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Freezing damage has been a common natural disaster for tea plantations. Quantitative

detection of low temperature stress is significant for evaluating the degree of freezing

injury to tea plants. Traditionally, the determination of physicochemical parameters of

tea leaves and the investigation of freezing damage phenotype are the main

approaches to detect the low temperature stress. However, these methods are

time-consuming and laborious. In this study, different low temperature treatments

were carried out on tea plants. The low temperature response index (LTRI) was

established by measuring seven low temperature-induced components of tea leaves.

The hyperspectral data of tea leaves was obtained by hyperspectral imaging and the

feature bands were screened by successive projections algorithm (SPA), competitive

adaptive reweighted sampling (CARS) and uninformative variable elimination (UVE).

The LTRI and seven indexes of tea plant were modeled by partial least squares (PLS),

support vector machine (SVM), random forests (RF), back propagation (BP) machine

learningmethods and convolutional neural networks (CNN), long short-termmemory

(LSTM) deep learningmethods. The results indicated that: (1) the best predictionmodel

for the seven indicators was LTRI-UVE-CNN (R2 = 0.890, RMSEP=0.325, RPD=2.904);

(2) the feature bands screened by UVE algorithm were more abundant, and the later

modeling effect was better than CARS and SPA algorithm; (3) comparing the effects of

the six modeling algorithms, the overall modeling effect of the CNNmodel was better

than other models. It can be concluded that out of all the combined models in this

paper, the LTRI-UVE-CNN was a promising model for predicting the degree of low

temperature stress in tea plants.

KEYWORDS

tea plants, cold damage assessment, hyperspectral imaging, deep learning, LTRI
1 Introduction

Tea plant (Camellia sinensis (L.) O. Kuntze.) is an evergreen crop, which thrives in warm

temperatures and is sensitive to low temperatures (Li et al., 2011). In the context of climate

change, low temperature has become one of the major environmental factors affecting the

overwintering of tea plants and the growth of spring tea, causing economic loss of tea
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production. Therefore, rapid prediction of freezing injury of tea plants

is a key issue to reduce the impact of freezing damage on tea

production. Tea plants was provoked massive physiologic and

metabolic reprogramming to adapt to the decline of ambient

temperature, thereby enhancing the low temperature tolerance. For

instance, the increase of soluble sugar (SS) in tea leaves suffered from

cold injury can maintain the osmotic balance of cells, reduce the low

temperature damage, and enhance the cold resistance

(Ban et al., 2017). Suffering from unfavorable conditions, the

biosynthesis of chlorophyll was blocked, resulting in the decrease of

chlorophyll content in tea leaves (Liu et al., 2019a). In addition, the

activity of antioxidant enzymes can be used to assess low temperature

sensitivity or tolerance of plants. Catalase (CAT), peroxidase (POD)

and superoxide dismutase (SOD) can eliminate the accumulated

reactive oxygen induced by low temperature stress, thereby

protecting cells from injury (Wang et al., 2021). Malondialdehyde

(MDA) is a peroxidation product produced by cell membrane damage

under low temperature stress, and its content is an important

indicator to measure whether the cytoplasmic membrane damaged

is serious (Liu et al., 2012).

Traditionally, the determination of physicochemical parameters

of tea leaves and the investigation of freezing damage phenotype are

the main approaches to detect the low temperature stress. However,

these methods have distinct deficiency such as strong destructiveness,

time-consuming and labor-intensive, low accuracy and lagging

prevention. Therefore, there is an urgent need to propose a non-

destructive, rapid and accurate monitoring method for low

temperature-induced components.

Hyperspectral imaging (HSI) is an emerging optical technology. It

has emerged as an economical alternative to traditional destructive

sampling and laboratory testing. HSI combines the advantages of

traditional imaging and spectroscopic techniques, in which, the

surface structure information and the internal feature information

of the object to be measured can be acquired simultaneously. This

technology has been widely used for the non-destructive and rapid

detection of chemical components in wheat (Duan et al., 2019), sugar

beet (Pan et al., 2016), red jujube (Li et al., 2022c), strawberry (Weng

et al., 2020) and other crops. In addition, HSI is also used in the

compositional analysis of fresh or dried tea leaves. For example,

Sonobe et al (Sonobe et al., 2018). used HSI to obtain spectral images

of tea planted under low light stress, and combined model inversion

and machine learning algorithms to quantify the chlorophyll content

in tea leaves. Wang et al (Wang et al., 2018)identified nitrogen levels

in tea plants based on hyperspectral imaging technique combined

with support vector machine (SVM). Chen et al (Chen et al., 2021).

used HSI combined with machine learning algorithm to predict the

contents of MDA and SS in tea leaves under drought stress. However,

there are few studies on HSI-based monitoring of cold stress-induced

components in tea plants. At present, the research on hyperspectral

detection of low temperature stress was mainly focused on wheat, and

good results have been achieved (Wang et al., 2016; Feng et al., 2018).

