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growth-promoting rhizobacteria
to increase air pollution
tolerance index (APTI) in the
plants of green belt to control
dust hazards

Mahmood Najafi Zilaie1, Asghar Mosleh Arani1*

and Hassan Etesami2*

1Department of Environmental Sciences, Faculty of Natural Resources, Yazd University, Yazd, Iran,
2Department of Soil Science, University of Tehran, Tehran, Iran
Dust causes adverse effects on the physiological and biochemical characteristics

of plants and limits their use in the development of the green belt. Air Pollution

Tolerance Index (APTI) is an important tool to screen out plants, based on their

tolerance or sensitivity level to different air pollutants. The aim of this study was to

investigate the effect of two plant growth-promoting bacterial strains

(Zhihengliuella halotolerans SB and Bacillus pumilus HR) and their combination

as a biological solution on APTI of three desert plant species of Seidlitzia

rosmarinus, Haloxylon aphyllum and Nitraria schoberi under dust stress (0 and

1.5 g m-2 30 days-1). Dust caused a significant decrease of 21% and 19%,

respectively, in the total chlorophyll of N. schoberi and S. rosmarinus, an 8%

decrease in leaf relative water content, a 7% decrease in the APTI of N. schoberi,

and a decrease of 26 and 17% in protein content of H. aphyllum and N. schoberi,

respectively. However, Z. halotolerans SB increased the amount of total

chlorophyll in H. aphyllum and S. rosmarinus by 236% and 21%, respectively,

and the amount of ascorbic acid by 75% and 67% in H. aphyllum and N. schoberi,

respectively. B. pumilus HR also increased the leaf relative water content in H.

aphyllum and N. schoberi by 10% and 15%, respectively. The inoculation with B.

pumilus HR, Z. halotolerans SB and the combination of these two isolates

decreased the activity of peroxidase by 70%, 51%, and 36%, respectively, in N.

schoberi, and 62%, 89%, and 25% in S. rosmarinus, respectively. These bacterial

strains also increased the concentration of protein in all three desert plants.

Under dust stress, H. aphyllum had a higher APTI than the other two species. Z.

halotolerans SB, which had been isolated from S. rosmarinus, was more effective

than B. pumilusHR in alleviating the effects of dust stress on this plant. Therefore,

it was concluded that plant growth-promoting rhizobacteria can be effective at

improving the mechanisms of plant tolerance to air pollution in the green belt.

KEYWORDS

Bacillus pumilus, Haloxylon aphyllum, Nitraria schoberi, plant growth-promoting
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1 Introduction

Dust is a collection of fine particles of natural or industrial

origin that is considered as one of the most widespread air

pollutants. In recent years, the presence of dust particles

suspended in the air has become a major environmental problem

(Abbasi et al., 2019). Although dust pollution has always been a

natural phenomenon, its amount sometimes reaches an

unacceptable level, affecting all aspects of human life. In recent

years, human activities have intensified the phenomenon

(Middleton, 2019).

Plants can naturally absorb fine dust particles from the

atmosphere and act as an air cleaner filter. The development of

green plants around the cities is one of the most appropriate

biological methods to reduce air pollution in these areas (Alotaibi

et al., 2020). Since urban green belts can largely prevent the entry of

fine dust and pollution into cities, their creation has gained special

importance (Hamraz et al., 2014). Nowadays the use of plants

resistance to environmental stress, such as dust, in creating green

spaces is very important and a priority. The importance of these

plants can be understood by the fact that they not only purify the air

by biofiltering pollutants through absorption, impingement and

adsorption (Escobedo et al., 2008), but also have positive effects on

the soil and water quality of the area, in addition to adding aesthetic

value to it (Pradhan et al., 2016). Leaves are prominent receivers of

air pollutants, but show variable behavior towards different types of

air pollutants (Sahu and Sahu, 2015). A few plants show tolerance to

a particular air pollutant, while others have high mortality rates and

are therefore sensitive (Nadgórska–Socha et al., 2017). Tolerant

species are suitable for planting, while sensitive species can be used

as both bioindicators and biomonitors to provide quantitative and

qualitative information, respectively, about the surrounding

environment (Priyanka and Dibyendu, 2009; Trivedy and Goel,

2010; Kwon et al., 2020).

It has been reported that the gaseous and particulate pollutants

in the atmosphere have direct effect on many morphological,

physiological and biochemical characteristics of plants (Steubing

et al., 1989) such as chlorophyll a and b, photosynthesis, the

metabolism of proline, the activity of antioxidant enzymes such

as catalase and peroxidase, leaf relative water content, ascorbic acid

concentration, protein concentration, soluble sugars and pH (Najafi

Zilaie et al., 2022a; Najafi Zilaie et al., 2022b; Zilaie et al., 2022).

