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Zinc/iron-regulated transporter-
like protein gene family

iIn Theobroma cacao L.
Characteristics, evolution,
function and 3D

structure analysis

Daniel Dastan Rezabala Pacheco*,
Brenda Conceicdo Guimaraes Santana,
Carlos Priminho Pirovani and Alex-Alan Furtado de Almeida*

Department of Biological Sciences, Santa Cruz State University, Campus Soane Nazaré, Ilhéus,
Bahia, Brazil

The zinc/iron-regulated transporter-like protein (ZIP) gene family first identified
in plants is highly distributed in the plant kingdom. This family has previously been
reported to transport several essential and non-essential cationic elements,
including those toxic to many economically important crops such as cacao
(Theobroma cacao L.). In this article, we present a detailed study on
physicochemical properties, evolution, duplication, gene structure, promoter
region and TcZIP family three-dimensional protein structure. A total of 11 TcZIP
genes have been identified to encode proteins from 309 to 435 aa, with
localization in the plasma membrane and chloroplast, containing 6-9 putative
domains (TM). Interspecies phylogenetic analysis subdivided the ZIP proteins into
four groups. Segmental duplication events significantly contributed to the
expansion of TcZIP genes. These genes underwent high pressure of purifying
selection. The three-dimensional structure of the proteins showed that o helix
conformations are predominant with several pocket sites, containing the metal
binding site, with the residues leucine (LEU), alanine (ALA), glycine (GLY), serine
(SER), lysine (LYS) and histidine (HIS) the most predicted. Regarding the analysis of
the protein-protein interaction and enrichment of the gene ontology, four
biological processes were assigned, the most important being the cation
transport. These new discoveries expand the knowledge about the function,
evolution, protein structures and interaction of ZIP family proteins in cacao and
contribute to develop cacao genotypes enriched with important mineral
nutrients as well as genotypes that bioaccumulate or exclude toxic metals.
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1 Introduction

Zinc (Zn) and iron (Fe) are key elements for plant growth and
development. (Zn) is an enzymatic cofactor, participating in
electron transport and antioxidant metabolism. On the other
hand, it is an integral element of several transcription factors and
plays important roles in enzyme activation, gene expression, protein
synthesis, photosynthesis and carbohydrate metabolism (Chang
et al., 2005; Slaton et al, 2005). (Fe) is required for electron
transport in chloroplasts and mitochondria. It is involved in the
hormones biosynthesis and integrity of cellular organelles; as well as
in the tolerance to oxidative stress and in the N fixation (Hinsch
and Mendel, 2009). Zn and Fe deficiency causes many nutritional,
biochemical and molecular disorders. A complex control system
allows the uptake, distribution and accumulation of these ions,
ensuring metal homeostasis. The uptake of metal ions, under
deficiency conditions, activates several transport proteins, such as
the zinc/iron-regulated transporter-like protein (ZIP) family.
Nowadays, members of the ZIP family have been identified in
bacteria, archaea, and eukaryotes as well as protists, animal fungi,
and plants (Miser et al., 2001). ZIP gene family in the model species
Arabidopsis thaliana has been extensively studied. For most ZIP
proteins, the topology with the N-terminal and C-terminal ends is
predicted to be located on the outside surface of the plasma
membrane, with eight potential transmembrane domains
(TMDs). The variable region contains a potential metal-binding
domain rich in histidine residues (Guerinot, 2000).

Studies on the function of ZIP genes in A. thaliana and the
uptake of metal ions start with the IRTT (iron-regulated transporter)
gene, which was the first identified gene encoding a transporter
involved in the Fe’" uptake with localization in the plasma
membrane (Eide et al., 1996). IRT3 and ZIP4 genes are induced
by Zn deficiency and are involved in the Zn increase in xylem
(Grotz et al., 1998). IRT1 is also responsible for the uptake of
elements such as cadmium (Cd) and Zn. Plants with overexpression
of IRT1 hold higher levels of these elements (Connolly et al., 2002).
Genes expressed in roots and leaves such as ZIP2, ZIP4, ZIP5 and
ZIP9 are up-regulated in Zn-deficient conditions, while IRT2 is
involved in Fe uptake. Two, ZIP2 and ZIP4 genes are also
transcriptionally regulated by copper (Cu) (Wintz et al., 2003).
Other members of this family, such as ZIP1 and ZIP3, are mostly
expressed in roots and are implicated in Zn uptake in A. thaliana
(Ishimaru et al., 2005). IRT1, a gene which plays a role in the Fe,
manganese (Mn), Zn and Cd uptake (Cohen et al., 1998; Vert et al,,
2002) also mediates the accumulation of nickel (Ni) in A. thaliana
(Nishida et al,, 2011). After that, a lot of ZIP family members have
been found in the species Oriza sativa (Ishimaru et al., 2011). The
genes OsZIP1, OsZIP4, OsZIP5 and OsZIP8 are involved in the Zn
transport and distribution. The localization of these proteins is in
the plasma membrane of roots and shoots (Ishimaru et al., 2007; Lee
et al, 2010; Lee et al., 2010; Yang et al,, 2009). Thus the ZIP plays
key roles in the uptake and translocation of essential and non-
essential metal ions in different plant organs (Eide et al., 1996; Grotz
etal., 1998; Wintz et al., 2003; Li et al., 2013; Milner et al., 2013) and
has been studied in several plant species of economic importance,
such as Zea mays (Li et al., 2013), Glycine max (Moreau et al., 2002),
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Hordeum vulgare (Tiong et al., 2014), Vitis vinifera (Gainza-Cortes
et al.,, 2012), Solanum tuberosum (Li et al., 2020) and Poncirus
trifoliata (Fu et al., 2017).