This provided a reference for the rapid and non-destructive detection

of low temperature stress in tea plants. Therefore, HSI can provide

new means and ideas for the rapid detection of low temperature-

induced components and the evaluation of freezing injury degree in

tea plants.
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In order to help researchers faster calculation speed and

computational robustness of the model, feature selection algorithms

and machine learning algorithms were integrated in the practical

application of hyperspectral data. There is redundant information in

hyperspectral images that are irrelevant to the research goal.

Therefore, it is particularly important to determine which

information contributes more to the research objective

(Su et al., 2021). In order to reduce dimensionality and remove

redundant spectra, band selection methods such as successive

projections algorithm (SPA), competitive adaptive reweighted

sampling (CARS), and uninformative variable elimination (UVE)

have been utilized by many researchers (Li et al., 2016b; Liu et al.,

2019b). Currently, various machine learning methods have been used

to build models based on spectral images (Li et al., 2022b). For

example, Chen et al (Chen et al., 2022). used partial least squares

(PLS), SVM and random forests (RF) models to model Na in crop

leaves and compared their predictive performance. Moreover, as a

research hotspot of machine learning, deep learning algorithms can

achieve accurate feature extraction and have been used for the

analysis of hyperspectral images (Qureshi et al., 2017). Recently,

Zhang et al (Zhang et al., 2022). established a monitoring model of

corn water content based on hyperspectral images by PLS,

convolutional neural networks (CNN), long short-term memory

(LSTM) and CNN-LSTM. However, few studies combined HSI with

machine learning and deep learning methods to monitor the key

components of tea plants under low temperature stress.

In this study, tea leaves with different freezing damage degrees

were collected, the biochemical components and hyperspectral

images of the samples were obtained. Multivariate scattering

correction (MSC), Savitzky-Golay (S-G) and first derivative (1stD)

algorithms were used to preprocess the spectral data; SPA, CARS and

UVE algorithms were used to screen the characteristic bands of

spectral data; SVM, RF, PLS, back propagation (BP) machine

learning and CNN, LSTM deep learning algorithms were

integrated. The prediction models for SPAD, SS, MDA contents,

and CAT, POD, SOD activities of tea leaves were established, and the

frost damage of tea plants was evaluated. The main focuses of this

study are (1) develop a low temperature response index (LTRI) to

comprehensively evaluate the freezing damage degree of tea plants;

(2) explore multiple combinatorial models to estimate the

performance of key low temperature-induced components and

LTRI in tea leaves; (3) compare the optimization effects of SPA,

CARS and UVE screening feature band methods on the prediction

model; (4) discuss the prediction capacity of deep learning and

traditional machine learning models.
2 Materials and methods

2.1 Experimental design

This experiment was carried out in the Tea Biology Laboratory of

Qingdao Agricultural University from August to September 2021.

The test materials were 2-year-old “Zhongcha 108” and “Longjing 43”

tea plants. On August 20, 2021, the substrate (PINDSTRUP,

Denmark) was put into a plastic nursery pot (8*8cm), 300 tea
frontiersin.org
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plants of each variety were planted, and then placed in an artificial

climate box (RDN-1000D-4, 0~50°C, Ningbo Southeast Instrument

Co., Ltd.) for pre-culture. Conditions in the climate box were as

follows: temperature, 25°C/20 °C (16 h light/8 h dark) and light

intensity, 10000 Lx. The tea plants were continuously cultured for

10 days. On August 31, 2021, according to the temperature treatment

and varieties, the tea plants were moved into an artificial climate box

(RXZ-0450, -10~50°C, Ningbo Jiangnan Instrument Factory) in

batches for testing. The detailed treatment settings of low

temperature stress are shown in Table 1. In order to reduce the

experimental error, 6 times of low temperature treatment tests were

conducted for each variety. 16 plants were randomly selected for each

cold treatment, and two mature leaves were picked from each tea

plant as a sample. Then, the harvested samples were subjected to

hyperspectral data acquisition and chlorophyll content (SPAD value)

determination, and then quickly frozen in liquid nitrogen and stored

at -80°C until the physiological and biochemical indicators were

determined. In this experiment, a total of 192 samples were collected.
2.2 Data acquisition

2.2.1 Determination of physicochemical
parameters and establishment of LTRI

Before the samples were cryopreserved, the chlorophyll content of

each leaf was measured by a portable chlorophyll meter (SPAD-502,

Japan). Each leaf was measured at 6 different positions and leaf veins

were avoided manually. The SPAD value of tea leaves was the mean

value of the 6 measured points.

