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Regulation of alternative
splicing by retrograde and light
signals converges to control
chloroplast proteins

Guiomar Martı́n*

Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences,
University of Barcelona, Barcelona, Spain
Retrograde signals sent by chloroplasts control transcription in the nucleus. These

signals antagonistically converge with light signals to coordinate the expression of

genes involved in chloroplast functioning and seedling development. Although

significant advances have been made in understanding the molecular interplay

between light and retrograde signals at the transcriptional level, little is known

about their interconnection at the post-transcriptional level. By using different

publicly available datasets, this study addresses the influence of retrograde

signaling on alternative splicing and defines the molecular and biological

functions of this regulation. These analyses revealed that alternative splicing

mimics transcriptional responses triggered by retrograde signals at different

levels. First, both molecular processes similarly depend on the chloroplast-

localized pentatricopeptide-repeat protein GUN1 to modulate the nuclear

transcriptome. Secondly, as described for transcriptional regulation, alternative

splicing coupled with the nonsense-mediated decay pathway effectively

downregulates expression of chloroplast proteins in response to retrograde

signals. Finally, light signals were found to antagonistically control retrograde

signaling-regulated splicing isoforms, which consequently generates opposite

splicing outcomes that likely contribute to the opposite roles these signals play

in controlling chloroplast functioning and seedling development.

KEYWORDS

alternative splicing, retrograde signaling, light signaling, chloroplasts, nonsense-
mediated decay RNA pathway, molecular convergence, Arabidopsis thaliana
1 Introduction

During all their life cycle, plants adjust gene expression to produce the protein set that

fulfills the demands of each environment and developmental stage. Regulation of

transcription is key to control gene expression in response to external and internal cues.

These cues modulate the capacity of transcription factors to bind specific cis-regulatory DNA

regions and thus, adjust the expression levels of messenger RNA precursors (pre-mRNAs). In

addition, gene expression is regulated by post-transcriptional mechanisms that control the
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transcript processing, nuclear export, translation and/or stability.

Processing of pre-mRNAs includes the removal of introns and the

subsequent ligation of the flanking exons to produce mature mRNAs

(mRNAs). This molecular process is called splicing and is carried out

by the spliceosome, a large ribonucleoprotein complex that recognizes

the splice sites at the intron-exon boundaries (Matera and Wang,

2014). However, not every splice site is recognized every time a gene is

transcribed, leading to alternative splicing (AS). In conjunction with

the spliceosomal proteins, associated RNA-binding proteins also

regulate splicing by binding to enhancer or silencer cis-regulatory

elements in the pre-mRNA (Martinez-Contreras et al., 2007; Long

and Caceres, 2008; Wang and Burge, 2008). Complementarily,

different genomic features influence the spliceosome’s capacity of

recognizing the splice sites and, subsequently, the definition of introns

and exons. These include the splice site’s strength (i.e., how near to

consensus is their sequence), the exon and intron size, or their GC

content (Sterner et al., 1996; Amit et al., 2012; de Conti et al., 2013).

Four major types of AS events can occur on a particular transcript:

retention of introns (IR), skipping of exons (ES) and alternative

selection of 5´ and 3´ splice sites (ALT5 and ALT3), all of them giving

rise to alternative mRNA isoforms. Given that 5´ and 3´ untranslated

regions (UTRs) play important roles in the post-transcriptional

control of gene expression (Srivastava et al., 2018), AS events

located in these regions will potentially affect this regulation.

Moreover, depending on the size and nucleotide composition of the

alternative sequences, AS events located in the gene coding region

(CDS) can either preserve or not the reading frame, which will

consequently produce alternative isoforms or truncated proteins. In

many cases, reading frame shifts generated by AS, as well as the

inclusion of intronic sequences, introduce premature stop codons

(PTCs), which in turn trigger mRNA degradation through the

nonsense-mediated decay RNA pathway (NMD; Chang et al., 2007;

Isken and Maquat, 2007). Coupling of AS to NMD allows eukaryotes

to modulate gene expression by balancing the ratio between

productive and unproductive mRNA isoforms (Kalyna et al., 2012;

Drechsel et al., 2013). Different studies have revealed the importance

of this coupling for the proper implementation of particular

developmental processes and environmental responses (Lewis et al.,

2003; Wong et al., 2013; Hartmann et al., 2016).