Although the tolerance of plants to these pollutants has been

studied according to different aspects such as peroxidative activity

(Xu et al., 2014), leaf conductance, glutathione concentration

(Pasqualini et al., 2001; Hoque et al., 2007), membrane

permeability (Farooq and Beg, 1980) and other biochemical

parameters, contradictory results have been obtained when the

parameters are studied individually even for the same species.

Accordingly, Singh and Rao (1983) developed a formula through

the aggregation of four biochemical parameters (relative water

content, ascorbic acid, chlorophyll content, and leaf extract pH),

known as Air Pollution Tolerance Index (APTI). The APTI has

been praised by a wide range of researchers for its combination of

different parameters that show more reliable results than any
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analysis based on a single parameter (Neel et al., 2018; Bellini and

De Tullio, 2019; Manjunath and Reddy, 2019).

Plant growth-promoting rhizobacteria (PGPR) have been

shown to improve the plant tolerance to environmental stresses

by various mechanisms (Etesami and Maheshwari, 2018). These

bacteria have multiple plant growth-promoting (PGP) traits under

different stressful conditions (Etesami and Maheshwari, 2018;

Etesami and Glick, 2020). In the study of Tiepo et al. (2018), the

use of PGPR (Azospirillum brasilense and Bacillus sp.) improved the

physiological traits of Cariniana estrellensis seedlings such as

relative water content, water potential, intracellular CO2

concentration and electrolyte leakage under water deficit stress

conditions. In another study, the inoculation of mesquite

transplants with Azospirillum brasilense showed a positive effect

on the morphological and physiological parameters of the plant

(e.g., biomass, root system, and chlorophyll a and b) under drought

stress conditions. Hajiabadi et al. (2021) also isolated two bacterial

isolates of B. pumilus and Z. halotolerans, from the rhizosphere of

Halostachys belangeriana and S. rosmarinus, respectively, and

measured their PGP traits. The results of these researchers

indicated that the mentioned bacterial isolates have several PGP

traits such as the ability to solubilize phosphates, produce 1-

aminocyclopropane-1-carboxylic acid (ACC) deaminase enzyme,

auxin, and siderophore and fix N2. The inoculation of these two

bacterial isolates also improved the tolerance of wheat to salinity

and increased its growth and yield. The positive effect of B. pumilus

(Ansari et al., 2019) and Z. halotolerans (Jha et al., 2012) on plant

growth has also been reported in other studies. In the present study,

the effect of single inoculation and co-inoculation of these two

bacterial isolates Bacillus pumilus HR, isolated from Halostachys

belangeriana, and Z. halotolerans SB, isolated from S. rosmarinus,

on the APTI of three desert plant species of S. rosmarinus, H.

aphyllum and N. schoberi was investigated under dust stress. The

research questions of this study were: (i) Would these bacterial

strains improve APTI of three desert plant species of S. rosmarinus,

H. aphyllum and N. schoberi; (ii) Would the bacterial strain isolated

from the rhizosphere of S. rosmarinus have a greater effect on the

tolerance of this plant against pollution stress compared to the

bacterial strain isolated from another desert plant; and (iii) Would

the combination of these two bacterial strains have a greater effect

on plant growth compared to their single inoculation. To our

knowledge, this is the first study to investigate the effect of PGPR

on APTI of plants. Therefore, the results of this study are promising

and can be used for better management of planting desert plants of

the green belt around cities in dry areas.
2 Materials and methods

2.1 Rhizobacterial strains and
inoculum preparation

In this study, two rhizobacterial strains, B. pumilus HR

(accession number: MW295357), previously isolated from the

halophyte Halostachys belangeriana, and Z. halotolerans SB
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(accession number: MW295355), previously isolated from the

halophyte S. rosmarinus, were used (Hajiabadi et al., 2021). These

bacterial strains were characterized in our previous study (Hajiabadi

et al., 2021). These strains were also able to colonize the roots of S.

rosmarinus (Zilaie et al., 2022), H. aphyllum (Najafi Zilaie et al.,

2022b), and N. schoberi (Najafi Zilaie et al., 2022a) under salinity

and dust stress conditions. For preparing the bacterial inoculum,

two bacterial strains were grown in a nutrient broth (NB) culture

medium separately until they both reached the late exponential-

phase (3 × 108 cells mL−1) at 28 ± 2°C. The bacterial cells were then

washed twice and re-suspended in sterile distilled water. Since the

two bacterial strains were supposed to be inoculated into these three

plants together, we also showed that the two strains did not have

any antagonistic effects on each other’s growth by an in vitro assay

(Najafi Zilaie et al., 2022b).
2.2 Treatments and experimental design

To evaluate the effect of two strains HR and SB on APTI of three

desert plant species (S. rosmarinus, H. aphyllum and N. schoberi)

under dust stress, a plant growth assay was carried out in a completely

randomized design with factorial arrangement (4 × 2 × 3) with three

replications in a research greenhouse located at Department of

Environmental Engineering, Yazd-University, Yazd, Iran. The

experimental treatments included: (a) rhizobacterial strain factor at

four levels: (i) non-inoculated seedlings (control), (ii) seedlings

inoculated with B. pumilus HR, (iii) seedlings inoculated with Z.

halotolerans SB, and (iv) seedlings co-inoculated with the HR and SB

strains; (b) dust stress factor at 2 levels: 0 and 1.5 g m-2 30 days-1; and

(c) plant species factor (S. rosmarinus, H. aphyllum and N. schoberi).