Tea leaves were frozen by liquid nitrogen and ground into

powder. The contents of SS and MDA and the activities of

protective enzymes CAT, SOD and POD were determined

according to the kit of Suzhou Grace Biotechnology Co., Ltd. SS,

MDA content and protective enzyme CAT, SOD, POD activity kits

are all microplate method, and the product numbers are G0501W,

G0109W, G0105W, G0103W and G0107W respectively.

The establishment of LTRI. To quantitatively and comprehensively

analyze the low temperature stress of tea leaves, LTRI was constructed.

Firstly, the 6 major physiological indexes (i.e., SPAD, SS, MDA, CAT,

POD, SOD) related to low temperature stress were standardized and

analyzed by SPSS 25.0 software. Then, the linear combination coefficient

(LCC) and the comprehensive score coefficient (CSC) were calculated by

the formulas (1) and (2) respectively, and the LTRI was finally obtained.
Frontiers in Plant Science 03
LCCij=LCij=
ffiffiffiffiffi
l j

q
(1)

CSCi=o
6

i=1
(LCCi�VCi)=CVCi  (2)

In formula (1), LCij is the load coefficient of the j-th principal

component and the i-th index, l is the initial eigenvalue of j-th. In

formula (2), VC is the variance contribution rate, and CVC is the

cumulative variance contribution rate.
2.2.2 Acquisition of hyperspectral data
The acquisition and analysis process of hyperspectral data was

shown in Figure 1. In this study, HSI system (GaiaField-Pro, Jiangsu

Dualix Spectral Image Technology Co. Ltd) was used to collect

spectral information of tea leaves in the range of 397-1008 nm. The

composition, specifications and parameters of the HSI system were

the same as those in reference (Mao et al., 2022). The spatial

resolution of hyperspectral images collected in this study was 960 ×

1101 (Space × Spectrum), the spectral resolution was 3.5 nm and the

number of spectral channels was 176. In order to reduce the influence

of dark current noise and external environment, the original

hyperspectral image (R) was corrected to reflectance hyperspectral

image (C) by equation (3) after spectral data acquisition.

 C=(R−D)=(W−D) (3)

Where, C is the corrected image, R is the original image, D is the

black reference image obtained by covering with a lens cover with a

reflectance of about 0%, and W is the white reference image collected

using a pure white standard whiteboard with a reflectance of

about 100%.
2.3 Standardization and feature extraction of
spectral data

The reflectance of hyperspectral image after black-and-white

correction was opened in the SpecVIEW (Jiangsu Dualix Spectral

Imaging, China) software, and the image was further corrected using

tools such as lens and reflectance calibration to obtain a standardized

hyperspectral image.

The background information of hyperspectral images was

extracted by intensity threshold segmentation in the ENVI 5.3

(Research System Inc, America) software. Then, the entire tea leaf

area in the hyperspectral image was defined as the region of interest

(ROI), and the ROIs of all samples were extracted. Finally, the average

reflectance of each sample ROI was calculated, resulting in a spectral

matrix of 176 × 192 (variables × samples).
2.4 Data analysis methods

2.4.1 Spectral preprocessing
Due to the influence of hyperspectral equipment and

environmental factors, the spectrum of tea leaves has problems

such as scattering effect and noise, which will weaken the spectral
TABLE 1 Treatment settings of low temperature stress.

Representations
Treatments

Temperature (°C) Time (hours)

Control Check 8 (CK8)
25°C

8

Control Check 12 (CK12) 12

Chilling 8 (C8)
4°C

8

Chilling 12 (C12) 12

Freezing 8 (F8)
-4°C

8

Freezing 12 (F12) 12
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signals of the internal physical and chemical indicators of tea

materials and affect the accuracy of the regression model.