In recent years, multiple genome-wide studies have profiled AS

landscapes in Arabidopsis thaliana, especially of plants subjected to

different environmental signals, mostly associated to abiotic stress

(Mastrangelo et al., 2012; Laloum et al., 2018). These plant studies

have consistently shown that IR and ALT3 are the most common

types of AS events, and also, the higher contribution of AS in

modulating gene expression levels compared to expanding the

proteome (Chaudhary et al., 2019; Martıń et al., 2021). Despite the

wide variety of environmental signals studied, it is still not known

how plastid-to-nucleus retrograde signals influence nuclear AS

genome-wide. These signals, together with anterograde signals from

nucleus to chloroplasts, are needed to coordinate the expression of

chloroplast proteins, encoded by both nuclear and chloroplast

genomes (Griffin and Toledo-Ortiz, 2022). Retrograde signals are

strongly dependent on the chloroplast-localized pentatricopeptide-

repeat protein GUN1 (Susek et al., 1993; Koussevitzky et al., 2007),

and are key during chloroplast biogenesis (biogenic control) and to

adjust photosynthesis rates to the environment (operational control)
Frontiers in Plant Science 02
(Barajas-López et al., 2013). As retrograde signaling (RS) robustly

downregulates nuclear transcription of chloroplast genes (commonly

named photosynthesis-associated nuclear genes; PhANGs; Allen et al.,

2003), this molecular readout has been extensively used to establish

the nature of retrograde signals and their signaling components.

Despite the substantial knowledge on RS regulation at the

transcriptional level, which has firmly demonstrated a molecular

convergence with the light signaling pathway (Ruckle et al., 2007;

Ruckle et al., 2012; Martıń et al., 2016; Xu et al., 2016), very little is

known about its effect on AS. In fact, evidences of RS-mediated AS in

Arabidopsis have only been reported for three genes (Petrillo

et al., 2014).

Using publicly available RNA sequencing data, this study

addresses the impact of norflurazon (NF), a plant herbicide that

activates retrograde signaling (Oelmüller et al., 1986), on AS. This

strategy enabled a comprehensive characterization of the genes

differentially spliced in response to RS, as well as of the molecular

and biological functions of this regulation. Similarly to the RS-

mediated nuclear regulation of transcription, AS regulation was

revealed to be dependent on GUN1. Moreover, these results indicate

that retrograde signals disturb the spliceosome’s capacity to

properly splice introns and exons associated with specific genomic

features. In most cases the RS-induced alternative mRNA isoform is

committed to degradation through the NMD surveillance pathway,

thus downregulating the total transcript levels. Interestingly, genes

that undergo this type of regulation are enriched for genes encoding

chloroplast proteins. Therefore, in response to RS, AS acts along

with transcription to effectively downregulate the expression of this

type of proteins. Finally, these results indicate that light signals also

control splicing of the RS-regulated AS events, which implies that, as

established for the transcriptional control of gene expression, AS

regu l a t i on a l so conve rge s downs t r e am of l i gh t and

retrograde signals.
2 Material and methods

2.1 Definition of differentially expressed
genes in response to norflurazon

Quantification of Arabidopsis total mRNA levels from public

sequencing data (GSE110125; Xiaobo et al., 2019) was performed

using vast-tools v.5.1. For each Arabidopsis transcript, this tool

provides the corrected-for-mappability RPKMs (cRPKMs), which

represents the number of mapped reads per million mapped reads

divided by the number of uniquely mappable positions of the

transcript (Labbé et al., 2012). To compare the expression of wild-

type (WT) seedlings treated or not with norflurazon, vast-

tools_compare_expr command was employed with the option

-norm, which allows a quantile normalization of cRPKMs between

samples. Moreover, genes that had read counts < 50 and were not

expressed at cRPKM > 5 across all replicates of at least one of the two

samples compared were filtered out. Finally, those genes with a fold

change of at least 2 between each of the individual replicates from

each sample analyzed were defined as differentially expressed genes

(NF-regulated genes; Supplemental Table 1). See https://github.com/

vastgroup/vast-tools for details.
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2.2 Definition of differentially spliced events
in response to norflurazon, lincomycin
and light

Vast-tools (Tapial et al., 2017) was employed to quantify alternative

splicing from each individual sample of three public RNA-seq experiments:

GSE110125 (Xiaobo et al., 2019), GSE130337 (Xu et al., 2020) and

GSE164122 (Martıń and Duque, 2021), which respectively address

responses to norflurazon, lincomycin and light in Arabidopsis thaliana

seedlings. This tool maps RNA-seq data to the araTha10 library, based on

Ensembl Plants v31 and composed by an extended annotation with all

exon-exon and exon-intron junction sequences found in the Arabidopsis

thaliana genome using a large compendium of RNA-seq datasets (see

Martıń et al., 2021 for details). Themapping and experimental details of the

samples used in the current study are summarized in Supplemental

Table 2. Then, vast-tools quantifies ES, IR, ALT5 and ALT3 of each

sample analyzed, and provides the percent of inclusion (PSI; Percent of

Spliced In) of each putative alternative sequence using only exon-exon (or

exon-intron for IR) junction reads (Braunschweig et al., 2014; Tapial et al.,

2017). In addition, vast-tools associates a quality score to each AS event

based on the read coverage that sustains the PSI quantification. To define

differentially spliced events in response to norflurazon, lincomycin or light,

I used the command vast-tools compare adding specific filters. First,

VLOW events were discarded, which represent the lowest range of read

coverage (for further details see https://github.com/vastgroup/vast-tools).

