To ensure the

sequencing quality, a library quality inspection kit, the DNA 1000

assay kit (Agilent Technologies, Santa Clara, CA, USA), was used to

inspect the library. The amplified fragments were sequenced using

an Illumina Hi-Seq 4000 platform.

The reads obtained from the sequencing machines included raw

reads that contained adapters or low-quality bases that would affect

the following assembly and analysis. Thus, the reads were further

filtered using an ultra-fast all-in-one FASTQ preprocessor (FASTP)

(version 0.18.0) to obtain high-quality clean reads (Chen et al.,

2018). An index of the reference genome was built, and paired-end

clean reads were mapped to the reference genome using HISAT2.

2.4 with “-RNA-strandness RF” and other parameters set as the

default (Kim et al., 2015; Chen et al., 2020). By comparing the value

of the transcript on each Unigene, the value was standardized to the

fragments per kilobase of transcript per million fragments mapped

(FPKM) to represent the level of gene expression (Zhao et al., 2021).

RNA differential expression analysis was performed using DESeq2
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and edgeR (Robinson et al., 2010; Love et al., 2014). Genes with a

false discovery rate below 0.05 and an absolute fold change ≥2 were

considered to be differentially expressed genes (DEGs). Based on the

expression information, we used R1 to conduct principal

component analysis (PCA) and hierarchical clustering analyses.

Gene Ontology (GO) functional and Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway enrichment analyses were

performed using GOATOOLS and KoBAS software, which can

determine the primary biological functions of DEGs and identify

the main biological pathways in which the DEGs are involved

(Zhang et al., 2021). All the RNA sequencing data reported in this

study have been deposited in National Center for Biotechnology

Information (NCBI) under the sequence read archive with the

accession number PRJNA909902.

The same batch of samples used in transcriptome sequencing

was used for quantitative PCR (qPCR) detection. The qPCR primers

and genes are shown in Table S1. The AKR4C9 gene was used as a

reference. Real-time quantitative reverse transcription PCR (qRT-

PCR) was conducted using a qTOWER 2.2 PCR System (Jena,

Germany) and SYBR Green PCR Master Mix (TaKaRa, Shiga,

Japan). The amplification program was as follows: 90 s at 95°C,

and 40 cycles × (95°C, 5 s, 60°C, 15 s, and 72°C, 20 s). The

dissolution curve of the amplified product was analyzed at 65°C–

95°C. Each reaction was performed three times. The levels of the

expression of candidate genes were measured using the 2-

(DDCt) method.
2 http://www.massbank.jp/

3 http://www.hmdb.ca/
2.4 Metabolite extraction and
ultra-high-performance liquid
chromatography–quadrupole
time-of-flight mass spectrometry

The samples treated with different levels of P were removed

from storage at -80°C, vacuum frozen-freeze dried, and then

crushed using a mixer mill (MM 400, RETSCH, Haan, Germany)

with a zirconia bead for 1.5 min at 30 Hz. The sample (100 mg

powder) was extracted overnight at 4°C with 1.0 ml of 70% aqueous

methanol that contained 0.1 mg/L lidocaine as an internal standard.

The supernatant was absorbed after centrifugation at 10,000 g for

10 min (CNWBOND Carbon-GCB SPE Cartridge, 250 mg, 3 ml;

ANPEL, Shanghai, China, www.anpel.com.cn/cnw) and filtered

(SCAA-104, 0.22 mm pore size; ANPEL) before liquid

chromatography with tandem mass spectrometry (LC-MS/

Metabolites (MS)) analysis (Chen et al., 2013). After the

metabolites were extracted, 10 µl of each sample were mixed to

serve as quality control (QC) samples, and 60 µl were evaluated by

ultra-high-performance liquid chromatography–quadrupole time-

of-flight mass spectrometry (UPLC-QTOF-MS) to monitor the

stability of the instrument during the whole analytical process

(Zhang et al., 2021).