Information on ZIPs was not systematically analyzed in the T.
cacao genome, hampering the understanding of its role in the
processes of uptake and distribution of essential and non-essential
elements such as Cd, which is toxic and commonly affects this crop
(Aratjo et al,, 2017). T. cacao genome, at the chromosomal level, in
its recent high-quality version (Motamayor et al., 2013) provides
quality resources to study, at the genomic level, the role of the ZIP
gene family.

In the present study, we were the first to identify and
characterize members of the ZIP gene family based on
phylogenetic relationships, physico-chemical properties,
transmembrane domains, conserved motifs, exon/intron
organization, substitution rates, chromosomal locations and cis-
regulatory elements in cacao. We also explored post-translational
modifications, 3D modeling, prediction of ZIP transport protein
pocket sites and protein-protein interaction (PPI) network. The
results reported in the present study will increase our knowledge
about the evolution, function, structure and interaction of ZIPs,
being the first step towards future studies on the processes of uptake
and translocation of essential and non-essential elements in cacao.

2 Materials and methods

2.1 ldentification and annotation of ZIP
family members in the genome of T. cacao

We retrieved the Zn/Fe-regulated transporter-like protein (ZIP)
family protein sequences from The Arabidopsis Information
Resource database (https://www.arabidopsis.org/). The ZIP genes
in cacao (Theobroma cacao) were identified for the first time using
the Protein-protein Basic Local Alignment Search Tool (BLASTP)
(Altschul et al., 1990) with cut-off point set to le® (Duan et al,
2016). As a query sequence, we used all known A. thaliana ZIP
family proteins against the latest version of the T. cacao genome
obtained from the Phytozome database (https://phytozome-
next.jgi.doe.gov/). All putative hits were examined using Pfam
database (Punta et al., 2012) to verify the presence or absence of
the conserved ZIP domain (PF02535). To confirm the presence of
the ZIP domain the sequences were finally verified using the Simple
Modular Architecture Research (SMART) database with a cut-off p-
value of 1.0 (Letunic et al., 2012). All non-redundant sequences
were used for further analysis. The ZIP family genes identified in
cacao were designated TcZIP.

2.2 Characterization of the physico-
chemical properties of the
putative sequences

The physico-chemical properties, concerning protein length,

molecular weight (MW)), isoelectric point (IP), the grand average of
hydropathicity (GRAVY), were determined using the ProtParam
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tool (http://www.expasy.org/tools/). The subcellular location of the
ZIP genes was predicted using the Plant-mPLoc server (Chou and
Shen, 2010). Potential transmembrane domains were identified
using the TMHMM tool (Krogh et al., 2001).

2.3 Phylogenetic relationships, exon-intron
gene structures analysis and protein
motifs identification

The full sequences of transport proteins ZIPs from T. cacao and
A. thaliana were aligned by the MEGA11 software, using the Clustal
W algorithm. According to the alignment results, we build a
phylogenetic tree using the Neighbor-Joining (NJ) method as
implemented in MEGAI11 software (Tamura et al, 2021) with
1000 bootstrap replicates. Furthermore, another phylogenetic tree,
comprising all TcZIP proteins, was constructed using the same
method. Also we analyzed the sequences of all TcZIP genes to
identify exon-intron organizations using the Gene Structure
Display Server tool (Hu et al, 2015). To identify conserved
protein motifs in ZIP transport proteins, we use the Multiple Em
for Motif Elicitation server (MEME) (Bailey et al., 2009).

2.4 Promoter region analyses,
chromosome mapping and ka/ks
ratio estimation

PlantCare (Lescot et al.,, 2002) was used to study cis-regulatory
elements in the 1500 bp promoter regions upstream of transcriptional
start sites. The chromosomal positions of the ZIP gene’s were
extracted from the Phytozome database. ZIP genes approximate
locations were mapped onto cacao chromosomes using MapInspect
software ((http://www.softsea.com/download/MapInspect.htm)
(accessed on 13 Jun 2022). Synonymous (Ks) and non-synonymous
(Ka) replacement rates per site among duplicate pairs were calculated
using the browser Ka/Ks Calculation tool (http://services.cbu.uib.no/
tools/kaks). Duplicate pair splitting time was estimated using a
mutation rate synonymous with A substitutions per synonymous
site per year, according to the equation T = (Ks/2A (A = 6.5 x 107)) x
10 (Yang et al,, 2008; Yuan et al., 2015).

2.5 Prediction of TcZIP proteins post-
translational modifications

The phosphorylation sites of TcZIP proteins were predicted by
the NetPhos 3.1 server (Blom et al., 2004) with a value greater than
>0.5. The NetNGlyc 1.0 tool was used to predict N-glycosylation
sites with default parameters (Gupta and Brunak, 2002).

2.6 Three-dimensional protein modeling,
validation and analysis of the pocket sites

The prediction of ZIP proteins 3D structure in cacao was made
by homology based on templates predicted by the server SWISS-
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MODEL (Waterhouse et al., 2018). After selecting the best model,
we validate the predicted models through the Ramachandran
analysis (Lovell et al., 2003). The pockets prediction in predicted
models was performed using CASTp tool (Tian et al., 2018). Finally
Discovery Studio Visualizer (BIOVIA, 2015) was used to view
the results.