To improve the read coverage that supports each splicing junction and thus

decrease the number of AS events discarded by this filter, replicates of each

sample were pulled together (using the vast-tools merge function). The

consistency of these merged samples was confirmed (Supplemental

Figure 1). Moreover, to evaluate up and down sequence inclusion of all

ALT events, not only of the most external splice sites, the analysis was

conducted with the –legacy_ALT vast-tools compare option. Additionally,

the –p_IR and –min_ALT_use 25 options were also applied. The first

eliminates those IR events with a significant imbalance between the two

exon-intron junctions (P < 0.05; binomial test; see Braunschweig et al., 2014

for details). –min_ALT_use 25 ensures that ALT3 and ALT5 events are

located in exons with a sufficient inclusion level, in particular, implies that

the host exon has a minimum PSI of 25 in each compared sample. Then,

those splicing events with a |DPSI| > 15 between the pair of samples being

compared were selected as differentially spliced events (NF-, lincomycin- or

light-regulated AS events; respectively found in Supplemental Tables 3-5).

Furthermore, genes exhibiting differential AS were considered differentially

spliced genes (AS genes). Then, the pertinent control sets were generated to

conduct molecular and functional analyses of the AS events and AS genes.

First, non-regulated AS events were those that passed the coverage criteria

and were not differentially spliced (|DPSI| < 15). Genes for which all their

AS events belong to the group of non-regulated events constituted the

group of non-regulated AS genes; by definition, these genes are

all multiexonic.
2.3 Inclusion values of norflurazon-
regulated AS events in multiple
experimental conditions

Three different publicly available RNA-seq experiments were

analyzed with vast-tools to quantify the PSI values of NF-regulated
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AS events in three different conditions. First, GSE130337 (Xu et al.,

2020), to address the molecular response to lincomycin in

Arabidopsis seedlings (Figure 1C). GSE164122 (Martıń and Duque,

2021) was used to study light responses of dark-grown seedlings

(Figure 6C), and finally, GSE41432 (Drechsel et al., 2013), to show the

PSI values in WT, upf1, upf3 and upf1upf3 seedlings (Figure 4C). The

mapping and experimental details of the samples used in the current

study are summarized in Supplemental Table 2.
2.4 Percentage of response to norflurazon
in the gun1 mutant

For each AS event and gene, the DPSI and the logarithmic to base

2-fold change were calculated comparing either WT or gun1

norflurazon-treated seedlings with untreated WT seedlings. This

value represents the magnitude of change in expression or splicing

in response to retrograde signals. To compare WT and gun1 values,

the WT value was set to 100, to then calculate the percentage of

response in the gun1 based on this equivalence. This is, gun1 value

multiplied by 100 and then, divided by the WT value. The resulting

percentage indicates how much of the molecular response to

norflurazon occurring in the WT is kept in the gun1 mutant.
2.5 Molecular analysis of differentially
spliced sequences

Alternatively spliced sequences were classified based on their

localization within the gene structure: 5´-UTR, CDS and 3´-UTR.

In addition, the predicted impact on the canonical open reading

frame was mainly categorized in function of whether or not they

preserve the reading frame (i.e., they have length multiple of three

nucleotides) and contain in-frame stop codons predicted to trigger

NMD (stop codons considered premature because they are located at

least 50 nucleotides upstream of an exon-exon junction; see Martıń

et al., 2021 for details). These alternative possibilities generate three

different scenarios, AS events that produce alternative protein

isoforms, or unproductive transcripts when the alternative sequence

is included or excluded. This information was retrieved from the

download section of PastDB (Legacy version; http://pastdb.crg.eu/

wiki/Downloads; Plant alternative splicing and transcription Data

Base). Moreover, comparison of exon and intron features associated

with splicing regulation was performed with Matt v1.3.0 (Gohr and

Irimia, 2019). For each compared group of exons and introns events:

upregulated, downregulated and non-regulated, this tool obtained

and compared the exon and intron length, the GC content and the

splice site strength (see Martıń et al., 2021 for details regarding

calculations of splicing site strength).
2.6 Functional analysis of genes
differentially spliced

NF-regulated AS genes were functionally categorized according to

their subcellular localization and gene ontology (GO) annotation. A

single subcellular localization was assigned to each locus based on the
frontiersin.org
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annotation of the Arabidopsis genome (Araport 11) and percentages

of each type were plotted discarding those genes with unknown

subcellular localization. To identify enriched GO biological

processes, molecular functions and cellular components, analyses

were performed using the functional annotation classification

system DAVID (Huang et al., 2007). The same strategy was used to

define GO category enrichment of lincomycin-regulated AS genes.
3 Results

3.1 AS regulation in response to retrograde
signals is dependent on GUN1

To define how retrograde signals control splicing, the AS profiles

of WT seedlings grown in the presence or absence of norflurazon

were compared (GSE110125; Xiaobo et al., 2019). This herbicide

inhibits carotenoid biosynthesis and causes accumulation of Mg-

protoporphyrin IX, which acts as a retrograde signaling (Oelmüller

et al., 1986; Strand et al., 2003). First, vast-tools (Tapial et al., 2017)

was used to quantify steady-state mRNA levels in each sample

(hereafter gene expression; GE), and to determine changes in

expression levels of representative PhANGs (Allen et al., 2003). As

expected, all PhANGs were consistently downregulated in the WT in
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response to norflurazon (Supplemental Figure 2). Moreover, in line

with the key role of GUN1 mediating the transcriptional changes

induced by RS (Koussevitzky et al., 2007), this downregulation was

weaker in the gun1 mutant (Supplemental Figure 2). Additionally,

94.5% of the genes described as NF-regulated in this analysis

(Supplemental Table 1) were also identified as NF-regulated in

Xiaobo et al., 2019 (Supplemental Figure 3). These results thus

confirm the quality of this GE quantification.