Therefore, in order to eliminate the spectral differences caused by

different scattering levels, the MSC (Cheng et al., 2014) algorithm was

used to remove artifacts or defects in the data matrix; In order to

effectively reduce the random noise of the average reflection

spectrum, the S-G (Kong et al., 2014) algorithm was used to

“average” or “fit” each point within a certain width window, so as

to obtain the best estimated value of the smooth point; In order to

eliminate the process of baseline shift and split overlapping spectral

peaks, the spectral band characteristics were enhanced by the 1stD

(Feng and Sun, 2013). Among them, the formula of differential

method-1stD is shown in formula (4).

dy=dx=(yi+1−yi)=Dx  (4)

Where, yi is the spectrum of the i-th sample, and Dx is the

wavelength interval.
2.4.2 Extraction of feature bands
Although the preprocessed spectral data has removed some noise,

it still contains too much band information. This not only increased

the amount of data operations, but more importantly, the redundancy

of the band variables would affect the prediction accuracy and stability

of the model (Ouyang et al., 2016). Therefore, SPA, CARS and UVE

algorithms were used to select representative bands in the full-band

spectral data as the “feature bands”, and compare them with the full-

band (NONE) data, and finally select the best feature variable

selection algorithm. Among them, the SPA algorithm can find the

variable combination containing the least redundant information

from the spectral information, and select a set of representative

spectral variables with the minimum collinearity, thus reducing the

complexity of the model (Araújo et al., 2001). The CARS algorithm is

a variable screening method based on the principle of “survival of the

fittest” in Darwin’s evolution theory, which can effectively find the
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optimal spectral combination (Yuan et al., 2021). The UVE algorithm

can remove irrelevant variables with more noise, optimize

model variables, and improve the predictive ability of the model

(Li et al., 2016b). The basic parameters of SPA, CARS and UVE

algorithms used in this study were shown in the Table 2.

2.4.3 Model establishment
In order to find an optimal prediction model, a regression model

between the spectral data of tea leaves and its physical and chemical

indexes was established by using four machine learning methods of

PLS, SVM, RF, BP and two deep learning methods of CNN and

LSTM, and the effects of six models were compared.

Each of these six methods has its own advantages. Among them,

the PLS algorithm is the widely used prediction model at present, it

can not only overcome the collinearity problem, but also remove the

influence of unhelpful noise on regression (Geladi and Kowalski,

1986). The optimal number of potential components in PLS was
FIGURE 1

Acquisition and analysis of hyperspectral data. LTRI, low temperature response index; MSC, multivariate scattering correction; S-G, Savitzky-Golay; 1stD,
first derivative.
TABLE 2 The parameters of feature band selection algorithms.

Algorithm Parameters Value

SPA Minimum 1

Maximum 30

Epochs 20

CARS Method None

Fold 10

Number of PCA 10

Monte Carlo sampling times 300

UVE Optimal factor number 5

Leave-One-Out 700

Cutoff 0.99
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determined by minimizing the RMSE of leave-one-out cross-

validation (Liu et al., 2021). The SVM can solve the classification

and regression problems of high-dimensional features (Cortes and

Vapnik, 1995). When applying a SVM to the regression problem, the

model can be optimised by adjusting the polynomial kernel of a kernel

function. The RF algorithm adopts random sampling, and the trained

model has small variance and strong generalization ability (Breiman,

2001). The BP neural network has a high degree of self-learning and

self-adaptive ability, and has the ability to apply learning results to

new knowledge (Sun et al., 2019). The CNN network is one of the

most effective networks for data feature extraction (Li et al., 2016a).

The LSTM network can not only discover the mutual dependence of

the data in the time series data, but also automatically detect the best

mode for the relevant data (Hochreiter and Schmidhuber, 1997).

The network structures of PLS, SVM, RF, BP, CNN and LSTM

were determined with reference to our two recent studies (Li et al.,

2022a; Li et al., 2022b). Because the network structure applied in

previous studies have made better progress in the monitoring

agronomic traits of tea plants, and the established models have a

strong generalization ability and are applicable to tea plants.

Specifically, the input layer of the CNN is a two-dimensional

matrix of spectral data. The hidden layer mainly consists of three

convolutional layers, three activation functions, one maximum

pooling layer, and one fully connected layer. In addition, the

optimal combination of parameters was determined by

continuously adjusting the network parameters. The final

determined specific parameters were shown in Table 3.
2.5 Test environment and model evaluation
data analysis methods

Conditions for processing data in this experiment are as follows.

Hardware, processor: Inter(R) Core (TM) i7-6700HQ CPU GHz 2.60

GHz (2 processors); machine RAM: 8GB. Software environment,

MATLAB 2020; IBM SPSS Statistics 25.0; operating system:

Windows 7.