The non–sterile soil (3 kg) used in plastic pots (40 cm × 25 cm)

with drainage holes was air-dried at room temperature and passed

through a 4–mm sieve. Soil properties are as follows: pH, 7.61; soil

texture, sandy clay loam (28.2% clay, 12% silt, and 59.2% sand); Na,

2.15 meq kg−1; organic matter (OM), 1.8 g kg−1; SO2−
4 , 48 meq kg−1;

electrical conductivity (EC), 2.0 dS m−1; total nitrogen, 0.20 g kg−1;

Ca, 1.8 meq kg−1; available phosphorus, 15.0 mg kg−1; NH4OAc–K,

368 mg kg−1; and calcium carbonate (CaCO3) equivalent, 32.5%. The

properties of dust used are as follows: sand, 22.24%; clay, 21.83%;

gravel, 2.01%; silt, 43.74%; calcium, 22.70%; magnesium, 2.42%; iron,

4.71%; sodium, 2.37%; aluminium, 4.08%; potassium, 0.79; zinc,

52.90 mg kg-1; cupper, 15.80 mg kg-1; cobalt, 12.70 mg kg-1;

uranium, 1.96 mg kg-1; cadmium, 0.60 mg kg-1; nickel, 94.00 mg

kg-1; vanadium, 73.40 mg kg-1; barium, 231.00 mg kg-1; chromium,

116 mg kg-1; and lead, 20.23 mg kg-1.

One-year seedlings of the same size of S. rosmarinus, H.

aphyllum and N. schoberi were obtained from the nursery of

Natural Resources and Watershed Management General Office of

Yazd Province, Iran. The roots of these seedlings were immersed in

each bacterial suspension (3 × 108 CFU mL−1) for two hours or in

sterile water as un-inoculated control at room temperature (25°C).

The S. rosmarinus, H. aphyllum and N. schoberi seedlings were also

co-inoculated with both Z. halotolerans SB and B. pumilus HR by
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being immersed in equal volumes of the suspension of these two

bacteria. After inoculation, the seedlings were singularly transferred

to pots. Dust treatments were applied by dust simulator (Dustin-

mizer Model 1212, https://www.amazon.com/Dustin-mizer-Model-

1212-Includes-Deflector/dp/B002KIB680) 30 days after culturing

these seedlings in the pots. The dust treatment was applied at 1.5 g

m-2 30 days-1 once a week for 150 days according to a previous assay

(Ahmadi Foroushani et al., 2021). After pouring the dust into the

valve of the dust simulator, the content of dust (g m-2) was

controlled by using a trap with dimensions of 1.6 × 2.3 m2. When

applying dust, all the control plants were moved outside the

greenhouse so that dust does not settle on them. The plants were

grown in a glasshouse at 25 ± 2°C with a photoperiod of 16-h light

and 8-h darkness and 60% relative humidity. At the end of the

experiment period (150 days after planting in pots), APTI,

peroxidase activity, and protein concentration were measured.
2.3 Measurements

2.3.1 APTI determination
Air pollution tolerance index (APTI) was determined according

to the following formula (Zouari et al., 2018):

APTI ¼½A(T+P)+R�=10
Where A, T, P, and R are ascorbic acid, total chlorophyll, pH of

leaf extract and leaf relative water content, respectively.

2.3.2 Ascorbic acid determination
Ascorbic acid content of young and completely expanded leaves

(one sample from each plant) was determined based on the

spectrophotometric method according to a previous study

(Mukherjee and Choudhuri, 1983). Briefly, the leaf sample (100

mg) was extracted with 10 mL of 1% metaphosphoric acid for 45

min at room temperature and filtered throughWhatman No. 4 filter

paper. The filtrate (1 mL) was then mixed with 9 mL of 2,6-

dichlorophenolindophenol, and the absorbance was measured

within 30 min at 520 nm against a blank. The content of ascorbic

acid was calculated on the basis of the calibration curve of authentic

L-ascorbic acid. The content of ascorbic acid was expressed in mg

g−1 FW (fresh weight) of tissue.
2.3.3 Total chlorophyll determination
To extract total chlorophyll (chlorophyll a and chlorophyll b),

0.5 g fresh leaf samples (young and completely expanded leaves)

were taken and homogenized with 10 mL of 80% acetone. The

homogenized samples were centrifuged at 4,000 rpm for 10 min at

4°C. The supernatants were separated from the mixture and

collected in a cuvette for further use. To measure chlorophyll a

and chlorophyll b, the spectrophotometric method proposed by

Lightenthaler (1987) was employed using a UV-VIS

spectrophotometer (Varian Cary 50; Varian GmbH, Darmstadt,

Germany) to measure absorbance of the extracts at 663.2 nm and
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646.8 nm. The concentrations of the photosynthetic pigments

present in the extracts were estimated using the following equation:

Total chlorophyll ¼½12:5(A663:2)-2:79(A646:8)� 
+ ½21:5(A646:8)-5:1(A663:2)�
2.3.4 Leaf extract pH determination
Leaf extract pH was determined according to the protocol of

Tak and Kakde (2017). For each treatment, four samples (0.5 g) of

fresh leaves (young and completely expanded leaves) were crushed

and homogenized in 50 mL deionized water, after which the

mixture was centrifuged at 7,000×g for 10 min. The pH of the

supernatant was measured using a digital pH meter

(EYELA, Japan).
2.3.5 Relative water content determination
For determination of relative water content (RWC), each leaf

(young and completely expanded leaves) was weighed on a digital

scale (GF-300; A&D Company, Tokyo, Japan) with an accuracy of

0.001 g (FW) and then placed in Falcon tubes completely filled with

distilled water. The tubes were left in the dark at 4°C for 24 h. After

this period, the leaves were removed from water and placed on

absorbent paper to remove excess water, and turgid weight (TW)

was determined. Afterward, the leaves were dried at 70°C until

stabilization, and dry weight was determined (DW). Leaf RWC was

calculated using the following equation and expressed as a

percentage (Ritchie et al., 1990):

RWC(% ) = ½(FW-DW)=(TW-DW)� � 100
2.3.6 Peroxidase activity determination
To measure the peroxidase (EC1.11.1.7) activity of young and

completely expanded leaves, extraction from fresh leaves (0.5 g) was

performed according to Mukherjee and Choudhuri (1983). The

extract was frozen in liquid nitrogen and then ground in phosphate

buffer (100 mM, pH 7.0). Homogenates were centrifuged at 4°C for

10 min under 15,000×g. The supernatant was kept at 4°C until used

to measure the activity of peroxidase. The method of Hemeda and

Klein (1990) was used to evaluate peroxidase activity. The rate of

guaiacol oxidation in the presence of H2O2 recorded at 470 nm

specifies the enzyme activity (U mg-1 protein).
2.3.7 Protein concentration determination
Protein concentration was estimated according to the method

described by Bradford (1976). Young and completely expanded

leaves (25 mg) were homogenized with 1 mL of TRIS-HCl (0.1 M)

buffer and then 20 mL supernatant was mixed with 80 mL of distilled

water. Then, 900 mL Bradford reagent was added and incubated for

2 min. The absorbance was measured at 595 nm in an UV–VIS

spectrophotometer (Varian Cary 50; Varian GmbH, Darmstadt,

Germany). The concentration of protein was determined using

bovine serum albumin as standard. The concentration of protein

was expressed as microgram bovine serum albumin (BSA)

equivalent (mg BSA)/g leaves fresh weight.
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2.4 Statistical analysis of data

After confirming the normality of the data by Kolmogorov–

Smirnov test, experimental data were analyzed by three-way

analysis of variance (ANOVA) using the SAS v.9.1 (SAS Institute

Inc., Cary, NC) statistical analysis software. Post-hoc comparisons

of means (mean ± SE, n = 3) using Tukey’s multiple-range test at

p<0.05 were used to compare s ignificant d i fference

among treatments.
3 Results

3.1 Effect of strains on total chlorophyll of
dust-stressed plant species

Dust treatment alone (bacteria free) decreased the amount of

total chlorophyll by 18% and 22% in N. schoberi and S. rosmarinus,

respectively (Figure 1A). In dust free plants, the combination of two

isolates (HR and SB isolates) caused a significant increase of 256%

and 27% in total chlorophyll of H. aphyllum and S. rosmarinus

plants, respectively, while in N. schoberi plant, B. pumilus HR strain
A

B

FIGURE 1

Triple interactions of treatments of bacterial strains, three desert
plant species of S. rosmarinus, H. aphyllum and N. schoberi and dust
on the content of total chlorophyll (A) and ascorbic acid (B) of the
leaves of three plant species grown under greenhouse conditions
for five months. Alphabets indicate significant differences among
various treatments (Means ± SE, n = 3) according to Tukey’s
multiple-range test at p<0.05.
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caused the highest increase (52%) compared to its control. Under

dust conditions, HR isolate increased the total amount of

chlorophyll in H. aphyllum plant (236%), while in N. schoberi and

S. rosmarinus plants, Z. halotolerans SB strain increased the amount

of total chlorophyll compared to its control (respectively, 71% and

44%). The results also indicated that the effect of bacterial

inoculation on increasing total chlorophyll was higher in H.

aphyllum plant than the other two species (Figure 1A).
3.2 Effect of strains on ascorbic acid of
dust-stressed plant species