Then, vast-tools was used to define alternatively spliced genes. This

tool quantifies the sequence inclusion levels for all four major AS types

(IR, ES, ALT5, ALT3; Figure 1A and Material and Methods for details).

For each sample and splicing event in the genome, vast-tools provides

the percent of alternative sequence inclusion (using the PSI metric),

which corresponds to the percentage of expressed transcripts that

include the alternative sequence. The comparison between WT

seedlings treated or not with norflurazon retrieved 252 differentially

spliced AS events (|DPSI| > 15; Figure 1A and Supplemental Table 3) in

205 genes. As commonly observed in plants, the majority of these

events were IR and ALT3 events (Martıń et al., 2021). For 165/252 AS

events, the alternative sequence was more included in the mRNAs in

the presence of norflurazon (NF-upregulated), while for the remaining

87 AS events it was less included (NF-downregulated) (Figure 1B).

Interestingly, AS changes were also milder in the gun1 mutant

(Figure 1B and Supplemental Figure 4). In fact, 66% of the NF-
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AS events regulated by retrograde signals. (A) Schematic representation of the major types of AS events and the number of AS events of each class
regulated by norflurazon (NF). (B) Percent of inclusion values (PSI) of the alternative sequences of the 165 NF-upregulated (left) and the 87
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regulated AS events in WT plants were not differentially spliced when

comparing untreated WT seedlings with NF-treated gun1 mutants

(|DPSI| < 15), indicating the implication of this protein in triggering the

downstream AS regulation. As observed in Supplemental Figure 5, the

molecular response to norflurazon in the gun1mutant was around half

of the response observed in the WT, both for GE and AS. This finding

indicates that similarly to the transcriptional control that RS exerts in

the nucleus, GUN1 is also key for the nuclear control of AS. Finally, to

further confirm that retrograde signals impact splicing of these AS

events, their PSI was compared between samples treated or not with

lincomycin, an herbicide also known to activate retrograde signals by

inhibiting plastid translation (Oelmüller et al., 1986). This analysis

showed that inclusion of AS events upregulated or downregulated by

the effect of norflurazon was similarly regulated by lincomycin

(Figure 1C). Therefore, these data demonstrate that retrograde signals

control splicing of a subset of transcripts in a GUN1-

dependent manner.
3.2 RS-regulated AS events share specific
genomic features

Next, the proportion of AS events whose inclusion is either up- or

downregulated by retrograde signals among each type of AS event was

calculated. This uncovered that most of the IR events are upregulated

in response to norflurazon, while for the other types of AS events this

proportion is similar (Figure 2), meaning that RS has a major role in

enhancing the inclusion of intronic sequences. Accordingly, this

pattern was also characteristic of lincomycin-treated seedlings

(Supplemental Figure 6 and Supplemental Table 4). Because

genomic features such as the intron and exon length, their GC

content or the strength of their splice sites modulate their splicing,

characterization and comparison of these regulatory features between

NF-regulated introns and exons with those non-regulated was

conducted using the Matt software. This study revealed that NF-

upregulated introns, those whose splicing fails in the presence of

norflurazon (retained), are longer and have weaker 5’ splice sites
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(Figure 3A; Supplemental Figures 7, 8), characteristics known to

difficult their spliceosomal recognition (de Conti et al., 2013). On the

other hand, exons skipped in response to norflurazon (NF-

downregulated) tend to be shorter and are surrounded by longer

introns (Figure 3B; Supplemental Figures 7, 8), a pattern also known

to hamper their recognition (Hollander et al., 2016). Also, according

to their alternative nature, both subsets of NF-regulated exons have

weaker splice sites (Figure 3B; Supplemental Figures 7, 8). Moreover,

the GC content of differentially spliced introns was higher than that of

non-regulated introns (Figure 3A; Supplemental Figures 7, 8), which

implies a reduction of the existing difference between the GC content

of introns (lower) and exons (higher), and therefore an additional

complication for their recognition (Amit et al., 2012). This reduction

is also characteristic of differentially spliced exons, especially of the

NF-upregulated subgroup (Figure 3B; Supplemental Figures 7, 8).