2.7 Systems biology

An interaction network was constructed from A. thaliana
proteins homologous to those identified in T. cacao. The
interactome analysis was performed using the STRING version
11.5 (http://string-db.org) with the following parameters: meaning
of network edges: confidence; (ii) active interaction sources: all;
(iii) minimum required interaction score: high confidence (0.700);
(iv) maximum number of interactors to show: 1st and 2nd shell is
no more than 20 interactions. Cytoscape version 3.9.1 was used to
merge and analyze all networks. Gene ontology enrichment analysis
was performed for each cluster using BINGO version 3.0.5 plugin.
The modularity and centrality properties (betweenness and node
degree) of the network were calculated using the igraph package of
the statistical tool R.

3 Results

3.1 Identification and genomic location of
ZIP proteins in T. cacao genome

After removing the overlapping genes, a total of 11
nonredundant putative genes associated with the Zn/Fe-regulated
transporter-like protein (ZIP) gene family in the T. cacao genome,
were identified and characterized based on their physical-chemical
properties (Table 1). After that, we designated the TcZIP1 to
TcZIP11 genes according to their physical positions on the
chromosomes. The 11 genes identified encode proteins containing
the ZIP domain. SMART and Pfam analyzes were performed to
confirm the ZIP domains that are present in the putative genes in
cacao. The ZIP proteins ranged in length from 309 to 435 amino
acids, with molecular weights from 32.44 to 46.30 kDa and
isoelectric points ranging from 6.03 to 9.02. According to
GRAVY values, all ZIP proteins were hydrophobic proteins.
Additional analyzes show that the 11 genes contained between 6-
9 putative transmembrane domains (TMs), with subcellular
localization in the plasma membrane and chloroplasts (Table 1).
This is consistent with the known characteristics of ZIP genes
studied. A phylogenetic tree was constructed with the 11 ZIP
transport proteins in cacao, using the Neighbor-Joining (NJ)
method. Through these analyses the TcZIP were divided into four
groups, with strong bootstrap values (Figure 1A).

To examine the diversity of TcZIP gene structure, we compared
the exon/intron organizations in the coding sequences of individual
genes in cacao. TcZIP genes have several characteristics in terms of
gene structure, exhibiting various exon/intron regions (Figure 1B).

Most TcZIP genes have more than one intron, and the number of
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TABLE 1 Identification of the Zn/Fe-regulated transporter-like protein (ZIP) encoding TcZIP proteins.

Gene Transcript ID CDS Protein MW Theoretical = GRAVY Subcellular Chromosome ™
(bp) length (aa) o] location domain
TcZIP1 Thecc.01G173600.1 930 309 32.443 6.73 0.530 Plasma membrane 1 6
TcZIP2 Thecc.01G179300.1 1068 355 37.732 6.30 0.449 Plasma membrane 1 7
TcZIP3 Thecc.02G004300.1 1074 357 38.193 8.61 0.585 Plasma membrane 2 8
TcZIP4 Thecc.02G004400.1 1086 361 38.935 8.09 0.464 Plasma membrane 2 9
TcZIP5 Thecc.02G318800.1 1059 352 37.797 7.55 0.580 Plasma membrane 2 9
TcZIP6 Thecc.06G138900.1 1185 394 42.379 9.02 0.479 Plasma membrane 6 9
TcZIP7 Thecc.07G016100.1 1077 358 38.431 6.03 0.532 Plasma membrane 7 8
TcZIP8 Thecc.07G188800.1 1092 363 38.522 6.45 0.510 Plasma membrane 7 8
TcZIP9 Thecc.09G054100.1 1308 435 46.305 6.19 0.256 Chloroplast 9 6
TcZIP10 = Thecc.09G317600.1 984 327 35.862 6.58 0.446 Plasma membrane 9 8
TcZIP11 Thecc.09G352700.1 966 321 34.140 713 0.696 Chloroplast. 9 8

kDa - kilodaltons (unified atomic mass unit), pI - isoelectric point and GRAVY - grand average hydropathy.

introns varied between 1-3 between genes. TcZIP9 has the highest
number of introns and TcZIP11 has the lowest number. These
results are consistent with those of phylogenetic analysis, in which
genes that clustered into the same cluster exhibit similar exon/
intron structures. Then we looked for conserved motifs to examine
the diversity of motif composition among TcZIPs. As shown in
Figure 1C, 10 distinct conserved motifs were identified in ZIP
transport proteins in cacao. All TcZIPs retained motifs 2, 5, 7 and 8,
besides, we found that motifs 2 and 8 are present in the N-terminal
region and motifs 5 and 7 are present in the C-terminal region.
Subgroup I proteins have high divergence in motifs compared to the
other subgroups and two proteins in this subgroup contain the
fewest identified domains. All subgroup III and IV proteins have the
same motifs 2, 3, 4, 5, 6, 7, 8, 9, and 10. However, motif 9 was not
found in two proteins from subgroup I and one protein from
subgroup IL