In H. aphyllum, N. schoberi and S. rosmarinus plants, the

application of dust in the absence of bacteria caused a significant

increase of 11%, 14% and 19% in ascorbic acid of these plants,

respectively (Figure 1B). In dust free plants, the combination of two

isolates significantly decreased ascorbic acid by 77%, 69% and 66%,

respectively, in H. aphyllum, N. schoberi and S. rosmarinus

compared to the control. Under dust conditions, SB isolate

caused the highest decrease in ascorbic acid amount in H.

aphyllum and S. rosmarinus plant (respectively, -85% and -70%),

while in N. schoberi plants, HR strain caused the highest decrease in

ascorbic acid amount compared to its control (-67%). The results

also showed that the effect of bacterial inoculation on decreasing

ascorbic acid was higher in H. aphyllum plant than the other two

species (Figure 1B).
3.3 Effect of strains on leaf pH of
dust-stressed plant species

In N. schoberi plant, the use of dust treatment in the absence of

bacteria caused a 29% increase in leaf pH (Figure 2A). In dust free

H. aphyllum plant, the inoculation with a combination of two

isolates decreased the leaf pH by 19% compared to the control.

Under dust conditions, in all three plants of H. aphyllum, N.

schoberi and S. rosmarinus, SB isolate caused the greatest decrease

in leaf pH compared to its control (-17%, -35% and -13%,

respectively). The results also showed that the effect of bacterial

inoculation on decreasing leaf pH was higher in N. schoberi plant

than the other two species (Figure 2A).
3.4 Effect of strains on RWC of
dust-stressed plant species

Under dust-free conditions, the inoculation with HR strain in

H. aphyllum and N. schoberi plants increased the amount of relative

water content (RWC) by 9% and 14% compared to the control,

while the combination of two isolates in S. rosmarinus increased

RWC by 12% compared to the control (Figure 2B). Under dust

conditions in all three plants H. aphyllum, N. schoberi and S.

rosmarinus, the inoculation with SB isolate caused a significant

increase in RWC by 15%, 24% and 28%, respectively, compared to

the control. The results also indicated that the effect of bacterial
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inoculation on increasing RWC was higher in S. rosmarinus plant

than the other two species (Figure 2B).
3.5 Effect of strains on APTI of
dust-stressed plant species

Under the dust free conditions, HR strain caused the most

significant increase of APTI by 8% and 13%, respectively, in H.

aphyllum and N. schoberi plants compared to control, while in S.

rosmarinus plant, the co-inoculation of two isolates increased APTI

by 11%. Under dust conditions, SB isolate caused the greatest

increase in APTI in H. aphyllum, N. schoberi and S. rosmarinus

plants compared to their controls (14%, 22% and 26%, respectively).

The results also showed that the effect of bacterial inoculation on

increasing APTI was higher in S. rosmarinus plant than the other

two species (Figure 3).
3.6 Effect of strains on peroxidase of
dust-stressed plant species

In H. aphyllum, N. schoberi and S. rosmarinus plants, the

application of dust treatment in the absence of bacteria caused a

significant increase of 23%, 28% and 26% in peroxidase, respectively
A

B

FIGURE 2

Triple interactions of treatments of bacterial strains, three desert plant
species of S. rosmarinus, H. aphyllum and N. schoberi and dust on leaf
pH (A) and relative water content (B) of the leaves of three plant species
grown under greenhouse conditions for five months. Alphabets indicate
significant differences among various treatments (Means ± SE, n = 3)
according to Tukey’s multiple-range test at p<0.05.
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(Figure 4A). In dust free plants, the inoculation with HR isolate, SB

isolate and the combination of these two isolates decreased the

activity of peroxidase by 84%, 76% and 22% respectively, in H.

aphyllum plant, by 64%, 60% and 39% in N. schoberi plant, and by

67%, 52% and 88% in S. rosmarinus, respectively, compared to the

control. Also, under dust conditions, HR isolate, SB isolate and the

combination of two isolates reduced peroxidase activity by 28%,

77% and 64% in H. aphyllum plant, by 51%, 48% and 36% in N.

schoberi plant and by 90%, 43% and 25% in S. rosmarinus plant,

respectively, compared to the control. The results also indicated that

the effect of bacterial inoculation on increasing peroxidase activity

was higher in S. rosmarinus plant than the other two

species (Figure 4A).
3.7 Effect of strains on protein of
dust-stressed plant species