The metabolites of the samples were qualitatively analyzed by

mass spectrometry based on the metabolite database assembled by
1 http://www.r-project.org/
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Guangzhou Chideo Biotechnology Co., Ltd. (Guangzhou, China).

The structural analysis of some metabolites refers to the secondary

Metabolites (MS) information in the existing mass spectrometry

public databases, such as MassBank2, HMDB3 (Wishart et al.,

2013), MoToDB4, and METLIN5 (Zheng et al., 2013). The

quantification of metabolites was conducted by integrating the

peak area of the mass spectra of all the substances and correcting

the mass spectrometry peaks of the same metabolite in different

samples to ensure the accuracy of quantification. The metabolites

were analyzed by a PCA, partial least squares discriminant analysis,

and orthogonal partial least squares discriminant analysis. The

differences in metabolites between the different treatments were

analyzed by a t-test and one-way analysis of variance (ANOVA;

Zhao et al., 2020). The metabolites were mapped to the KEGG

metabolic pathways for pathway and enrichment analyses.
2.5 Statistical analysis

The data were analyzed statistically with Statistical analysis

System (SAS) 9.20 (SAS Institute, Cary, NC, USA) using a one-

way analysis of variance (ANOVA), and multiple comparisons were

performed based on the results of significance tests with the least

significant difference method. Those with a P-value of t-test <0.05

and VIP ≥ 1 were considered differential metabolites between the

two groups, and all the treatments had three biological replicates.
3 Results

3.1 Phosphate fertilizer affects the
phenotypic and physiological
characteristics of alfalfa

The phenotypes of alfalfa roots varied under different P treatments,

and the growth and development of alfalfa roots were improved by the

application of P (Figure 1A). The application of P reduced the depth of

the root crown by 12.3% and 21.4% at P1 and P4 compared with the

CK, respectively (Figure 1BI). The morphological indices of alfalfa

increased during the P1 and P4 treatments compared with the CK. For

example, the diameter of the root crown in the P1 and P4 treatments

increased by 13.5% and 32.8%, respectively, while the number of

branch roots from root crowns increased by 35.3% and 47.1%,

respectively (Figure 1BII, III). The root dry weight increased by

48.8% and 59.3% at P1 and P4 compared with the CK, respectively

(Figure 1BIV). The physiological indices of soluble sugar and soluble

protein of the alfalfa roots increased following the application of P. The

contents of soluble sugar in the P1 and P4 treatments increased by
4 http://www.ab.wur.nl/moto/

5 http://metlin.scripps.edu/index.php
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76.6% and 54.5%, respectively, while those of the soluble protein

increased by 62.5% and 92.7% compared with the CK, respectively

(Figure 1BV, VI).
3.2 RNA Sequencing profiles of alfalfa
roots in response to phosphate at low
temperature

The analysis of DEGs was performed using edge R software under

different P conditions. The results are shown in Figure 2. Compared

with the CK, 49 genes were differentially expressed under the P1

conditions, with 23 genes upregulated and 26 genes downregulated.
Frontiers in Plant Science 05
Compared with the CK, there were 224 DEGs under the P4 conditions,

with 173 genes upregulated and 51 genes downregulated. Compared

with P1, there were 392 DEGs under the P4 conditions, with 329

upregulated and 63 downregulated.

To further understand the functions and the related biological

process that the DEGs participated in, GO enrichment analyses were

conducted, and the results are shown in Figure 3. The DEGs were

classified into cellular components, molecular functions, and biological

processes. With the cellular component, the enriched GO terms of the

three comparison groups were the cell, cell part, organelle, and

membrane, membrane part, and organelle part. In addition, CK-vs-

P4 and P1-vs-P4 were enriched in the cell junction, extracellular region,

and macromolecular complex. Within the molecular function, the
FIGURE 1

The responses of alfalfa phenotypic and physiological indices to phosphate (P) application under low temperature. (A) Alfalfa roots exposed to P
application showed improved root growth. (B) Changes in the morphological and physiological indices of alfalfa roots, including (I) the depth of the
root crown into the soil surface, (II) the diameter of the root crown, (III) the number of branch roots, (IV) root dry weight, (V) soluble sugar, and (IV)
soluble protein. Values labeled with different lowercase letters indicate a significant difference between the P treatments at P< 0.05. CK, P1, and P4
represent 0, 50, and 200 P2O5 mg kg-1.
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enriched GO terms of three comparison groups were catalytic activity