Thus, this analysis detected the genomic particularities shared by the

RS-regulated AS events, and revealed that retrograde signals impact

the spliceosome’s capacity to properly splice introns and exons

imbibed in complex genomic contexts.
3.3 RS regulation of AS enhances
accumulation of unproductive
mRNA isoforms

Then, the molecular functions of the AS events upregulated or

downregulated in response to norflurazon were addressed. As

expected given the dominant proportion of the CDS region within

the gene structure, the majority of NF-regulated AS events were

located in this region (Figure 4A). However, despite this predominant

presence in the CDS regions, a significant increase in the proportion

of AS events located in the UTRs, both in the subsets of NF-

upregulated and NF-downregulated AS events, could also be

detected (Figure 4A; two-sided Fisher’s test; P < 0.0012). Focusing

on the CDS-located AS events, their impact on the canonical open

reading frames (ORFs) was next assessed. In comparison to non-

regulated AS events, those events whose alternative sequence is more
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upf1upf3 seedling samples. Asterisks indicate statistically significant differences in respect of the WT (Mann-Whitney U test; *, P < 0.05; **, P < 0.01; n. s.,
non-significant). (D) Percentage of genes regulated or not by splicing, harboring repressive AS events or other types of CDS-located AS events (other),
that belong to our set of differently expressed genes in response to norflurazon (see Material and Methods for details in the gene expression analysis).
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included in response to norflurazon (NF-upregulated) were enriched

for AS events predicted to generate unproductive mRNAs when the

alternative sequence is included (Figure 4B; i.e., events that introduce

a PTC; see Material and Methods for details). Conversely, most of the

NF-downregulated AS events generate unproductive mRNAs when

the alternative sequence is excluded (Figure 4B). Therefore, 67% of

the CDS-located NF-regulated AS events have the ultimate effect of

enhancing accumulation of unproductive mRNAs when retrograde

signals take place (repressive AS events; Figure 4B), compared to only

25% predicted to generate alternative protein isoforms, and to a

minimal group of AS events (8%) that generate unproductive mRNA

isoforms in the absence of norflurazon (Figure 4B). Accordingly,

among the three categories, repressive AS events also represent the

majority of the CDS-located lincomycin-regulated AS events (53%).

Because repressive AS events are mainly characterized by carrying

NMD-eliciting features, their inclusion levels (PSI) in the Arabidopsis

upf mutants were quantified (GSE41432; Drechsel et al., 2013). UPF1

and UPF3 genes encode for the two key NMD factors (Hori and

Watanabe, 2005; Arciga-Reyes et al., 2006). This analysis globally

revealed higher inclusion levels of repressive AS events in these

mutants, particularly in the double upf1upf3 mutant (Figure 4C),

meaning that their transcript isoforms, accumulated in response to

RS, are degraded through the NMD surveillance pathway. In contrast,

as expected for AS events predicted to generate alternative proteins,

these isoforms lacked NMD regulation (Supplemental Figure 9).

Therefore, this result implies that RS, through the action of

repressive AS events, post-transcriptionally downregulates the

mRNA levels of specific transcripts. In agreement, particularly

genes harboring repressive AS events are significantly enriched for

genes whose mRNA levels are differentially downregulated by

norflurazon (Figure 4D; Supplemental Figures 10, 11; two-sided

Fisher’s test; P < 2.5e-5; see Material and Methods for details on the

GE analysis).
3.4 Unproductive mRNA isoforms are
functionally linked to chloroplasts

To gain insight into the biological functions of the 205 genes

whose splicing is regulated by norflurazon, a gene ontology (GO)

analysis was first conducted. This revealed significant enrichment for

chloroplast- and splicing-related GO terms as well as for genes whose

expression is light-regulated (Figure 5A). A great example of splicing-

related genes are those encoding the spliceosome proteins U2AF65A

and U2AF65B (Chen and Moore, 2015), and the splicing regulators

RS2Z32 (Barta et al., 2010) and GRP8 (Streitner et al., 2012).

Additionally, genes from different chloroplast-related categories

were found. For example, PDM2, GC1 and PPL1, all of them with

key roles in chloroplast development and functioning (Maple et al.,

2004; Du et al., 2017; Che et al., 2020); KAC1 and KAC2, involved in

the movement of chloroplast through actin filaments (Suetsugu et al.,

2010); and also, TIC100, a component of the TIC chloroplast

transport complex recently implicated in RS (Kikuchi et al., 2013;

Loudya et al., 2022). Supporting the impact that RS exert on the

splicing pattern of this type of genes, these GO terms were also
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enriched among the subset of genes differentially spliced in response

to lincomycin (Supplemental Figure 12). Next, classification of NF-

regulated AS genes based on the subcellular locations of their encoded

proteins revealed overrepresentation of chloroplast-located proteins

(Supplemental Figure 13; two-sided Fisher’s test; P < 0.00074).