To verify the accuracy of the algorithm, five-fold cross-validation

was used in this study. The data set was divided into five parts, 4 parts

were used for training sets and 1 part was used for testing set. That is,

the training set included of 153 samples, and the testing set consisted

of 39 samples. The data set was repeated 4 times, and then the results

were averaged. In order to evaluate the performance of the model, the

determination coefficient (R2) of calibration (R2
c) and prediction ( R2

p),

root mean square error (RMSE) of calibration (RMSEC), validation

(RMSEV) and prediction (RMSEP), and relative predictive deviation

(RPD) were used. Higher values of R2 generally indicate higher levels

of model accuracy. The larger the RPD, the better performance of the

model. On the contrary, lower values of RMSE indicate higher levels

of model accuracy. R2, RMSE and RPD are calculated as follows: \

R2
c ,R

2
p=1−o

n

i=1
(ŷ i−yi)

2=o
n

i=1
(yi−�y)

2 (5)

RMSEC,RMSEV ,RMSEP=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
n

i=1
(ŷ i−yi)

2=n 

s
(6)
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           RPD =1=
ffiffiffiffiffiffiffiffiffiffiffi
1−R2

p

q
(7)

Where, n is the number of samples in the corresponding data set

(calibration, verification and prediction), ŷ i and yi are the predicted

and measured values of the i-th tea samples, respectively, and �y is the

average measured value of the sample.
3 Results and discussion

3.1 Response of tea plants to low
temperature stress

The statistical analysis of the measured physiological indexes of all

tea samples (Table 4), including the maximum value, minimum value,

average value and standard deviation.

In this study, the change rules of 6 indicators were analyzed

(Figure 2). The results showed that with the extension of low

temperature time and the decrease of temperature, the SPAD value

showed a general trend of decreasing. The contents of SS and MDA

showed an upward trend. The activities of CAT, POD and SOD

increased first and then decreased.

In general, under -4°C treatment, the SPAD value decreased more

greatly, which may be due to the large degradation of chlorophyll after

decreasing from 4°C to -4°C (Lajolo and Marquez, 1982). SS was an

important substance in plant osmoregulation. The change of SS in

this paper was consistent with the results of Zeng et al (Zeng et al.,

2017). This may be because under low temperature stress, plant cells

can resist low temperature by accumulating SS, increasing the

concentration of cytosol and protecting the cytoplasm from freezing

(Morgan, 1984). MDA was the product of membrane lipid

peroxidation of plant organs under low temperature stress, which

destroyed the stability of biofilms and could reflect the degree of

damage to plant cell membranes (Liu et al., 2012). Therefore, the

lower the temperature, the higher the MDA content, that was, the

lower the temperature, the more serious the damage to the tea plants

cell membrane. CAT, POD and SOD were significant protective

enzymes in the plant membrane lipid peroxidase defense system. In

this study, the changes in the activities of the three protective enzymes

were basically the same, which was consistent with the previous

research results of researchers on tea leaves (Li et al., 2014; Li

et al., 2020).
3.2 Establishment of LTRI

The contents of SPAD (X1), SS (X2) and MDA (X3) and the

activities of enzymes CAT (X4), POD (X5) and SOD (X6) can be used

as effective indexes to reflect the low temperature stress of tea plants.

Standardized processing and principal component analysis were

performed on these 6 indicators using SPSS 25.0 software, and the

total variance explanation of the principal components (Table 5) and

each factor loading (Table 6) were obtained. The results showed that

among the 6 `components, only the first two principal components

satisfied the principle that the eigenvalue root (l) was greater than 1,
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and can explain 85.231% of the data, which could reflect most of the

information of the 6 low temperature-induced components.

Therefore, the first two principal components (Y1 and Y2) can be

applied to comprehensively analyze the low temperature stress of tea

plants, which not only reduces the number of indicators, but also re-
Frontiers in Plant Science 06
establishes the internal relationship among all low temperature-

induced indicators (Han et al., 2020).

According to the data in Table 5 and Table 6, the LCC of each

parameter variable was calculated by formula (1) to obtain the linear

composite expression of the first two principal components:
TABLE 3 Main parameters of the PLS, SVM, RF, BP, CNN, and LSTM models.