3.2 Phylogenetic analysis of TcZIP proteins

In the present study, phylogenetic analysis of ZIP transport
proteins contained in A. thaliana, Oriza sativa and T. cacao
(Supplementary Table 1) revealed that AtZIPs, OsZIPs and
TcZIPs were divided into four groups. For several protein
sequences of the model species used, putative orthologous AtZIPs
were found in cacao. Almost all OsZIPs were identified as closely
related groups, except for one OsZIP where it had putative
orthology with only one TcZIP. Group I with 20 ZIP proteins
was identified as the largest clade and group III with three proteins
was the smallest clade (Figure 2). In group I, only TcZIP1 and
TcZIP2 were shown to be closely related. TcZIP8 showed orthology
with AtZIP1, which by similarity is closer to TcZIP3, which was not
assigned a closer ortholog. The cluster with AtIRT3, AtZIP4,
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AtZIP9, OsZIP7 and OsZIP10 contained only one cacao ortholog
(TcZIP9). In group II AtZIP7, that showed orthology with TcZIP5
and TcZIP6, was marked by being the most distant ZIP member
presenting the greatest genetic divergence in contrast to the other
TcZIPs. The cluster with AtZIP8, AtZIP10, AtIRT1 and AtIRT2
were the closest model ZIPs. In group III, AtZIP6 showed orthology
with TcZIP11. AtZIP2, belonging to the group IV, showed
orthology with TcZIP10. In this group, a ZIP member of the O.
sativa monocot species (OsZIP2) showed orthology with TcZIP7. In
general, phylogenetic analysis showed that ZIP transport proteins in
cacao were more like A. thaliana species than O. sativa. Normally,
genes grouped in the same group of a phylogenetic tree often reflect
that they have similar functional characteristics.

3.3 Gene duplication analysis and
chromosomal location

Analysis of gene duplications events, particularly tandem and
segmental duplications, are important processes implicated in gene
family expansion. To detect duplications in the ZIP gene family in
cacao, we used the Ka/Ks calculation software. The analysis
identified five pairs of paralogous genes in the ZIP family. Based
on the duplication analysis, only the TcZIP1 and TcZIP2 genes
might be considered as tandem duplicated genes due to their
physical proximity. The other four gene pairs showed segmental
duplication (Table 2). Consecutively, selective constraint analyzes
were performed on the five duplicated paralog pairs, from which
were calculated the value of synonymous mutations (Ks) and
nonsynonymous mutations (Ka). The Ks of the duplicated genes
ranged from 0.078 to 0.480. The values of the Ka/Ks ratio, widely
used to measure the rate of genetic evolution, also considered as
genetic pressure selection, ranged from 0.21 to 0.42 (Table 2). The
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FIGURE 1

The evolutionary relationships, gene structures and functional motifs of transport proteins in T. cacao (TcZIP). (A) A phylogenetic tree constructed
using MEGAL11 software by the NJ method with bootstrap analysis (1000 replicates). (B) Gene structures, CDS, upstream/downstream, and introns
are shown. (C) Composition of each TcZIP proteins motif. Motifs 1-10 are displayed as differently colored boxes with corresponding sequence

information for each motif.

results of this analysis indicated that purifying selection is the main
evolutionary force in the ZIP paralog pairs in cacao. It is estimated
that the duplication event for the tandem duplicated pairs occurred
5.94 million years ago (Mya) and for the segmentally duplicated
pairs occurred 27.26-36.58 Mya. We also performed the physical
distribution of the ZIP family members in cacao, using the
chromosomal positions of the ZIP genes obtained from the cacao
genome in the Phytozome database. We then designated these 11
TcZIP genes according to their physical locations (from the top to
the bottom) on the chromosomes. The TcZIP genes were unevenly
distributed in five of ten cacao chromosomes. The highest number
of duplicated gene pairs was observed on chromosome 2 containing
all duplicated genes (Figure 3). Chromosome 1 has two genes,
chromosome 2 has three members, chromosome 6 has only one,
and chromosomes 7 and 9 have 2 and 3 genes, respectively. In
general, all five cacao chromosomes contain duplicated genes.
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Therefore, we hypothesized that the ZIP gene family in cacao is a
slowly evolving gene family during the evolution process.

3.4 Promotor region analysis

To understand the regulatory mechanisms of TcZIP gene
transcription, we used the sequences of all TcZIP genes to predict
the cis-acting regulatory elements. We identified and analyzed for the
first time cis-regulatory putative elements in promoter regions of ZIP
genes in cacao (Supplementary Table 2). The cis-regulatory elements
were divided it into five categories, considering their function. The
presence of a lot of transcription factors was associated to stress
response in general (46%), light responsive element (28%), hormone
responsive elements (22%), growth response elements (3%) and
binding sites related to DNA and proteins (1%) (Figure 4A). In this
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FIGURE 2
A phylogenetic tree of proteins similar to ZIP from A. thaliana, O. sativa and T. cacao, built using MEGA11 software by the NJ method, with 1000

bootstrap replicates. The beginning of each gene ID contains the code for the species as Tc, T. cacao; At, A. thaliana and Os, O. sativa. The groups
are distinguished by different colors.

study, we focus on cis-regulatory elements in stress response. For ~ TcZIP6. GATA-motif is present in greater quantity in TcZIP8.
example, ABRE is involved in abscisic acid responsiveness; the TGA- ~ MYB was identified as the most abundant element in TcZIP genes,
element is involved in auxin response; Box4, GATA-motif, GT1- except for TcZIP2. TATC-Box, TC-rich and ATCT-motifs were the
motif, and ATCT-motif are involved in root responsiveness.  elements with the lowest abundance, being present in a few genes. In
Myoblastosis and Tc-rich are involved in defense and stress  addition, cis-regulatory elements related to transcription modulation,
response. ABRE is present in most genes, except TcZIP4 and  endosperm and meristem expression, leaf differentiation and

TABLE 2 Ka/Ks analysis and estimated divergence time for ZIP genes pairs in cacao.