Strikingly, this enrichment was specific of genes harboring

repressive AS events (Figure 5B), which represent the majority of

RS-regulated AS events (Figure 4B). Therefore, these results indicate

that RS post-transcriptionally controls the mRNA levels of

chloroplast proteins.
3.5 Light antagonizes regulation of RS-
regulated AS events

Retrograde and light signals converge to antagonistically regulate

transcription of a subset of common genes (Ruckle et al., 2012; Martıń

et al., 2016; Xu et al., 2016). Given this preceding information, the

molecular link between retrograde and light signaling at the RNA level

was investigated. First, by following the same criteria as those established

for identifying RS-regulated AS events (see Material and Methods), the

splicing profiles of 3-day-old WT seedlings grown either in continuous

darkness or white light were compared (GSE164122; Martıń and Duque,

2021). This comparison resulted in the definition of 309 light-regulated

AS events (Supplemental Table 5). Importantly, the GO analysis of genes

harboring these AS events also revealed enrichment for chloroplast

proteins (Figure 6A). Moreover, the study of the predicted impact on

the ORFs of the 246 light-regulated AS events located in the CDS

unveiled that light enhances inclusion of alternative sequences generating

unproductive mRNAs when the sequence is excluded, while it

downregulates inclusion of unproductive sequences when it is included

(Figure 6B). Hence, a minority of AS events produce unproductive

mRNAs in the light (repressive AS events; Figure 6B andHartmann et al.,

2016), while most do so in the presence of norflurazon (repressive AS

events; Figure 4B). This result indicates that RS- and light-mediated AS

exert opposite molecular functions, respectively enhancing and

diminishing the accumulation of unproductive transcripts.

Interestingly, some of the NF-regulated AS genes mentioned, such as

U2AF65B, GRP8 and PPL1 have also been characterized as being

differentially spliced between dark and light conditions (Hartmann

et al., 2016). To assess whether light globally influences NF-regulated

AS events, their inclusion levels were quantified in 3-day-old WT and

pifq seedlings grown in continuous darkness or light (GSE164122; Martıń

and Duque, 2021). NF-downregulated and NF-upregulated AS events

were respectively upregulated or downregulated by light in WT seedlings

(Figure 6C). Further validating the influence of light in the AS of these

events, the inclusion levels of these AS events had the same trend in dark-

grown pifq seedlings, known to mimic light responses both at the

molecular and phenotypic level (Leivar et al., 2008; Leivar et al., 2009).

This result firmly revealed that RS-regulated AS events are

antagonistically regulated by light, which is in line with the opposite

molecular functions of RS- and light-regulated AS events (Figures 4B,

6B), and also, with the common enrichment of chloroplast genes among

the sets of RS- and light-regulated AS genes (Figures 5A, 6A and

Supplemental Figure 12).
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4 Discussion

Light and chloroplast-to-nucleus retrograde signals converge to

control transcription of genes involved in different aspects of plant

photomorphogenesis, from morphogenesis to chloroplast biogenesis

and functioning. Both signaling pathways coordinate the expression of

photomorphogenic genes through the control of common regulators

such as the GLK1 transcription factor (Martıń et al., 2016). Strikingly, the

results presented here indicate that splicing of RS-regulated AS events is

also controlled by light (Figure 6C), implying that the molecular

convergence extends beyond transcriptional regulation (Supplemental

Figure 14). Noteworthy, as described for transcription, these signaling

pathways have antagonistic effects: while RS induces the inclusion of

specific AS events, light represses it, and vice versa (Figure 6C and

Supplemental Figure 14). Consequently, this antagonistic regulation

implements opposite molecular outcomes: retrograde signals induce

accumulation of unproductive transcripts (Figure 4B), which are

globally targeted to degradation through the NMD surveillance

pathway (Figure 4C), while light represses this process (Figure 6B).
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Importantly, a paper published in 2014 showed that light-induced AS of

particular genes was not dependent on the light perception triggered by

photoreceptors, but instead, on functional chloroplasts, demonstrating a

role for RS in light-mediated AS (Petrillo et al., 2014). This raises the

possibility that the light control of RS-regulated AS events shown in this

article (Figure 6C) does not occur as a result of the molecular pathways

activated by plant photoreceptors, but as a consequence of retrograde

signals operating from chloroplasts. This possibility would imply that the

two pathways share their molecular targets without connecting their

signaling proteins. However, the molecular studies addressing how

retrograde and light signals control transcription have extensively

demonstrated the existence of proteins that interconnect both signaling

pathways (Griffin and Toledo-Ortiz, 2022), thus indicating a connection

upstream of their target genes. A deep understanding of the molecular

regulators implementing splicing responses to retrograde and light

signals is crucial to determine at which step of the post-transcriptional

regulation both signaling pathways converge.

Interestingly, the genes that are differentially spliced by

retrograde signals are often involved in photomorphogenesis,
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which is in line with RS and light having respectively a negative and

positive role on them. First, there is a great overrepresentation of

genes encoding for proteins related to different aspects of the

functioning and development of chloroplasts (Figures 5A, 6A and

Supplementary Figures 12, 13). Furthermore, key regulators of the

light-regulated morphogenic pattern, such as DET1 (DE-

ETIOLATED 1; Chory et al., 1989) and SHW1 (SHORT

HYPOCOTYL IN WHITE LIGHT 1; Bhatia et al., 2008), were

identified. Therefore, a precise regulation of splicing on these

transcr ipts might be crucia l for seedl ings to develop

photomorphogenically. In agreement, a small number of

functional studies have already demonstrated the participation of

individual splicing isoforms in photomorphogenesis (Shikata et al.,

2014; Hartmann et al., 2016; Dong et al., 2020).

