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The NAC transcription factors
play core roles in flowering and
ripening fundamental to fruit
yield and quality
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Fruits are derived from flowers and play an important role in human food, nutrition,

and health. In general, flowers determine the crop yield, and ripening affects the

fruit quality. Although transcription factors (TFs) only account for a small part of

plant transcriptomes, they control the global gene expression and regulation. The

plant-specific NAC (NAM, ATAF, and CUC) TFs constitute a large family evolving

concurrently with the transition of both aquatic-to-terrestrial plants and

vegetative-to-reproductive growth. Thus, NACs play an important role in fruit

yield and quality by determining shoot apical meristem (SAM) inflorescence and

controlling ripening. The present review focuses on the various properties of NACs

together with their function and regulation in flower formation and fruit ripening.

Hitherto, we have a better understanding of the molecular mechanisms of NACs in

ripening through abscisic acid (ABA) and ethylene (ETH), but how NACs regulate

the expression of the inflorescence formation-related genes is largely unknown. In

the future, we should focus on the analysis of NAC redundancy and identify the

pivotal regulators of flowering and ripening. NACs are potentially vital manipulation

targets for improving fruit quantity and quality.
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Introduction

Transcription factors (TFs) only account for a small quantity of genes in plant

transcriptomes (less than 10%), but they control the global gene expression and regulation

in plant development and adaptation. The plant-specific NAC (NAM, ATAF, and CUC) TFs

constitute a large family, such as 101, 328, 138, and 280 members in tomato, rice, Arabidopsis

and tobacco respectively (Liu G. S. et al., 2022). In general, the role of a TF is dependent on its

binding to the cis-elements of the target genes, which are associated with nuclear localization,

DNA binding, oligomerization, and gene expression. Because the NAC family exists from

aquatic green algae to higher terrestrial plants, its members participate in the formation of the

organ boundaries of plants transiting from vegetative growth to reproductive growth and are

related to flower development and fruit ripening, which are essential to crop yield and quality
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(Maugarny-Calès et al., 2016; Ma et al., 2017; Mathew and Agarwal,

2018; Forlani et al., 2021; Singh et al., 2021; Liu G. S. et al., 2022).

Thereby, in recent years, much progress has been made toward

understanding the molecular mechanisms regulated by NAC TFs in

flower development (Guo et al., 2022; Liang et al., 2022; Liu X. et al.,

2022; Wang et al., 2022; Ghissing et al., 2023) and fruit ripening (Fu B.

L. et al., 2021; Gao et al., 2021; Kou et al., 2021; Gao et al., 2022; Li

et al., 2022; Liu B. et al., 2022; Qi et al., 2022). In this review, we

mainly summarize up-to-date advances on the basic properties,

function, and action mechanisms of NACs in flower formation,

flowering, and fruit ripening to improve our understanding of the

molecular basis of crop yield and quality mediated by NAC TFs.

Specifically, we highlight that the NAC family includes no apical

meristem (NAM), Arabidopsis transcription activator factors

(ATAF1/ATAF2), and cup-shaped cotyledon (CUC2), which all

contain a conserved amino acid (aa) sequence at the N-terminal

with five subdomains, which not only possess versatile regulatory

patterns at the DNA, RNA, and protein levels but also serve as

activators or repressors through variable transcriptional regulatory

regions at the C-terminal. Plant-specific NACs evolved from the

streptophyte green algae to higher plants, concomitant with the

transition of aquatic-to-terrestrial living and vegetative-to-

reproductive growth, with a line of distinct NACs constituting a

complex regulatory network linked to the phytohormones abscisic

acid (ABA) and ethylene (ETH) that are essential to flowering and

ripening. Thus, NACs are potentially important manipulation targets

for improving fruit quantity and quality.
Basic traits of NAC transcription factors

In response to the aquatic-to-terrestrial environmental niches, the

NAC family has shown gradual amplifications in gene size and

diversity for the colony of land concurrently with the evolution of

additional gene functions for water conductance, cell support, xylem/

phloem differentiation, and vasculature formation, adaptive to land

living in a sessile manner. Therefore, the present NACs in higher

plants have developed a variety of structural and action traits,

including DNA binding, nuclear localization, oligomerization/

protein–protein interactions, and hierarchical regulatory patterns,

using a conserved N-terminal NAC domain for target binding and

a diverse C-terminal flexible region for regulating gene expression as

activators or repressors.
NAC domain traits

NAC TFs have the conserved N-terminal NAC region with about

150 aa including both nuclear localization signal (NLS) and DNA

binding regions, which are further divided into five subdomains

designated from A to E (A, C, and D are more highly conserved

compared to B and E) and a C-terminal region as a transcriptional

regulatory/activation region (TRR and TAR, respectively) (Figure 1).