and binding. In addition, P1-vs-P4 was also enriched in antioxidant

activity and transporter activity. Within the biological process, the

enriched GO terms of three comparison groups were metabolic
Frontiers in Plant Science 06
process, cellular process, single-organism process, response to

stimulus, biological regulation, and localization. In addition, CK-vs-

P4 and P1-vs-P4 were enriched in the developmental process,

multicellular organismal process, multi-organism process,
FIGURE 2

The total number of differentially expressed genes (DEGs) and upregulated and downregulated DEGs under different P treatments. DEGs,
differentially expressed genes; P, phosphate.
FIGURE 3

Gene Ontology (GO) enrichment analysis of the DEGs after cooling under different P treatments. DEGs, differentially expressed genes; GO, Gene
Ontology; P, phosphate.
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reproduction, reproductive process, signaling, immune system process,

and negative and positive regulation of the biological process. These

results indicated that the DEGs induced by P could be enriched into

multiple GO terms, and the number of GO terms and upregulated

genes increased with the increase in the application of P.

The pathway enrichment of the DEGs was analyzed using

KEGG, and results are shown in Figure 4. The DEGs of CK-vs-P1

were primarily enriched in the biosynthesis of other secondary

metabolites, carbohydrate metabolism, amino acid metabolism, and

metabolism of other amino acids. The DEGs of CK-vs-P4 were

enriched in not only the metabolic pathways described above but

also the folding, sorting and degradation, transcription, and

translation of genetic information processing and signal

transduction and transport and catabolism. The DEGs of P1-vs-

P4 were enriched in not only the same pathways of CK-vs-P4 but

also the metabolism of terpenoids and polyketides and lipid

metabolism. These results indicated that the number of KEGG

pathways increased with the increase in P application.
3.3 Verification by real-time quantitative
reverse transcription PCR

In addition to detecting metabolites to verify the RNA-Seq results,

we used qRT-PCR to analyze six key upregulated genes to verify the

results of the detection of transcriptional gene expression. The results

are shown in Figure S2. The qRT-PCR verification results of the

selected genes obtained using qRT-PCR were consistent with the

expression data obtained by the corresponding RNA-seq, indicating

that the RNA-seq expression data obtained are accurate and reliable.
3.4 Metabolite profiles of alfalfa roots in
response to phosphate at low temperature

To obtain an overview of metabolic changes in response to the

availability of P, a non-targeted metabolic analysis was performed.
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As shown in Figure 5, 24 metabolites were determined as having

differential levels under P1 treatment compared with the CK.

Among them, 12 metabolites increased, and 12 metabolites

decreased. Compared with the CK, 12 metabolites were

differentially produced under P4 treatment, and six of these

metabolites increased, while six metabolites decreased. Compared

with P1, 23 metabolites were determined as having differential levels

under the P4 treatment. Among them, 10 metabolites increased,

and 13 metabolites decreased. The primary types of metabolites that

changed after the application of P were as follows: amino acids and

derivatives, flavonoids, lipids, nucleotides and derivatives, organic

acids, sugar, phenolic acids, and terpenoids. The types of variation

in the specific metabolites and the main profile of metabolites that

changed under the different P treatments are shown in Table S2.