Model Model parameters Value

PLS N_components (Number of Components to Keep) 2

Max iter (The Maximum Number of Iterations) 500

Tol (Tolerance Used in the Iterative Algorithm) 10-6

Scale (Scale the Data) True

SVM The Kernel Function Polynomial Kernel

Cache_size 200

Tol (Tolerance Used in the Iterative Algorithm) 10-3

Max_iter -1

C (Regularization Parameter) 1

RF n_estimators (Number of Trees in the Forest) 200

n_jobs 1

Min_samples_leaf 5

Min_impurity_split 0

FBoot 1

BP Batch size 64

Epochs 400

Learning Rate 0.01

Goal 10-5

Training Function Gradient Descent

CNN Normalize L2

Optimizer Adam (Adaptive moment estimation)

The Activation Function ReLU (Rectified Linear Unit)

Batch Size 64

Learning Rate 0.001

Epochs 400

Dropout 0.5

Verbose 1

LSTM Normalize L2

Optimizer Adam (Adaptive moment estimation)

The Activation Function Tanh (TanHyperbolic)

NumHiddenUnits 20

Batch Size 64

Learning Rate 0.001

Epochs 40

Dropout 0.5

Verbose 1
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Y1=0:488X1−0:063X2+0:377X3−0:322X4−0:484X5+0:521X6

 Y2=−0:321X1+0:618X2+0:488X3−0:483X4+0:154X5−0:143X6

CSC was calculated by formula (2) to obtain the comprehensive

model of principal component (Y):

      Y=0:132X1+0:237X2+0:426X3−0:398X4−0:203X5+0:228X6

Based on the percentage method, each coefficient of the above

comprehensive scoring model was normalized to obtain LTRI:

LTRI=0:081X1+0:146X2+0:262X3−0:245X4−0:125X5+0:141X6
Frontiers in Plant Science 07
The hypothermia response map of LTRI (Figure 3) showed that

the change of LTRI was closely related to the duration of hypothermia

and the severity of freezing injury. The smaller the LTRI value, the

greater the damage of low temperature to tea plants. It was speculated

that LTRI could be used to comprehensively evaluate the cold

resistance response of tea plants.
3.3 Preprocessing of spectral data

In addition to the information related to the samples, the raw

spectral data also contains baseline drift, noise and other information,
TABLE 6 Factor loadings in principal components.

Y1 Y2

X1 0.826 -0.482

X2 -0.106 0.927

X3 0.638 0.732

X4 -0.562 -0.724

X5 -0.818 0.231

X6 0.881 -0.215
frontie
TABLE 4 Descriptive statistics of low temperature-induced components and degree of low temperature damage in tea leaves.

Index Maximum Minimum Average value Standard deviation

SPAD 81.267 39.675 62.187 7.837

SS (mg/g) 39.120 17.000 28.524 5.323

MDA (nmol/g) 39.703 16.000 27.238 5.779

CAT (mmol/min/g) 38.170 17.159 26.469 4.884

POD (U/g) 12.700 1.000 5.973 2.908

SOD (U/g) 438.268 242.000 359.429 36.312
FIGURE 2

Data changes of low temperature-induced components under different low temperature conditions.
TABLE 5 The eigenvalues and variance contribution rate of each index
correlation matrix.

Component(Y) l VC(%) CVC(%)

1 2.862 47.706 47.706

2 2.251 37.524 85.231

3 0.595 9.915 95.146

4 0.198 3.295 98.44

5 0.081 1.351 99.791

6 0.013 0.209 100
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which reduces the robustness and accuracy of prediction or

classification models (Pu et al., 2014). In order to establish a stable

and reliable quantitative analysis model, S-G, MSC and 1stD were

combined to preprocess the spectral data. The original average

reflectance spectrum and the spectral curve after preprocessing

were shown in Figure 4. After pretreatment, the absorption peaks

and reflection valleys of the spectrum can be clearly observed. The

absorbance of tea samples increased at 650 nm and 800 nm.
3.4 Selection and analysis of
characteristic bands

The spectral data obtained includes 176 bands. Considering the

redundancy between variables, CARS, SPA and UVE algorithms were

used to select feature bands to reduce useless information, thereby

improving the efficiency and reliability of the model. The number and

distribution of characteristic bands were shown in Table 7 and

Supplementary Table 1.