Paralogou pair Duplication date (MYA) Duplicate type

TcZIP2-TcZIP1 0,027 0,078 0,345 5,94 Tandem

TcZIP3-TcZIP8 0,097 0,452 0,214 34,42 Segmental

TcZIP4-TcZIP9 0,191 0,455 0,420 34,65 Segmental

TcZIP10-TcZIP7 0,143 0,480 0,298 36,58 Segmental

TcZIP5-TcZIP6 0,124 0,358 0,345 27,28 Segmental
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development, and circadian control were found in lower abundance
in the promoter region. Also new cis-regulatory elements were found,
these elements were categorized as putative elements without
analysis, due to the little information we have about them. Full
details of all identified elements except TATA-box and CAAT-box
along with sequence and function are given in Supplementary
Table 1. In this way, TcZIP genes can be regulated by various
environmental factors and developmental changes. We also
identified that the duplicated gene pairs do not share the same
element distributions, these observations indicate that evolutionary
changes resulting from duplication events conferred
neofunctionalization on TcZIP genes during their divergence and
evolution (Figure 4B).

B
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3.5 Analysis of post-translational
modifications and 3D structure of
TcZIP proteins

In the present study, post-translational modifications of TcZIPs
were predicted in terms of phosphorylation and N-glycosylation
(Figure 5, Supplementary Table 3). We identified a total of 355
potential phosphorylation events in serine, threonine and tyrosine
amino acids belonging to TcZIP proteins. The predicted potential
phosphorylation events were related to serine (243) followed by
threonine (102) and then tyrosine (10) (Figure 5A). Among the
TcZIPs proteins, most of the phosphorylation sites (39 sites), were
predicted in TcZIP7 and followed by five proteins that ranged from 34

m Growth REs

m Stress REs

® Binding domain REs
Hormone REs

m Light REs

MYB [l TATC-box Il TC-rich | TGA-clement

TeZIPI " } —t
TeZIP2

TcZIP3 + 1 +
TcZIP4

TeZIPS ;

TeZIP6 '

TeZIP7 -

TcZIP8 + +

TeZIP9 4 {

TeZIP10 + +

TcZIP11 t t +

- I

FIGURE 4

oo
=l
=

T000 1200 400 Top]

Analysis of TcZIP promoter region. (A) Cis-regulatory elements in TcZIP genes promoter regions. Represents the extent of various types of
regulatory elements based on function, such as light, hormone, growth, stress and binding domain, excluding the TATA box, CAAT box and (B)
Location of cis-regulatory elements in the 1.5 kb 5" upstream region of each TcZIP gene involved in the stress response.
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Prediction of post-translational modifications in amino acid sequences of the Zn/Fe-regulated transporter genes in T. cacao (TcZIP), based on the

(A) Predicted phosphorylation site and (B) N-glycosylation site.

to 37 sites. Furthermore, two TcZIPs proteins, including TcZIP4 and
TcZIP10 were the ones with the lowest predicted phosphorylation
sites (Figure 5A). The potential sites of N-glycosylation of the ZIP
transport proteins were also predicted, except for six proteins TcZIP4,
TcZIP6, TcZIP9, TcZIP10 and TcZIP11. In addition, several proteins
showed potential N-glycosylation with few sites (Figure 5B). The N-
glycosylation results indicate that TcZIP3 and TcZIP7 are the proteins
with the most glycosylation sites (3 sites each), while only two
glycosylation sites were predicted in TcZIP8. Next, TcZIP1, TcZIP2
and TcZIP5 were observed with a glycosylation site (Table S1). The
three-dimensional structures of all candidate proteins were modeled
with >90% confidence, as well as the percentage of residues in the most
energetically favorable region are shown in the Ramachandran plot
(Supplementary Figure 1). The predicted 3D structures showed the
presence of o helices, turn, random coils, bend and [ sheets. The o
helices, turn, random coils, bend were the most abundant, on the
contrary, the occurrence of B sheets were scarce in all TcZIP proteins,
appearing in only two proteins, TcZIP7 and TcZIP10 (Figure 6,
Supplementary Figure 2). The diversity in predicted structures may
be due to their different ion transport in response to multiple
environmental stimuli. Besides, the active sites of proteins, surface
pockets and cavities were predicted according on structure. Based on
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the results, different surface pockets were observed in the TcZIP
proteins and the main amino acids involved in the metal binding sites
as well as in the function of the TcZIP proteins were predicted
(Figure 6). Leucine (LEU), alanine (ALA), glycine (GLY), serine
(SER), lysine (LYS) and histidine (HIS) residues were the most
predicted, being related to the surface pockets of almost all putative
ZIP transport proteins (Supplementary Figure 3). Overall, we infer
that these amino acids are recognized as the key residue at pocket sites,
allowing for metal binding in TcZIP transport proteins. In addition,
the ZIP proteins in cacao showed differences in the distribution of
pocket sites that directly affect their functions. These results suggest
the importance of these residues in the pocket sites, as well as the
distribution of surface pockets and cavities, which may influence metal
affinity and, ultimately, cellular functional performance.

3.6 Systems biology

The interaction network of proteins containing graphical
representations of sets of nodes connected by edges was constructed
from A. thaliana proteins, identified homologs of the transport family
in T. cacao (Table 1). In this study, the interactome, consisting of 109
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Identification of activity sites in the predicted 3D structure of all ZIP transport proteins studied. The distribution of major pocket protein sites in the
ligand regions is highlighted in the three-dimensional structure with its main residues.