KEGG metabolic pathway enrichment analysis classified the

differential metabolites identified under low and high P treatments

into metabolism, genetic information processing, environmental

information processing, and human diseases (Figure 6). Within the

metabolism, all three comparison groups were enriched in the

biosynthesis of other secondary metabolites, amino acid metabolism,

and lipid metabolism. In addition to these pathways, CK-vs-P4 and P1-

vs-P4 were enriched in carbohydrate metabolism, energy metabolism,

and the metabolism of other amino acids. These results indicated that

the metabolic progress of alfalfa was significantly affected by P fertilizer

at low temperature, and the application of increased amounts of P had

a greater effect on metabolism.
3.5 Integrated metabolome and
transcriptome analyses of alfalfa

The integration of the DEGs and metabolites obtained from

different P levels of alfalfa identified several metabolic pathways of

coenrichment (Figure 7). The DEGs and metabolites of the CK and

P1 had three common annotated metabolic pathways, including

fatty acid degradation, phenyl propionic acid biosynthesis, and the

biosynthesis of secondary metabolites. The DEGs and metabolites
FIGURE 4

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of DEGs after cooling under different P treatments. DEGs, differentially
expressed genes; KEGG, Kyoto Encyclopedia of Genes and Genomes; P, phosphate.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1100601
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2023.1100601
of CK and P4 had 12 common metabolic pathways, including the

biosynthesis of secondary metabolites, biosynthesis of amino acids,

sulfur metabolism, cyanoamino acid metabolism, ATP-binding

cassette (ABC) transporters, cysteine and methionine metabolism,

galactose metabolism, 2-oxocarboxylic acid metabolism, carbon

metabolism, glyoxylate and dicarboxylate metabolism, aminoacyl-

tRNA biosynthesis, and phenylalanine metabolism. The DEGs and

metabolites of P1 and P4 had 15 common annotated metabolic

pathways, including the biosynthesis of secondary metabolites,

cysteine and methionine metabolism, biosynthesis of flavonoid,

biosynthesis of isoflavone, biosynthesis of amino acid, sulfur

metabolism, cyanoamino acid metabolism, ABC transporter,

flavonoid and flavonol biosynthesis, 2-oxocarboxylic acid

metabolism, aminoacyl-tRNA biosynthesis, phenylalanine

metabolism, citrate cycle, and glyoxylate and dicarboxylate

metabolism. The metabolic pathways of phenyl propionic acid

biosynthesis and the biosynthesis of secondary metabolites were

shared by the three groups.

The related genes and metabolites in carbohydrate metabolism,

amino acid metabolism, and the carbon metabolism pathway were

combined in the three comparison groups with different rates of P

applied, and the correlation between metabolites and genes was

analyzed (Figure 8). Among them, N-acetyl-L-phenylalanine and L-

serine are the primary metabolites that are related to amino acid

metabolism, and there are 21 related genes. The level of production

of N-acetyl-L-phenylalanine positively correlated with the following

genes: methionine gamma-lyase (MGL) and homocysteine S-
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methyltransferase 3 (HMT3 , MS. gene006429 and MS.

gene34360). The production of L-serine positively correlated with

methionine gamma-lyase (MGL), homocysteine S-methyltransferase

3(HMT3, MS. gene006429 and MS. gene34360), beta-cyanoalanine

synthase (CAS1, MS. gene054826, MS. gene058651 and MS.

gene023918), 1-aminocyclopropane-1-carboxylate oxidase 1

(ACO1, MS. gene98564, MS. gene75722, and MS. gene79848),

beta glucosidase 11 (BGLU11, MS. gene70075, MS. gene037510,

and MSTRG.1088), protein PAT1 homolog (PAT), cysteine synthase/

L-3-cyanoalanine synthase (CAS2), and S-adenosylmethionine

synthase (SAMS2). The primary metabolites related to carbon

metabolism were lactose, isocitrate, and L-serine, and there were

five related genes in which the production of lactose positively

correlated with the gene RFS6 (r = 0.62). The level of production of

isocitrate did not significantly correlate with the genes, and the

production of L-serine positively correlated with RFS1 (r = 0.76).
4 Discussion

4.1 Effect of P fertilizer on the phenotypical
and physiological indices of alfalfa during
the increase in cold weather

Roots are the source of all the mineral elements required for

plant growth; thus, root growth and development are highly plastic

and vary substantially depending upon numerous soil factors
FIGURE 5

The total number of differential metabolites with differential levels, upregulated and downregulated, under different P treatments.
FIGURE 6