The results showed that among the characteristic band screening

methods of SPAD, UVE had the largest number of feature bands,

which was 82, and CARS had the least number of feature bands, which
Frontiers in Plant Science 08
was 11. Among the feature band screening methods of SS, UVE had

the largest number of feature bands, which was 112, and CARS had

the least number of feature bands, which was 13. Among the

characteristic band screening methods of MDA, UVE had the

largest number of feature bands, which was 81. The number of

characteristic bands screened by SPA was the least, which was 10;

Among the feature band screening methods of CAT, UVE had the

largest number of characteristic bands, 70, and the number of

characteristic bands filtered by CARS was the least, 6; Among the

characteristic band screening methods of POD, UVE had the largest

number of characteristic bands, 83, and SPA had the least number of

characteristic bands, 13; Among SOD’s characteristic band screening

method, SPA had the largest number of characteristic bands, 17, and

CARS had the largest number of characteristic bands, 11; Among the

characteristic band screening methods of LTRI, UVE had the largest

number of feature bands, 150, and SPA had the least number of

feature bands, 16.

Overall, CARS and SPA haven better variable selection ability

than UVE, the UVE algorithm filters more abundant feature bands

than CARS and SPA. The study by Ji et al (Ji et al., 2022). also showed

that compared with other feature band selection methods, the number

of features obtained by UVE selection was the largest.
FIGURE 3

Variation of low temperature response index (LTRI) under different low temperatures.
BA

FIGURE 4

Image comparison of unprocessed spectral data and preprocessed spectral data. (A) Represent the original spectrum (B) Represent pretreatment spectrum.
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3.5 Establishment and comparison
of models

3.5.1 Analysis of the best models for
different indicators

Based on the characteristic bands screened by CARS, SPA, UVE

algorithms and all the bands, a total of 168 different indexes models

were established by using PLS, SVM, RF, BP, LSTM and CNN

algorithms. The accuracy evaluations (R2, RMSE and RPD) of all
Frontiers in Plant Science 09
models were shown in Supplementary Table 2. Figure 5 showed the

validation results of the model with R2
p evaluation test set samples.

The results indicated that in the prediction of SPAD, SS, MDA, CAT,

POD, SOD and LTRI, the models with the highest prediction

accuracy were SPAD-UVE-BP, SS-UVE-LSTM, MDA-UVE-SVM,

CAT-UVE- CNN, POD-UVE-CNN, SOD-SPA-SVM and LTRI-

UVE-CNN, the R2
p of the models were 0.879, 0.807, 0.779, 0.760,

0.577, 0.698 and 0.890, respectively. Figure 6 showed the prediction

results of the best model for 7 indicators. Among them, the red line
TABLE 7 Bands screening result.

Screening method

CARS SPA UVE NONE

Index Number of bands

SPAD 11 16 82 176

SS (mg/g) 13 16 112 176

MDA (nmol/g) 19 10 81 176

CAT (mmol/min/g) 6 11 70 176

POD (U/g) 19 13 83 176

SOD (U/g) 11 17 15 176

LTRI 17 16 150 176
front
FIGURE 5

Modeling results of low temperature-induced components and low temperature injury degree of tea leaves.
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was the 1:1 line, and the orange line was the regression line between

the predicted and actual values. The predicted values of the samples

have been distributed around the regression line at a relatively close

distance, indicating that the 7 models have good robustness.

To sum up, the LTRI comprehensive model had higher accuracy

and better efficacy than the 6 single index models. This demonstrated

that the relationship between LTRI and spectrum was closer than

other single physicochemical indicators. LTRI can more

comprehensively and objectively evaluate the low temperature stress

of tea plants, and effectively evaluate the cold resistance of tea plants.

3.5.2 Comparison of different variable selection
methods based on LTRI

Since LTRI was more representative in each indicator, this section

only described the prediction model based on LTRI. Figure 7 showed

the comparison of the results of the LTRI models established based on

the different number of characters bands. The results showed that the

spectral information of the bands selected by the UVE algorithm was
Frontiers in Plant Science 10
more abundant and effective, and the regression effect of the model