nodes (representing the individual proteins) was interconnected by 706
edges (each one representing an interaction). When all interactome
proteins were analyzed four clusters were evidenced (Figure 7). The
protein interaction network contains 22 proteins qualified as bottleneck
proteins (betweenness value above average) important to connect
several clusters that, in this case, represented the biological processes,
among which five are homologous to those identified in T. cacao. The
network also contains 53 highly connected proteins, qualified as hubs
proteins (above average node degree value), of which two proteins are
homologous to the proteins identified in T. cacao. Moreover, two of the
homologous proteins identified have both characteristics in the
network (bottleneck and hub). Regarding biological processes, cluster
1 is made up of 39 proteins, associated as they are involved in the DNA
metabolic process, such as MutS Homolog (MSH). In this cluster, a
homolog corresponding to ZIP1 was found, which has both
characteristics. On the other hand, cluster 2 contains the largest
number of proteins in the network. This cluster is involved in cation
transport-related proteins. In turn, seven homologous proteins
identified in T. cacao corresponded to proteins ZIP2, ZIP3, ZIP6,
ZIP7, IRT1 and IRT3, respectively, these proteins have the
characteristic of bottleneck proteins. It was shown that the
homologous ZIP bottleneck proteins interact with other transport
proteins such as heavy metal P-type ATPase (HMA3 and HMA4),
yellow stripe-like (YSL3), auxin conjugate-resistant (IAR1), natural
resistance-associated macrophage protein (NRAMP2) and metal
transporter CDF (MTPA2). Clusters 3 and 4 have the lowest amount
of related proteins with regulation of transcription, regulation of
macromolecule biosynthetic process, negative regulation of plant-
type hypersensitive response and negative regulation of innate
immune response. Of the 11 putative proteins identified in T. cacao,
using the STRING database with the parameters described, only 8 of
the 15 ZIP proteins from A. thaliana (including the IRT) showed high
homology. These 8 are represented in the form of octagons on
the network.
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4 Discussion

The ZIP family is a group of metal ion transporter genes found
in various kingdoms including plants (Guerinot, 2000). This family
is involved in the transport of various essential and non-essential
metal jons. In the present paper, we performed a general analysis of
the ZIP gene family in cacao, including analysis of its phylogeny,
chromosomal location, gene structure, conserved motifs, prediction
of three-dimensional structure and protein-protein interactions
(PPIs). A total of 11 ZIP genes were identified in the cacao
genome (Table 1), which is fewer than the ZIP members
identified in the model species A. thaliana (15) and a similar
number as in Solanum tuberosum (12) (Li et al., 2020). Eventually
the ZIP family is relatively small, so far the smallest number of ZIP
members has been found in Zea mays (Li et al., 2013). Sequence
analysis showed that the TcZIP proteins bear similarity to the
previously studied ZIP families (Guerinot, 2000). Specifically,
TcZIP members encode proteins with lengths from 309 to 435 aa,
in agreement with the predicted range in known plants (Guerinot,
2000). Studies in perennial plants such as Poncirus trifoliata reveal
that ZIP members encode proteins with 334 to 419 aa (Fu et al,
2017). Most of the TcZIPs were predicted to be located in the
plasma membrane, similarly to AtIRT1, OsZIP4, OsZIP5, HVIRT1
and VvZIP3 (Vert et al., 2002; Ishimaru et al., 2005; Pedas et al.,
2008; Lee et al., 2010; Gainza-Cortes et al., 2012; Krausko et al.,
2021), and also predicted in the ZIPs members of the Poncirus
trifoliata and Zea mays genomes (Li et al., 2013; Fu et al,, 2017).
However, two TcZIP genes are predicted to be located in the
chloroplast. Certainly, ZIP genes can be expressed in various
parts of plants, and they can be located in the membrane of
internal organelles such as chloroplasts (Ajeesh Krishna et al.,
2020). Furthermore, between 6-9 MTs were identified in TcZIP
proteins, similarly to ZIPs Poncirus trifoliata and Zea mays (Li et al.,
2013; Fu et al., 2017).
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On the phylogeny analysis, the 11 TcZIP genes identified are
grouped into four subgroups, similar to ZIP genes of A. thaliana
(Miser et al., 2001). In each group, most genes have characteristics
of the exon/intron structure and relatively conserved motif
compositions in recent paralogs, except for the exon/intron
structures of two paralog pairs, in which some differences still
exist (Figure 1). For instance, structural analysis showed that
TcZIP4 and TcZIP9 have different numbers of introns, in
contrast to HD-zip gene family in Glycine max that showed
relatively conserved exon/intron structure among the paralog
pairs. This is due to the few insertions and deletions that
accumulated along the evolution (Schmutz et al., 2010). Studying
the structure of the exon-intron gene may provide important clues
to the evolution of the gene (Freeling, 2009), because genes in the
same group can have similar functions. The interspecies phylogeny
results show that they are grouped into four distinct groups, in
which the first group has the highest number of proteins. Although
the groups identified are different from those found by (Li et al,
2020), our results showed consistency in the groups identified in the
phylogenetic relationships made in the Vitis vinifera perennial
species (Gainza-Cortes et al., 2012). Thus, the discrepancy with
that presented by Li et al. (2020) may be due to the numbers of
genomes used; in this one ZIP members of five plant genomes
were used.