KEGG pathway enrichment analysis of the changed metabolites under different P treatments. KEGG, Kyoto Encyclopedia of Genes and Genomes.
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(Vance et al., 2003). The root biomass is related to the accumulation

of organic matter, which can contribute to improve the cold

resistance of plants (Li et al., 2021). The root crown is the

transitional plant structure located between the shoots and the

root system, and it can influence photosynthate translocation, water
Frontiers in Plant Science 09
transport, winter hardiness, and spring regrowth (Marquez-Ortiz

et al., 1999). Alfalfa plants with deep and large root crowns survived

the winter better than the plants with shallow and small root crowns

(Marquez-Ortiz et al., 1999; Liu et al., 2015b; Wang et al., 2023). In

addition, alfalfa with more lateral roots have strong cold resistance,
FIGURE 7

Pathways of the simultaneous annotation of differential metabolites and DEGs for different P treatments. DEGs, differentially expressed genes; P,
phosphate.
A B

FIGURE 8

Heatmaps of amino acid metabolism and carbohydrate metabolism with the genes of three P comparison group units. (A) Amino acid metabolism
and (B) carbohydrate metabolism. The darker the color (red or blue), the stronger the correlation. * means that the correlation between metabolite
and gene was significant.
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and the possession of more lateral roots facilitates the absorption of

more nutrients and water from the soil to meet the nutritional needs

of overwintering alfalfa plants (Liu et al., 2015b). Previous research

had proven the effect of a localized supply of soil P on the root

proliferation of plants (Vance et al., 2003; Gruber et al., 2013). In

this study, the cutting seedings had no obvious taproot, and the

branch roots grew directly from the lower end of the root crown.

The application of P fertilizer promoted the development of the root

crown, widened the root crown, and increased the dry root weight.

However, the increase in the number of branch roots was not

apparent, and the depth of root crown was reduced. Our results

showed that the application of P fertilizer can promote the

development of the root system, particularly the root crown to

some extent, and improve the cold resistance of alfalfa, which also

facilitates the growth and development of alfalfa.

Soluble sugars and soluble proteins are intracellular osmotic

regulators, which can be increased by stress, thus, improving the

adaptability of plants to respond to stress (Zhao et al., 2015). Under

low-temperature stress, amino acids, such as proline, arginine, and

methionine, and soluble sugars, such as sucrose, glucose, and

raffinose, accumulate in the root crowns, roots, and leaves of

alfalfa (Zhang et al., 2015). In addition to reducing water loss, the

enormous accumulation of these solutes can also prevent the cells

from freezing and help to stabilize membrane integrity (Duca and

Maria, 2015). As the amount of low-temperature stress increased,

the contents of soluble protein and soluble sugar in the alfalfa root

crown increased (Tao et al., 2009; Zhu et al., 2021) and improved

the cold resistance of alfalfa. When the temperature increased, the

resistance disappeared, and the sugar and protein content decreased

(Zhang, 2008). P is an essential element in the composition of cells,

which can participate in the composition of nuclear protein,

lecithin, enzymes, ATP, and ADP among others and has an

important impact on the synthesis, transport, and storage of

sugar (Chen et al., 2013). P can enhance N fixation by legumes,

promote fat metabolism, and enhance the stress resistance of crops.