based on the characteristic bands screened by the UVE was better than

the model based on the full-band and the models based on the feature

bands screened by CARS and SPA. The study of Yang et al (Yang et al.,

2021). also proved that the characteristic wavelength model established

after variable screening was better than the full-band model. The

reasons may be: compared with the full-band, UVE deletes some

collinearity variables; compared with CARS and SPA algorithms,

UVE algorithm retains more information related to LTRI in spectral

data. In addition, the CARS may cause unstable wavelength selection

results due to Monte Carlo sampling (Yun et al., 2014). While the SPA

greatly reduces the number of variables and simplifies the model, it may

also delete some key variables, thus reducing the accuracy of

predictions. The research results of Ji et al (Ji et al., 2022). also

showed that CARS extracted fewer feature bands than UVE-SPA, but

also lost more useful bands, resulting in a worse subsequent regression

effect. This was consistent with the findings of Guo et al (Guo et al.,

2020). They compared the results of the UVE-SPA-PLS and CARS-
B C

D E F

G

A

FIGURE 6

Scatter plot of measured and predicted values. (A) SPAD-UVE-BP; (B) SS-UVE-LSTM; (C) MDA-UVE-SVM; (D) CAT-UVE-CNN; (E) POD-UVE-CNN;
(F) SOD-SPA-SVM; (G) LTRI-UVE-CNN.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1096490
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Mao et al. 10.3389/fpls.2023.1096490
SPA-PLS models with those of the UVE-PLS and CARS-PLS models,

and found that the predictive performance of the SPA engagement

model was slightly lower than that of UVE-PLS and CARS-PLS.

3.5.3 Comparison of different modeling methods
based on LTRI

In order to compare the prediction effects of different modeling

algorithms on LTRI, 18 prediction models of LTRI were analysed and

compared. As shown in Figure 7, among the 6 modeling algorithms,

the CNN model had the best performance (UVE-CNN, R2
p = 0.890).

Interestingly, the other two combined models of CNN (CARS-CNN,

R2
p = 0.770; SPA-CNN, R2

p = 0.727) achieved poor results. On the one

hand, because these three CNN models all use different types of input

vectors, and the feature bands obtained based on UVE screening were

more than that of SPA and CARS. Thus, the UVE-CNN model

included more characteristic information, which indirectly improved

the accuracy of CNN model prediction (Hsieh and Kiang, 2020). On

the other hand, because deep learning was very suitable for a large

number of data sets, there were only 192 samples in this paper, which

limited the use of deep learning to a certain extent. Even so, the R2
p of

all models in this study exceeded 0.70, indicating that model

performance can be improved in future studies. Perhaps, the

expansion of the sample set can expand the advantages of the deep

learning method. In addition, other deep learning models (Stacked

Auto-Encoders, Recurrent Neural Network, and Deep Belief

Networks) may be interesting explorations for the evaluation of tea

plants frost damage.

In summary, the LTRI-UVE-CNN model achieves the best results

(R2
c = 0.957, RMSEC=0.247, RMSEP=0.249, R2

p = 0.890,

RMSEP=0.325, RPD=2.904), which proves that the comprehensive

evaluation model is better than the single physical and chemical index
Frontiers in Plant Science frontiersin.org11
model, it is also proved that the UVE-CNN architecture can exhibit

higher prediction performance.
4 Conclusion

In this study, machine learning and deep learning models for 7

low temperature stress evaluation indicators, including SPAD, SS,

MDA, CAT, POD, SOD and LTRI were established based on the

hyperspectral data of tea leaves under low temperature stress, through

spectral preprocessing, feature-band selection and other methods.

The results showed that it is possible to rapidly, non-destructively

and accurately assess the freezing injury of tea plants by combining

appropriate variable selection methods and modelling algorithms.

The best prediction models for the 7 indicators were SPAD-UVE-BP,

SS-UVE-LSTM, MDA-UVE-SVM, CAT-UVE-CNN, POD-UVE-

CNN, SOD-SPA-SVM and LTRI-UVE-CNN, R2
p was 0879, 0.807,

0.779, 0.760, 0.577, 0.698 and 0.890, respectively. Among them, the

LTRI model was superior to the single physical and chemical index

evaluation model, and more suitable for the comprehensive

evaluation of low temperature stress to tea plants. In addition,

compared with the three variable selection methods (i.e., CARS,

UNE and SPA), the UVE method performed best; compared with 6

modeling algorithms (i.e., PLS, SVM, RF, BP, CNN and LSTM), the

CNN algorithm performed best.

In conclusion, the LTRI values constructed by principal

component analysis in this study can effectively evaluate tea plants

response to the low temperature stress. The CNN model of LTRI

based on the selected bands of UVE was proved to be accurate and

robust (LTRI-UVE-CNN: R2
p = 0.890, RMSEP = 0.325, RPD = 2.904).

This study provides the basis for non-destructive and accurate
FIGURE 7

Prediction results of the tea plant low temperature response index (LTRI) model based on the characteristic bands selected by different variable selection methods.
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monitoring of tea plants under natural disaster by using hyperspectral

imaging and modeling algorithms.
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