In H. aphyllum, N. schoberi and S. rosmarinus plants, the

application of dust in the absence of bacteria significantly

decreased protein concentration by 26%, 17%, and 14%,

respectively (Figure 4B). In dust free plants, the inoculation of

bacteria caused a significant increase in the concentration of

protein, as the combination of two isolates increased protein

concentration by 15% and 18% in H. aphyllum and S. rosmarinus,

respectively, compared to the control. In N. schoberi plant, the

inoculation with HR isolate and the combination of two isolates

increased the concentration of protein by 34% and 23%,

respectively, compared to the control. Also, under dust

conditions, the inoculation with bacteria caused a significant

increase in the concentration of protein, as in the inoculation of

SB strain, the concentration of protein increased by 60%, 91% and

50%, respectively, in H. aphyllum, N. schoberi and S. rosmarinus

plants compared to the control. The results also indicated that the

effect of bacterial inoculation on increasing protein concentration
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was higher in N. schoberi plant than the other two

species (Figure 4B).
4 Discussion

Dust causes adverse effects on the physiological and

biochemical characteristics of plants (Sharifi et al., 2019; Meravi

et al., 2021; Yaghmaei et al., 2022) and limits their use in the

development of the green belt. In the present study, we also showed

that dust could negatively affect the characteristics of three desert

plant species of S. rosmarinus, H. aphyllum and N. schoberi. In the

present research, with the application of dust, the amount of total

chlorophyll in N. schoberi and S. rosmarinus species decreased

significantly compared to the control, but this decrease was not

significant in H. aphyllum species. An increase in dust

concentration also induced a significant decrease in the content of

total chlorophyll in four plant species (Fraxinus rotundifolia, Morus

alba, Colias caucasica, and Melia azedarach) (Javanmard et al.,

2019). A similar trend of reduced total chlorophyll in response to

dust pollution has also been reported on H. aphyllum Bunge

(Heydarnezhad, 2014; Najafi Zilaie et al., 2022b) and S.
A

B

FIGURE 4

Triple interactions of treatments of bacterial strains, three desert
plant species of S. rosmarinus, H. aphyllum and N. schoberi and dust
on peroxidase activity (A) and protein concentration (B) of the leaves
of three plant species grown under greenhouse conditions for five
months. Alphabets indicate significant differences among various
treatments (Means ± SE, n = 3) according to Tukey’s multiple-range
test at p<0.05.
FIGURE 3

Triple interactions of treatments of bacterial strains, three desert
plant species of S. rosmarinus, H. aphyllum and N. schoberi and dust
on air pollution tolerance index (APTI) of three plant species grown
under greenhouse conditions for five months. Alphabets indicate
significant differences among various treatments (Means ± SE, n = 3)
according to Tukey’s multiple-range test at p<0.05.
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rosmarinus (Zilaie et al., 2022). Dust deposition on leaf surface may

decrease the synthesis of chlorophyll because of shading effects

(Sarma et al., 2017; Setsungnern et al., 2018). Another reason may

be related to pigment degradation and inhibition of enzymes

essential for biosynthesis of pigments due to incorporation of

dust particles into leaf tissues (Lepedus ̌ et al., 2003). In the

present study, the application of bacterial strains increased the

concentration of total chlorophyll in all three species. Under dust

conditions, the effect of dust particle application on plant

physiology is similar to the effects of drought stress (Rai, 2016).

The increase in the amount of total chlorophyll in the plants

inoculated with beneficial bacteria under dust conditions in the

present study may be due to the ability of the bacterial strains to

produce siderophore and auxin, as well as their ability to increase

the absorption of nutrients involved in the structure of chlorophyll

such as Mn and Mg (Zilaie et al., 2022; Najafi Zilaie et al., 2022a).

Siderophores have a strong tendency to absorb iron (III), which is

an essential nutrient for chlorophyll construction (Santoyo et al.,

2019). The results of the present study also showed that the highest

concentration of total chlorophyll was registered in H. aphyllum

plant inoculated with Z. halotolerans; this can be due to the

significant effect of two PGP traits of siderophore and auxin

hormone in this bacterium (Hajiabadi et al., 2021).

Ascorbic acid in the leaves of plants has multiple functions

through cell wall synthesis, cell division, photosynthetic carbon

fixation, and acts as a strong reducing agent to protect plants against

reactive oxygen species (ROS); thus it improves the ability of plants

to withstand air pollution (Sahu et al., 2020). The level of tolerance

in plants increases with increasing ascorbic acid content (Lima et al.,

2000). The findings of the presented research also indicated that the

amount of ascorbic acid in the leaves of three species increased

significantly with the application of dust. This indicates that the

three plant species respond to oxidative stress caused by dust with

an increase in ascorbic acid content. These results are in line with

previous research findings (Meerabai et al., 2012; Sahu et al., 2020).

Leaf pH is an index of detoxification mechanism in plants for

improving tolerance capacity against air pollution (Ninave et al.,

2001). The leaf extract pH is known to impact the ascorbic acid

synthesis of plants (Singare and Talpade, 2013). Increase in the leaf

extract pH value has been reported to efficiently convert the hexose

sugar to ascorbic acid and therefore a high pH is considered good

for the tolerance of plants against air pollution (Shannigrahi et al.,

2004; Enete and Ogbonna, 2012). The findings of the presented

research also indicated that the leaf extract pH in N. schoberi species

increased significantly with the application of dust. The penetration

of chemical dust particles with an alkaline nature into the cell sap

and their conversion to radicals cause an increase in leaf extract pH.