These changes occur because P can increase the content of soluble

sugar and phospholipids in plants. Soluble sugar can reduce the

freezing point of cell cytoplasm, and phospholipid can improve the

adaptability of cells to temperature changes, thus, enhancing

the cold resistance of crops (Wang et al., 2016). We found that

the contents of soluble sugar and soluble protein both increased

during exposure to increasing amounts of cold when P was applied,

which is consistent with the findings of Shen et al. (2017).
4.2 Effect of P on the transcriptome of
alfalfa roots under low-temperature stress

In general, when plants are subjected to low-temperature stress,

they will change at the transcriptome level to resist the damage

caused by low temperatures (Qi, 2017). Plant-specific upregulated

DEGs under low-temperature stress play a more critical role in

determining plant cold resistance than downregulated DEGs, and a

higher percentage of upregulated genes increases the resistance of

plants to cold (Zhang, 2015). In this study, we found that the P
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fertilizer had a substantial effect on the expression of alfalfa genes at

low temperatures, and the number of DEGs and upregulated DEGs

increased with the increase in P application.

Several key genes were detected in alfalfa following the

application of P (Table S1). Cold regulated (COR) genes are genes

that respond to low temperatures and are expressed by the regulation

of a specific signal transduction pathway, and the products of COR

genes are cryoprotective proteins that act by reducing membrane

permeability during freezing and increasing the ability of membranes

to expand during thawing (Wu et al., 2012). Thus, the constitutive

expression of the COR genes could improve the freezing tolerance of

plants. The novel cold-regulated genes CsCOR1 and CbCOR15

enhance dehydration tolerance in tobacco (Nicotiana

benthamiana) (Li et al., 2010; Wu et al., 2012). Sangwan et al.

(2001) proved that the rigidification of the plasma membrane could

induce COR genes and result in cold acclimation. In this study, the

expression of COR was upregulated under the application of P,

which enhanced the cold resistance of alfalfa. CYP71D10 (P450) is a

protein-coding gene present in plants, which have an immense

variety of P450s that act on different substrates. The differential

activities of P450s are believed to represent one of the mechanisms

that enables certain crops species to be more tolerant of abiotic stress

than other crops, particularly following herbicide treatment

(Siminszky et al., 1999). Our research proved that the application

of P under low temperatures could enrich the expression of a P450

that plays a vital role in cold tolerance. PAT is a photonuclear

aspartate aminotransferase, which has not only the activity of

ASPAT but also the activity of prephenate transaminase. It is

primarily located in the cytoplasm, mitochondria, and plastids and

is involved in not only plant metabolism but also the abiotic stress

response pathways of plants (Wei et al., 2022). PAT reduces the

accumulation of ROS and protects the structural integrity of cell

membranes, which improves the abiotic tolerance stress of plants

(Tian, 2021). S-adenosyl methionine synthetase (SAMS) uses L-

methionine as a substrate, and ATP provides the energy to

catalyze the synthesis of S-adenosylmethionine, which plays a very

important role in the responses of plants to stress (Roje, 2006).

Zhang et al. (2020) confirmed that the overexpression of SlSAMS1

significantly reduced the accumulation of superoxide (O·−
2 ),

hydrogen peroxide (H2O2) and malondialdehyde and enhanced

the contents of abscisic acid and the enzymes that scavenge ROS,

including superoxide dismutase, catalase, and ascorbate peroxidase,

and plays an important role in improving the drought and salt

tolerance of transgenic tomato (Solanum lycopersicum L.). Guo et al.

(2014) showed that the overexpression of MfSAMS1 promoted

polyamine synthesis and oxidation, which, in turn, improved the

induction of protection against antioxidants by H2O2. As a result,

this enhanced the tolerance to freezing and chilling stress in

transgenic alfalfa plants. Our study proved that the expression of

SAMS in the root crown of alfalfa treated with P was enhanced,

which improved the plant’s resistance to cold. HSP70 plays an

important role in plant growth and development and responds to

various abiotic stresses, such as heat, drought, salinization,

hormones, and other environmental perturbations (Cho and Choi,

2009; Montero-Barrientos et al., 2010; Usman et al., 2017). In heat-
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tolerant varieties of pepper (Capsicum annuum L.), the level of