The phylogenetic study showed putative orthologous ZIP genes,
unexpectedly there was also an orthologous pair of monocots and
dicots (TcZIP7-OsZIP2), suggesting that the orthologous pair
originated from common ancestral genes that existed before the
divergence of monocots and dicots. Due to the existence of several
paralogous genes in the TcZIP family, it is possible to confirm that
the cacao tree underwent two duplication events after the
monocotyledonous/dicotyledonous split. This suggests that most
of the ZIP genes in cacao expanded in a species-specific manner.
Gene duplication plays an important role in the evolution of the

Frontiers in Plant Science

10

organism; the generation of new genes will allow organisms to adapt
to different environments. Two main evolutionary mechanisms
have been attributed to gene duplication, including segmental and
tandem duplication (Horan et al., 2005; Kong et al., 2007). In our
analysis, we found five pairs of duplicated ZIP genes, the
distribution was preferentially for segmental duplications,
suggesting that segmental duplication was the main driver for the
expansion of the ZIP gene family in cacao. Certainly segmental
duplication is the mechanism frequently discovered in plants, as
most plants are diploidized polyploid and retain numerous
duplicated chromosomal blocks within their genomes (Cannon
et al., 2004; Del Pozo and Ramirez-Parra, 2015). Estimates of the
Ka/Ks ratio were utilized to measure the selection rate of genetic
pressure. Based on these results, we propose that purifying selection
is the main evolutionary force in the ZIP paralog pairs in cacao.
Since, based on the theory of natural selection, when the ratio Ka/Ks
>1 indicates positive selection, while the Ka/Ks =1 indicates neutral
selection, and finally when the ratio Ka/Ks <1 indicates negative or
purifying selection (Gaut et al., 1996). Previous studies indicate that
the cacao genome has undergone lineage-specific scrambling events
from the paleohexaploid ancestor. It is estimated to have occurred
123 million years ago (MYA), and at least 11 chromosomal fusions
have occurred to achieve the recent structure of ten chromosomes
(n), estimated to have occurred around 59 MYA (Argout et al,
2011). By calculating the duplication dates of the paralog pairs, we
showed that all segmental duplication events in the ZIP family in
cacao occurred after the evolutionary scenario that gave rise to the
ten chromosomes. The results indicated that the gene pair with
tandem duplication appeared 5.99 MYA ago, being the most recent
event. Almost all cacao chromosomes contain duplicated genes, so
we assume that the ZIP gene family is a slowly evolving gene family,
in the same way as was found in the TCP gene family in Z. mays
(Chai et al, 2017). Evidently segmental duplication played an
important role in the expansion of ZIP genes. Furthermore, the
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cis-acting elements that control many biological processes and
responses to different stimuli through a regulatory system allow
genes to have important unique combinations (Ibraheem et al,
2010). In this study ABRE, TGA-element, Box4, GATA-motif,
GT1-motif and ATCT-motif, Myoblastosis and Tc-rich are
essential elements for the stress response. These cis-acting
elements are abundant in TcZIP as well as in potato ZIP
members (Li et al., 2020).

Predicting the 3D structure and identifying the pocket site of
proteins provides the structural and microenvironment basis for
proteins to perform functions such as ligand binding, enzymatic
activity and DNA interaction (Edelsbrunner et al., 1998; Tian et al.,
2018). Analysis of the three-dimensional structure showed that o-
helices conformations are predominant and -sheets are practically
absent, in the same way as reported in ZIP protein structures in
other species (Ajeesh Krishna et al., 2020), showing that o-helices
play an important role in ZIP proteins. All predicted TcZIP models
have structural similarity to the recent Zrt-/Irt-like protein (ZIP)
crystal structure of Bordetella bronchiseptica (Zhang et al., 2020),
which has a key function in the transport of bivalent transition
metal ions (Zn, Fe, Cd, Mn, Ni, Co e Cu) (Antala and Dempski,
2012; Jeong and Eide, 2013). Pocket sites and predicted cavities were
diverse in the structures of TcZIP proteins, which provides valuable
insights into protein function based on metal-binding sites. The
amino acid residues LEU, ALA, VAL, GLY, SER, LYS and HIS were
frequently predicted within the pockets for almost all candidate
proteins. Among the residues found, GLU and HIS were identified
in previous studies as part of the substrate binding sites (Antala
etal, 2015). Another study showed that the residues GLU, HIS, ASP
and CYS coordinate iron binding in various wheat proteins (Verma
et al, 2017). A later study shows that LYS, PHE and SER residues
also contribute to the transport process (Gyimesi et al., 2019). These
residues were found in pocket sites of TcZIP proteins, suggesting
they are important for transport activity. Post-translational
modifications are modifications in the side chain of amino acids
in some proteins after their biosynthesis, these modifications
regulate several cellular processes (Ramazi and Zahiri, 2021). All
ZIP members in cacao have potential phosphorylation sites.
Previous studies have revealed that ZIP proteins undergo many
phosphorylations. Protein phosphorylation by a kinase (CIPK23)
and IDF1-mediated polyubiquitination are important for efficient
endosomal sorting and vacuolar degradation of IRT1. Moreover,
phosphorylation as a subsequent process of protein-metal binding
helps to optimize the process of uptake and protection of plants
from harmful metals (Dubeaux et al., 2018). It is also known that
phosphorylation at SER residues of ZIP7 in humans dramatically
increases its transport activity (Hu, 2021). In addition, potential
sites for N-glycosylation were also predicted. Six TcZIP proteins are
glycosylated at the N-terminal. In the current study, TcZIP3 and
TcZIP7 are the highlighted proteins (three sites both). This
indicates that ZIP proteins in cacao have few sites for N-
glycosylation. It has been demonstrated in previous studies,
proteins from the ZIP gene family are rarely glycosylated, and
those that show N-glycosylation exhibit values of less than four sites
as observed in ZIP4, ZIP6, ZIP8 and ZIP14 (Taylor et al., 2003;
Wang et al.,, 2004; He et al., 2006; Girijashanker et al., 2008).
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Studies of PPIs have revealed valuable information about the
possible interactions and processes involved in target proteins. The
function of a protein is governed by its interaction with other
proteins within a cell, PPIs establish one of the most decisive
conditions for sustaining life in living organisms (Yilmaz et al,
2022). A systematic analysis of the system biology was performed to
obtain a broader view of the processes that evolve the ZIP transport
proteins homologous to those identified in cacao. In this study, we
identified bottlenecks and hubs proteins (Verli, 2014) and 109
proteins constituted the interactome. Proteins qualified as
bottlenecks proteins (betweenness value above average) are of
importance because they are related to their ability to connect
several clusters, which, in this case, represent biological processes.
The network also contains 53 highly connected proteins, qualified
as hubs proteins (above average node degree), since these proteins
have the characteristics of having an important regulatory function
within the interactome. The ZIP1 protein with both characteristics
(bottleneck and hub) allows the junction between cluster 2 related
to cation transport and cluster 1 related to DNA metabolic process.
Surprisingly, the interaction of ZIP members reveals other processes
besides the transport of cations. Previous studies show that the ZIP1
overexpression leads to apoptosis of tumor prostatic epithelial cells,
due to the increase in the concentration of Zn (Samavarchi Tehrani
et al., 2019), which leads us to believe that this homeostatic Zn
dysregulation causes damage to DNA molecule and cell replication.
DNA damage interferes with the development of organisms.
Molecular mechanisms for metal toxicity in plants have been
described previously (Gill, 2014). A complex network of proteins
is activated to protect DNA. The DNA repair response includes
different pathways in plants (Tuteja et al,, 2001) that are similar to
those used in other organisms. For example, MSH family proteins
found in cluster 1 can form MSH2/MSH6 and MSH2/MSH7
complexes important in recognizing nucleotide mismatches in A.
thaliana (Moura et al., 2012), in this way, they mitigate the damage
resulting from metal toxicity. Moreover, in cluster 2 with proteins
related to the cation transport process, it was shown that the
bottleneck proteins ZIP11, ZIP2, ZIP3, and IRT1 interact with
other transport proteins.