In particular, members of the NAC family have a conserved domain

fold containing one b-sheet flanked by an a-helical element, and the

C-subdomain has a DNA recognition conserved motif sequence

(WKATGT/NDK) that specifically binds to the developmental core
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CGT(GA) and the stress core CGTG (Mathew and Agarwal, 2018)

(Figures 1B, E). In addition, NACs include activators and repressors

for gene expression and repression, respectively, resulting from the

NAC repression domain (NARD) in the D subdomain, such as the

rice NAC020 and NAC026, which show bifunctionality having both

activation and repression properties (Mathew et al., 2016). In

addition, NAC proteins have homodimers and heterodimers, and

dimerization is required for stable DNA binding to post-

transcriptional and translational modifications in target genes

(Chen et al., 2016) (Figure 1B). In conclusion, the N-terminal

region in NACs contains the repression domain, while the C-

terminal region is the transactivation region to a large degree.

These properties allow NACs to have multiple regulatory patterns

at the transcriptional, post-transcriptional, and translational levels,

serving as activators and repressors in response to developmental and

environmental cues.
NAC localization traits

Most of the members of the NAC TF family are localized in the

nucleus, although a few of them are situated in other organelles such

as the plasma membrane (PM), the cytoplasm, and the endoplasmic

reticulum (ER) (Olsen et al., 2005; Kim et al., 2006; Kim et al., 2007;

Seo et al., 2008; Wang et al., 2016; Bhattacharjee et al., 2017). Notably,

membrane-bound NACs may be anchored in membrane systems,

including the PM, ER membrane, and nuclear membrane, in inactive

forms. Stimulation by developmental or environmental cues

promotes their release and trafficking from the membrane to the

nucleus for the control of target gene expression in a common

regulatory pattern (Kim et al., 2006; Kim et al., 2007; Seo et al.,

2008; Wang et al., 2016; Bhattacharjee et al., 2017). Altogether, the

multiple localizations and the translocation traits of NAC TFs

implicate various biological functions and regulatory mechanisms

in response to developmental and environmental cues.
NAC evolutionary traits

Environmental factors have played a vital role in the

diversification of the NAC family, to a great extent, enabling higher

plant survival and prosperity on land. Construction of a phylogeny

tree based on the NAC family from green algae to higher plants can

help to better understand the origin and expansion of NACs from

their aquatic to terrestrial evolution (Mathew and Agarwal, 2018).

Higher plant-specific NACs are potentially from the ancestral WRKY

protein, concomitant with the transition from an aquatic to a

terrestrial environment through two landmark expansions—the

evolution of bryophytes from streptophytes, followed by the

development of flowering angiosperm plants from vascular plants—

which highlight the vital role of NACs in plant evolution (Yamasaki

et al., 2013; Maugarny-Calès et al., 2016; Mathew and Agarwal, 2018).

The subfamily of FaNAC035 (Moyano et al., 2018; Martı́ n-Pizarro
et al., 2021), a key regulator of strawberry fruit development and

ripening, is a typical case. Phylogenetic analysis showed that this

subfamily also followed the evolutionary relationships from aquatic to

terrestrial, and some conserved motifs were discovered to be lost
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FIGURE 1

Basic traits of NAC (NAM, ATAF, and CUC) transcription factors (TFs). (A) Structure and function of NACs. (B) Three-dimensional structure of the
Arabidopsis AtNAC019 protein homodimer. The AtNAC019 NAC domain crystal form IV is from the PDB database (PDB DOI: 10.2210/pdb4DUL/pdb).
(C) Phylogenetic relationship of the NAC TFs. The homologous proteins of the strawberry NAC TF FaNACA2 (FaNAC035) (Martı́ n-Pizarro et al., 2021)
were found and verified in 24 species using BLAST and CDD tools, and a phylogenetic tree was constructed with reference to the evolutionary
relationship of the NAC TF family in plants. The multiple sequence alignment, sequence pruning, model search, and phylogenetic tree construction were
performed in Phylosuite_v1.2.2. The phylogenetic tree was obtained by applying the maximum likelihood method to a matrix of pairwise distances
estimated using a JTT (Jones–Taylor–Thornton) model (bootstrap: ultrafast; no. of bootstraps: 10,000). Blue letters represent monocots and red letters
represent dicots. Msp, Mougeotia sp.; Php, Physcomitrella patens; Sm, Selaginella moellendorffii; Gb, Ginkgo biloba; Amt, Amborella trichopoda; Si,
Setaria italica; Sb, Sorghum bicolor; Zm, Zea mays; Os, Oryza sativa; Ta, Triticum aestivum; Hv, Hordeum vulgare; At, Arabidopsis thaliana; Bo, Brassica
oleracea; Ci, Citrus sinensis; Fa, Fragraria ananassa; St, Solanum tuberosum; Gm, Glycine max; MD, Malus domestica; Pb, Pyrus bretschneideri; Pp,
Prunus persica; Vv, Vitis vinifera; Rc, Ricinus communis; Mt, Medicago truncatula; Cs, Cucumis sativus. (D) The conserved motifs of all 51 sequences
were queried online through the MEME website (https://meme-suite.org/meme/tools/meme). Motif1 corresponds to the A and B subdomains in the NAC
domain, Motif2 contains the C subdomain, Motif3 corresponds to the D subdomain, Motif4 corresponds to the E domain, and Motif5–Motif8 are the
conserved motifs in the transcription regulatory region (TRR). (E) NAC domain consisting of five subdomains: three highly conserved (A, C, and D) and
two diverse (B and E) subdomains.
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when comparing ferns, gymnosperms, and angiosperms (Figures 1C–