expression of CaHsp70was rapidly upregulated upon heat stress, and

the thermal stability of biofilm was simultaneously enhanced

(Usman et al., 2015). Lv et al. (2022) found that the expression of

JcHsp70s and its corresponding miRNAs, which are highly

responsive to low temperature, is generally negatively regulated,

and the interaction between JcHsp70s and miRNAs may be

involved in the process of improving the cold tolerance of purging

nut (Jatropha curcas L.) under low temperatures. In this study,

treatment with P fertilizer also increased the expression of HSP70 in

the root crown of alfalfa under low-temperature stress. In addition,

there are other DEGs owing to the application of P fertilizer. These

DEGs were enriched in three metabolic pathways, including the

biosynthesis of other secondary metabolites, carbohydrate

metabolism, and amino acid metabolism. They can also be

involved in scavenging excess ROS, supplying energy, and

maintaining cell osmotic pressure under low-temperature stress,

which are very important for alfalfa to survive over the winter.
4.3 Effects of phosphate on the
metabolism of alfalfa roots under low-
temperature stress

The changes in plant metabolites under stress can reflect the ability

of plants to adapt to stress. Plants accumulate different sugars and

amino acids under low-temperature stress, such as trehalose, glucose,

fructose, inositol, galactitol, raffinose, sucrose, putrescine, ascorbate,

phenylalanine, and alanine (Jin et al., 2017). Under the influence of

external substances, the expression of metabolites in plants will also

change after responding to low-temperature stress (Zhou et al., 2017).

Flavonoids are important secondary metabolites, which can enhance

plant resistance and chemical defenses, thus, improving the tolerance of

plants to abiotic stress (Zhu et al., 2007; Liu et al., 2015a). When plants

are injured, secondary metabolites, such as alkaloids and polyphenolic

acids, will gradually accumulate and form defense structures, thus,

enhancing plant resistance (Hu et al., 2012). Terpenoids can directly or

indirectly participate in a series of biological processes, such as

hormone synthesis, cell membrane stability, and photosynthesis in

plants. Plants can improve their ability to protect and defend

themselves by regulating the content of terpenoids. Sugar metabolism

is a critical metabolic cycle process in plant growth and development,

and providing energy is the primary function of sugar metabolism.

Secondly, sugar synthesis metabolism can also play an important role

in the response of plants to abiotic stress (Sambe et al., 2015). Plants

with low external levels of Pi have serious problems maintaining a

balanced ratio of sugars, lipids, amino acids, organic acids, terpenes,

and flavonoids, but the application of P can improve this situation (Mo

et al., 2019; Ding et al., 2021; Nasr Esfahani et al., 2021). In this

experiment, the application of P could regulate the types and contents

of metabolites. When a small amount of P fertilizer is applied, it

primarily affects the biosynthesis of secondary metabolites, while the

application of more P fertilizer primarily affects the biosynthesis of

secondary metabolites, amino acid metabolism, carbohydrate

metabolism, and others.
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4.4 Integrated metabolome and
transcriptome analysis revealed the
mechanism used by phospate to improve
cold tolerance

The mechanism of cold resistance of alfalfa is very complex and

involves morphology, physiology and biochemistry, molecular,

transcription, and metabolism. Hence, it is crucial to integrate a

variety of combinatorial techniques to comprehensively analyze the

mechanism of the cold resistance of alfalfa (Wang and Xu, 2021).