High leaf pH also increases the efficiency of conversion from hexose

to ascorbic acid (Singare and Talpade, 2013). In the current study, it

seems likely that the penetration of alkaline dust particles (pH 7.6)

into the leaf tissues, along with growing dust accumulation on the

leaf surface, caused increased pH in the leaf extracts. In the present

study, the bacterial strains significantly decreased the concentration

of leaf ascorbic acid and pH of the leaf extract under dust stress,

among which the SB strain had the most effect. Since plant oxidative

stress is reduced by bacterial inoculation, the stress response leading
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to ascorbate production is less intense. Decreased ascorbic acid

concentration in the plants inoculated with PGPB under dust stress

has been reported in other studies (Walia et al., 2019; Najafi Zilaie

et al., 2022b). These bacteria seemingly improved plant tolerance,

but decreased plant tolerance responses.

Water content in plant leaves help maintain the physiological

water balance in adverse environmental conditions (Yadav and

Pandey, 2020). High relative water content of leaf favours

transpiration rate and pollution resistance in plants (Jyothi and Jaya,

2010). The results of the presented research indicated that dust caused

a significant decrease in RWC in N. schoberi species, but this decrease

was not significant in H. aphyllum and S. rosmarinus species. This

result is in line with earlier studies on other plants (Maletsika et al.,

2015; Karami et al., 2017). The lowest relative water content among

the investigated plant species was related to N. schoberi species, whose

relative water content was equal to 71.95%. In a similar research, the

application of dust treatment led to a decrease in the relative water

content (Javanmard et al., 2019). Low RWCmay be due to the effect of

dust pollutant on leaf transpiration, since the crust formed by dust

deposition on leaves can lead to blockage of the stomata and reduced

transpiration (Zia-Khan et al., 2014; Masoud et al., 2019). Also, the

reaction of dust particles with the cell membrane results in foliar injury

and higher membrane permeability in dusted leaves, which may be

another reason for low RWC value (Yaghmaei et al., 2022). Dust

particles also cause loss of water and soluble nutrients in plants by

increasing the permeability of plant cells and eventually causing

premature aging of leaves (Meravi et al., 2021). Therefore, plants

with a RWC less affected by stress were more resistant to dust (Taheri

Analojeh et al., 2016). The results of the presented study showed that

the inoculation of three plants with PGPR strains increased the relative

water content in these plant species. The highest leaf RWC was

observed in the plants inoculated with two strains (Z. halotolerans

SB + B. pumilusHR) followed by the plants inoculated with B. pumilus

HR strain compared to control crops under dust stress. One of the

reasons for this increase in the plant species inoculated with bacterial

strains could be the production of auxin and, thus, increase in the

length and weight of roots compared to the control plant species

under stress conditions (Etesami and Maheshwari, 2018; Najafi Zilaie

et al., 2022b). These bacterial strains may also decrease the production

of abscisic acid (Naz et al., 2009); in this way, they decrease the

negative effects of stress on stomatal conductance, photosynthesis, and

plant sensitivity to water deficiency (Etesami and Maheshwari, 2018).

It seems that the plants inoculated with the bacterial strains have the

ability to change the structure of the lateral root system and increase

RWC (Bertrand et al., 2015; Shirmohammadi et al., 2020). Increased

leaf RWC under stress in the plants inoculated with PGPR has also

been reported in other studies (Tahir et al., 2017; Cedeño-Garcıá et al.,

2018; Zilaie et al., 2022). In general, an increase in the number of

lateral roots and root hairs causes addition of root surfaces available

for nutrient and water uptake. Higher water and nutrient uptake by

inoculated roots cause an improved water status of plants, which in

turn could be the main factor enhancing plant growth (Etesami and

Maheshwari, 2018).

The application of dust resulted in a significant decrease in

APTI in N. schoberi species, but this decrease was not significant in

H. aphyllum and S. rosmarinus species. The APTI indicates the
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plant’s ability to tolerate air pollution (Molnár et al., 2020). The

reduction of APTI under dust conditions in the present research

can be due to the effect of dust particles on the parameters of APTI.

When the plant absorbs dust particles on the surface of its leaves,

adverse effects occur at the physiological (change in pH and loss of

relative water content) and biochemical (decrease in chlorophyll

concentration) levels, which causes a decrease in APTI. APTI

reduction under dust stress has been determined in other studies

(Chaudhary and Rathore, 2019; Yadav and Pandey, 2020). The

inoculation of these three plants with PGPR strains under dust

stress increased APTI in the plants, as the inoculation with B.

pumilus HR isolate had the greatest effect on increasing APTI in N.

schoberi species. It can be assumed that the use of PGPR leads to the

improvement of photosynthesis, and finally increasing the plant’s

tolerance to dust stress by increasing the water use efficiency and

relative water content as well as the concentration of chlorophyll

(through the production of siderophore and auxin) and reducing

pH. The results of the present study also showed that H. aphyllum

species had a higher APTI (the least affected by stress) than the

other two species. The plant species having high APTI are supposed

to have greater defence against air pollution. This corroborates the

earlier reports that the plants exposed to polluted environment tend

to increase their tolerance ability with high APTI. Whereas the

plants showing a decrease in APTI can be used as indicator

(Prajapati and Tripathi, 2008; Jyothi and Jaya, 2010). The idea

can also be used to identify the plants suited for plantation.