P-type ATPases (HMAs) are another family of metal
transporters found in various kingdom including plants (Baxter
et al, 2003). HMA proteins play an important role in Zn, Cd, Pb
and Cu homeostasis and have been expressed in various tissues
(Hussain et al., 2004; Mills et al., 2003), which demonstrates that
they are involved in compartmentalization and detox (Andres-
Colas et al., 2006). Thus, AtHMA3 plays a role in the
detoxification of biological (Zn) and non-biological (Cd, Co, and
Pb) heavy metals, participating in their vacuolar sequestration, a
unique function for a P1B-2 ATPase in a multicellular eukaryote
(Morel et al, 2009). The Yellow Stripe-Like (YSL) protein can
mediate the transport of metals in the form of a complex.
Heterologous expression of BjYSL7 revealed the transport of Fe,
Cd and Ni (Wang et al, 2013) using a metal-nicotianamine
complex. Similarly SnYSL3 revealed the transport of Fe, Cu, Zn
and Cd (Feng et al., 2017). IAR (IAA-Ala-resistant) gene encode a
protein involved in auxin metabolism or response. The protein
encoded by the TAR gene has several His-rich regions, with
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structural features shared with the ZIP family of transporters
(Lasswell et al., 2000).

Natural resistance-associated macrophage proteins (NRAMP)
are a family of metal ion transport proteins identified in yeast,
insects, mammals and plants (Cellier et al., 1995) and have substrate
specificity for various metal ions, including Cd (Nevo and Nelson,
2006). Recently, several members of NRAMP have been identified
in cacao, with NRAMPS5 being a potential Cd transporter in cacao
(Ullah et al., 2018). Metal transporter CDF proteins encode proton
antiporters that effuse heavy metals out of the cytoplasm (Gaither
and Fide, 2001). The expression of CDF genes such as MTP1
confers Zn tolerance, as well as knockdown in mtpl mutants
produces Zn-sensitive phenotypes, demonstrating the role of
MTP1 in Zn homeostasis (Kobae et al., 2004; Desbrosses-
Fonrouge et al, 2005). Studies show that the MTP5 and IARIL
genes transport metals in an antagonistic way, modifying the
intracellular ionic composition to influence the activity of the
metallohydrolase responsible for hydrolyzing the conjugates with
of indole-3-acetic acid (IAA), influencing the homeostasis of IAA
(Rampey et al., 2013).

Knowing about the proteins of our interactome, we can infer
that there is a complex network of interaction that mediates metals
homeostasis in cacao, whose ZIP family is a part of this complex.
The activities of import to cell, distribution to organelles and export
from the cell, need a controlled and balanced activity between
several transporters. Transcriptional control is an important factor
in the regulation of cellular homeostasis. Although little is known
about the transcriptional profiles in cacao and the main
transcription factors that mediate metal homeostasis, this analysis
of ZIP transporters PPI contributes to the understanding of a
complex network of transport proteins that interact and possibly
coordinates from the entry of metallic ions to their use in different
tissues and deposition in cacao beans.

5 Conclusion

In summary, 11 ZIP genes were identified using the cacao
genome for the first time. All sequences analyzed suggest that they
have basic characteristics of previously studied members of the ZIP
family. Among genes identified, three including TcZIP1, TcZIP2
and TcZP4 are the most distant from their counterparts in the
model species. Segmental and tandem duplication have been
identified as the main patterns contributing to the expansion of
the ZIP gene in cacao. All TcZIP play important roles in the uptake
and distribution of transition metals, including the toxic element
cadmium, according to pocket site prediction analyses. This study
provides essential and comprehensive information for ZIP genes in
cacao, but we propose that further work is needed to delve into
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exact subcellular and tissue localization, gene expression between
different genotypes, and KO analysis (gene knockout).
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