During cold acclimation, root morphology and the synthesis of

compatible solutes were closely related to the cold resistance of

alfalfa. Less root mass and lower concentrations of root total non-

structural carbohydrates can minimize the survival of plants over

the winter when the plants are subjected to low temperatures

(Castonguay et al., 2006). The crown depth below the soil surface

is viewed as a key morphological adaptation for forage legumes to

overwinter successfully. The alfalfa varieties that have more branch

rooting in general were better able to resist cold than the varieties

that have a taproot or fewer types of branch roots (Johnson et al.,

1998). The accumulation of soluble sugars under low temperature

plays an important role in the acquisition of cold tolerance in plants

(Guy, 1990). Several proteins were increasingly or newly

synthesized during the acclimation of alfalfa to the cold

(Mohapatra et al., 1987). Simultaneously, free amino acids were

shown to accumulate in the taproots and crowns (Hendershot and

Volenec, 1993; Dhont et al., 2003). The increase in free proline was

notable, and the concentrations of arginine and histidine were also

markedly increased (Dhont et al., 2003). In this study, the

application of P fertilizer significantly changed the traits of root

system architecture and increased the contents of soluble sugar and

protein during the cold accumulation period. In addition, there

were commonly annotated pathways shared by the transcriptome

and metabolome. Thus, the application of P fertilizer influences the

cold tolerance of alfalfa. With the increase in the application of P,

the common metabolic pathways for the enrichment of DEGs and

metabolites affected by P gradually increased. The biosynthesis of

amino acids is regulated by a compound metabolic network that

links N assimilation with carbon metabolism (Hans et al., 2008).

Carbohydrate metabolism is the most important basic metabolism

in the plant, which provides the necessary carbon frame and energy

to synthesize amino acids, proteins, and nucleic acids in N

metabolism. Under low-temperature stress, the application of P

primarily affected the contents of L-serine, N-acetyl-L-

phenylalanine, isocitrate, and lactobiose. A correlation analysis

revealed that the production of L-serine positively correlated with

MGL, HMT3, CAS1, BGLU11, PAT, CAS2, ACO1, SAMS2, and

RFS1. N-acetyl-L-phenylalanine positively correlated with MGL

and HMT3, and lactobiose positively correlated with RFS6.

Among them, RFS1 and RFS6 are related to the synthesis of

raffinose synthase, which is a crucial enzyme in the raffinose

metabolism pathway. This pathway can catalyze the reaction of

inositol galactoside and sucrose to raffinose, and they can also

catalyze the reaction of inositol galactoside and raffinose to

synthesize stachyose. Its expression can be regulated by various
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stress response signals and transcription factors (Nishizawa et al.,

2008; Cho et al., 2010). SAMS2 facilitates the synthesis of S-adenosyl

methionine synthetase and can be induced by a variety of stress

factors; its overexpression can significantly improve the resistance

to plant stress (Guo et al., 2014). The overexpression of PAT

increased the contents of proline and soluble sugar in transgenic

Arabidopsis thaliana and improved the cold, drought, and saline–

alkali tolerance of plants (Yuan et al., 2016). Other genes also play

essential roles in the synthesis and metabolism of amino acids and

carbohydrates. Thus, the moderate application of P fertilizer can

improve the cold resistance of alfalfa by regulating the synthesis and

metabolism of amino acids and sugars.
5 Conclusion

Low-temperature stress affects the growth and development of

alfalfa, leading to morphological, physiological, metabolic, and

molecular changes and, thus, limits the overwintering and

production of alfalfa. The application of P can improve the cold

resistance and forage yield of alfalfa. In this study, we analyzed the

changes of alfalfa under low-temperature stress by transcriptomic

and metabolomic approaches after the application of P. We found

that the application of P fertilizer improved the root structure and

increased the content of soluble sugar and soluble protein in the

root crown, and there were 49 DEGs (23 genes upregulated) and 24

metabolites (12 upregulated) following 50 mg kg-1 of P applied and

224 DEGs (173 genes upregulated) and 12 metabolites (6

upregulated) following 200 mg kg-1 of P applied, respectively,

compared with the CK. These genes and metabolites were

significantly enriched in the biosynthesis of other secondary

metabolites, carbohydrate metabolism, and amino acid

metabolism pathways. The integration of the transcriptomic and

metabolomic analyses showed that P could affect the biosynthesis of

N-acetyl-L-phenylalanine, L-serine, lactose, and isocitrate and the

expression of related genes to regulate the cold tolerance of alfalfa.

Our findings could contribute to a deeper understanding of the

mechanism that alfalfa uses to respond to cold tolerance and lay a

theoretical foundation for breeding highly P-efficient alfalfa.
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