In addition, this study also revealed a subset of AS genes whose

mRNA levels change in response to retrograde signals (Figure 4D).

This fact can result from overlapping transcriptional and splicing-

associated post-transcriptional mechanisms that share their target

genes. In this case, AS would reinforce transcriptional mechanisms to,

probably, act as a fail-safe mechanism that ensures regulation of the

mRNA levels of specific transcripts. By the contrary, changes in the

mRNA levels can just reflect the consequences of being differentially
Frontiers in Plant Science 09
spliced but not differentially transcribed. This second scenario would

imply that each regulatory mechanism act over a different set of genes,

although, as in the case reported here, with similar biological

functions: genes encoding for chloroplast proteins (Figures 5A, 6A

and Supplemental Figure 12).

Overall, this study reveals that changes in AS induced by RS have a

negative impact on the expression of chloroplast proteins. Therefore,

under environmental or developmental contexts implying dysfunctional

chloroplasts, AS will act in conjunction with transcriptional regulation to

repress the mRNA levels of genes encoding for chloroplast proteins

(Supplemental Figure 14). Moreover, this work exemplifies the

importance of conducting molecular studies that integrate both

transcriptional and post-transcriptional regulatory mechanisms, which

are indeed interrelated processes, to obtain a complete and precise

comprehension of gene expression regulation.
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SUPPLEMENTARY FIGURE 1

Comparison between AS events defined using individual or merged replicates.

Proportion of each type of AS event for which inclusion is differentially up- or

downregulated by norflurazon (NF; top), lincomycin (Linc; middle) or light
(bottom), when comparing individual or merged samples. The total number

of AS events in each comparison is indicated. ALT5, alternative 5´splice site;
ALT3, alternative 3´splice site; IR, intron retention; ES, exon skipping.

SUPPLEMENTARY FIGURE 2

mRNA level quantification of photosynthesis-associated nuclear genes. Graph

bars showing the expression levels from our mRNA quantification (cRPKM; see
Materials and Methods for details) of a subset of representative photosynthesis-

associated nuclear genes (PhANGs; Allen et al., 2003) in wild-type (WT) and
gun1 samples treated or not with norflurazon (NF).

SUPPLEMENTARY FIGURE 3

Overlap between genes defined as NF-regulated in distinct analyses. Venn

diagram representing the overlap between genes defined as regulated by
norflurazon (NF) in this analysis and the one conducted in Xiaobo et al., 2019.

For genes defined as NF-regulated in Xiaobo et al., 2019, we only assessed
overlap of those that fulfilled the coverage criteria used in our expression

analysis (see Materials and Methods for details).
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SUPPLEMENTARY FIGURE 4

Coverage plot of NF-regulated AS events. Read density histograms of RNA-seq
data comparing WT and gun1 seedlings treated or not with norflurazon for an

AS event of each type: ALT5, alternative 5´splice site; ALT3, alternative 3´splice
site; IR, intron retention; ES, exon skipping. The associated gene models are

shown at the bottom of each coverage plot.

SUPPLEMENTARY FIGURE 5

NF-mediated AS and GE responses in the gun1 mutant. (A) Boxplot
representation of the DPSI (top) and log2 fold change (FC; bottom) between

norflurazon (NF) and control samples of genes differentially spliced (top) or
expressed (bottom) in wild-type (WT) and gun1 samples.

SUPPLEMENTARY FIGURE 6

Distribution of the different types of AS events regulated by lincomycin. Number

of each type of AS event for which inclusion is differentially up- or
downregulated by lincomycin (Linc). Lincomycin non-regulated AS events

represent the proportion of the different types of AS event in the genome
(see Material and Methods for details). ALT5, alternative 5´splice site; ALT3,

alternative 3´splice site; IR, intron retention; ES, exon skipping.

SUPPLEMENTARY FIGURE 7

Genomic regulatory features associated with differentially spliced introns and
exons. Distributions of the length and GC content of the alternatively spliced

introns (A) or exons (B) and the respective surrounding exons or introns, together
with the splicing site strength of their 5´ and 3´ splice sites. Non-regulated sets

contain introns (A) or exons (B) fulfilling our read coverage criteria used for AS

analysis (seeMaterial andMethods for details) and not being differentially spliced by
norflurazon (NF). Asterisks indicate statistically significant differences in respect of

the control set (Mann-Whitney U test; *, P < 0.05; **, P < 0.01; ***, P < 0.001; n. s.,
non-significant).

SUPPLEMENTARY FIGURE 8

GCC content of differentially spliced exons and introns. Distributions of the ratio
between the GCC content of alternative introns and their surrounding exons (top),

or between the alternative exons and their surrounding introns (bottom). Non-

regulated sets contain the introns (top) or exons (bottom) fulfilling our read coverage
criteria used for AS analysis (see Material and Methods for details) and not being

differentially spliced. Asterisks indicate statistically significant differences in respect of
the control sets (Mann-Whitney U test; *, P < 0.05; **, P < 0.01; ***, P < 0.001;

n.s., non-significant).