The results of the present study also showed that with the

application of dust, the peroxidase activity of these plants increased.

The highest and the lowest activity of leaf peroxidase enzyme were

related to the non-inoculated H. aphyllum under dust stress (0.63 U

mg-1 protein) and B. pumilus HR-inoculated H. aphyllum (0.12 U

mg-1 protein), respectively. The closing of the stomata by dust

particles in the plant tissue is the fastest reaction of plants in

response to the presence of dust, which disrupts the

photosynthesis process, increases ROS and creates oxidative stress

in the plants. The increase in the active forms of oxygen under stress

increases the activity of some antioxidant enzymes such as

peroxidase, which ultimately leads to the plant’s tolerance to

environmental stresses (Ghanem et al., 2021). In the study of

Najafi Zilaie et al. (2022b), the activity of peroxidase enzyme also

increased in plants under dust stress. In the present study, the

inoculation with PGPR strains decreased the peroxidase enzyme

activity in these plants, among which B. pumilus HR isolate had the

greatest effect on reducing the peroxidase activity of leaves. It can be

supposed that PGPR reduced the concentration of ROS and free

radicals by creating suitable conditions for the plant growth, and as

a result, the activity of the crop’s antioxidant defense systems

decreased. PGPR participate in reducing stress by increasing

water absorption through producing auxin and enhancing root

volume, which justifies the reduction in the production of

antioxidants (Etesami and Maheshwari, 2018).

In this study, the amount of protein decreased under dust stress.

It seems that the decrease in the photosynthetic efficiency of plants

under dust stress has caused a decrease in the accumulation of

photosynthetic materials, which has also led to a decrease in protein

concentration (Setsungnern et al., 2018). In addition, due to the
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closing of the stomata, the production of free radicals (Thompson

et al., 1984) may have played a role in damaging the protein

structure. According to Treesubsuntorn et al. (2021), a decrease

in protein production occurs under dust stress. In the present study,

the inoculation of plants with bacterial isolates under dust stress

increased the protein concentration in the plants, as the highest

increase in the concentration of protein (67.83 µg g-1) among the

studied species was observed in the N. schoberi species inoculated

with the combination of two bacteria isolates. Preventing the

destruction of protein or stimulating their synthesis with the

support of biological fixation of N2 is one of the strategies of

bacterial strains to withstand the stress of the crop, which

ultimately causes an increase in the concentration of protein in

the plant (Nawaz et al., 2020). Previously, nitrogen fixation by the

same genera of studied bacteria has been reported (Emami et al.,

2019). An increase in protein production under stressful conditions

following the treatment of plant with PGPR has also been reported

in other studies (Liu et al., 2019; Pan et al., 2019).

H. aphyllum species had the highest APTI compared to the

other two species, and bacterial strains increased this index in the

studied species. As mentioned before, one of the reasons for

increasing RWC in plants inoculated with PGPR can be the

production of growth phytohormones and the development of the

root system to improve the absorption and efficiency of water use

under stress conditions (Baldan et al., 2015). The plants inoculated

with PGPR have the ability to alter the structure of the lateral root

system and increase water absorption. It is known that PGPR

decrease the negative effects of stress on plants by producing

abscisic acid and thereby reduce the plant’s sensitivity to water

shortage to some extent (Etesami and Beattie, 2017). The increase of

water inside the plant tissue (as one of the determining parameters

of APTI) increases the APTI in the plant. The results of the present

research also indicated that bacterial strains especially SB strain

caused a further increase in the relative water content in H.

aphyllum species.
5 Conclusions

The results of the research indicated that the physiological

parameters of three important desert plants (S. rosmarinus, H.

aphyllum and N. schoberi) were negatively affected by dust stress.

However, PGPR (Z. halotolerans SB and B. pumilus HR) could

attenuate the adverse effects of the dust stress on these plants.

Bacterial strain SB isolated from S. rosmarinus had a greater effect

on alleviating the negative impacts of dust on most of the indicators

measured in this plant than B. pumilus HR. However, B. pumilus

HR performed better on H. aphyllum and N. schoberi, which

explains the importance of bacteria-plant interaction. The results

also showed that H. aphyllum species had a higher air pollution

tolerance index (APTI) than the other two species. It was also

concluded that the application of PGPR can improve the tolerance

of these plants to air pollution (APTI) by improving the effective

parameters. Therefore, in order to increase the tolerance of green

belt plants to air pollution, the use of PGPR should also be

considered as an effective factor in such studies.
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