SUPPLEMENTARY FIGURE 9

NMD regulation of NF-regulated AS events predicted to generate alternative
protein isoforms. Boxplot representation of the percent of inclusion (PSI) values

of the NF-regulated AS events predicted to generate alternative proteins in
wild-type (WT), upf1, upf3 and upf1upf3 seedling samples. Statistically

significant differences are calculated in respect of the WT (Mann-Whitney U
test; n. s., non-significant). NF, norflurazon.

SUPPLEMENTARY FIGURE 10

Overlap between genes differentially expressed and spliced in response to

norflurazon. (A) Venn diagram representing the overlap between genes defined as
differentially expressed or differentially spliced in response to norflurazon (NF) (B)
Percentage of genes regulated or not by splicing (non-reg.), whosemRNA levels are
up-, downregulated or not regulated in response to norflurazon (see Material and

Methods for details in the gene expression analysis).

SUPPLEMENTARY FIGURE 11

mRNA level quantification of genes harboring repressive AS events. Graph bars
showing the expression levels from our mRNA quantification (cRPKM; see

Materials and Methods for details) of a subset of genes harboring repressive
AS events in wild-type (WT) and gun1 samples treated or not with

norflurazon (NF).

SUPPLEMENTARY FIGURE 12

Functional analysis of genes differentially spliced in response to lincomycin.
Enriched gene ontology categories of the 310 genes defined as differentially

spliced in response to lincomycin. DAVID p-value indicates significance (Fisher’s
exact test; P < 0.05).

SUPPLEMENTARY FIGURE 13

Subcellular localization of genes differentially spliced in response to retrograde

signals. Subcellular localization of genes differentially spliced in response to
norflurazon (AS genes), in comparison with the set of genes not regulated by AS
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(non-regulated genes; see Material and Methods for details). This classification
is based on the Araport 11 subcellular predictions available at TAIR (http://www.

arabidopsis.org). The percentage of genes encoding for chloroplast-located
proteins for each set is indicated. Asterisks indicate statistically significant

differences between the two set of genes (two-sided Fisher’s test; **, P <

0.01; ***, P < 0.001; n.s., non-significant).

SUPPLEMENTARY FIGURE 14

Proposed model for the regulation of chloroplast protein production by AS in

response to retrograde and light signals. Genes encoding chloroplast proteins
are antagonistically regulated by the action of transcription factors (TF)

controlled by light and retrograde signals (Martıń et al., 2016; Xu et al., 2016).

This study demonstrates amolecular convergence of thesemolecular pathways
also at the splicing level. Retrograde signals, through the action of GUN1, induce

accumulation of splicing variants targeted by the nonsense-mediated decay
RNA pathway (NMD). On the contrary, light represses their accumulation.

SUPPLEMENTARY TABLE 1

List of genes whose mRNA levels are differentially regulated by norflurazon in

wild-type seedlings. Columns indicate the gene locus, name and expression
values (cRPKMs) in 5-day-old wild-type (WT) and gun1 seedlings treated with

norflurazon (NF) and untreated WTs. See Material and Methods for details on
cRPKM values.

SUPPLEMENTARY TABLE 2

Summary of the sequencing data used in this study. Details of the 24 samples

obtained from the NCBI Short Read Archive (SRA) and used in this study. For
each sample this information includes i) GEO accession number, ii) sequencing
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platform, iii) mRNA purification method, iv) name of the individual and merged
samples, v) number (ReadN) and length of reads, and vi) percentage of reads

mapping unique and multiple times at the genome or reference transcriptome
(TAIR10 annotation from Ensembl Plants v31).

SUPPLEMENTARY TABLE 3

List of AS events differentially regulated by norflurazon in wild-type seedlings.

Columns indicate information associated to each AS event including the locus,
the vast-tools event identifier, the genomic coordinates, the length in pair

bases, the type of event and the percent of inclusion (PSI) in 5-day-old wild-
type (WT) and gun1 seedlings treated with norflurazon (NF) and untreated WTs.

NA for PSI values indicates insufficient read coverage (see Material and Methods

for details).

SUPPLEMENTARY TABLE 4

List of AS events differentially regulated by lincomycin in wild-type seedlings.

Columns indicate information associated to each AS event including the locus,
the vast-tools event identifier, the genomic coordinates, the length in pair

bases, the type of event and the percent of inclusion (PSI) in 5-day-old wild-

type (WT) seedlings treated or not with lincomycin (Linc).

SUPPLEMENTARY TABLE 5

List of AS events differentially regulated by light in dark-grown wild-type

seedlings. Columns indicate information associated to each AS event
including the locus, the vast-tools event identifier, the genomic coordinates,

the length in pair bases, the type of event and the percent of inclusion (PSI) in

wild-type (WT) seedlings grown in continuous darkness (D) or white light (WL)
for 3 days.
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