E). We supposed that four subdomains (motif1–motif4) appeared

after the first evolutionary expansion; subsequently, the angiosperm

NACs evolved to the conserved motif7 and motif8, with motif7 being

conserved only in dicotyledons rather than in monocotyledons

(Figures 1C, D). The number of genes also varies, with

monocotyledons having only one member while dicotyledons have

more than two members (Figure 1C). In brief, the gene numbers and

conserved motifs are species-specific and have developed diverse

functions in adapting to developmental and stress processes.

Based on wide phylogenetic analysis, the NAC family of green

plants is divided into six major groups (groups I–VI) as follows: 1) the

basal group I functions in water conduction and cell support; 2) the

developmental group II, which includes CUC1–CUC3 (AtNAC054,

AtNAC031, and AtNAC098), function in shoot apical meristem

(SAM) formation and cotyledon separation, associated with the

ETH–auxin pathways; 3) group III has the transmembrane motif

(TMM); 4) group IV functions in the timing control of several

developmental processes, including flower evolution, such as

AtNAC034 for flowering time, AtNAC009 for cell division, and

AtNAC042 for longevity; 5) group V regulates the stress responses;

and 6) group VI has neo- and/or sub-functionalization in different

plant species. In summary, NACs regulate many developmental and

stress processes through phytohormones (Ooka et al., 2003; Ernst

et al., 2004).
NAC hierarchical regulatory traits

Higher plants have developed multiple regulatory mechanisms to

maintain a balance between the expression and turnover of NACs

partly through NAC regulatory loops (Mathew and Agarwal, 2018).

In the past years, significant progress has been made toward

understanding the regulatory mechanisms of NACs in controlling

their homeostasis at the DNA, RNA, and protein levels, including

1) transcriptional regulation by their upstream TFs to formmessenger

RNA precursors (pre-mRNAs) in the nucleus; 2) post-transcriptional

regulation at the nucleotide level, including microRNA (miRNA)-

mediated inhibition and/or splicing of pre-mRNAs and their

transport from the synthesis site to the action sites; 3) post-

translational regulation at the protein level, including the transfer of

the cleave-mediated membrane-tethered proteins to the nucleus,

which are associated with specific active groups, protein

degradation by proteasome machinery, oligomerization, and protein

interactions (Mathew and Agarwal, 2018).

Regarding the primary function of NACs in secondary cell wall

thickening and xylem vessel element formation, the NAC secondary

wall thickening promoting factor2, NST2/AtNAC066, and ORE1

(ORESARA1/AtNAC092) are regulated by WRKY12 and EIN2

(ethylene-insensitive 2) (Wild and Krutzfeldt, 2010; Kim et al.,

2014), while the secondary wall-associated NAC domain protein1,

SND1/NAC012, appears autoregulatory in nature (Wang et al., 2011).

In sweet potato (Ipomoea batatas), the homeostasis of IbNAC1 is

regulated by the competitive binding of two upstream TFs (the

activator bHLH3 and the repressor bHLH4) to its promoter (Chen

et al., 2016). Seven vascular-related NAC domains (AtVNDs) can
Frontiers in Plant Science 04
induce the expression of AtVND7 by binding to its promoter (Endo

et al., 2015; Nakano et al., 2015).

NAC TFs have also evolved multiple post-transcriptional

regulatory processes, including miRNA-mediated cleavage,

alternative splicing, and trans-splicing, in regulating the transcripts

of NAC functional genes, such as the microRNA164 (miR164)-

mediated and organ boundary formation regulatory genes (e.g.,

CUC1/AtNAC054, GOBLET/GOB, and SlNAM2) (Samad et al.,

2017), the petal size regulatory genes (e.g., RhNAC100 in Rosa

hybrid) (Pei et al., 2013), and the cell wall thickening genes (e.g.,

PtrWND1B-s and PtrWND1B-l in Populus trichocarpa) produced by

intron-mediated alternative splicing of the wood-associated NAC

TF1B (PtrWND1B) (Zhao et al., 2014).

Nuclear localization is a prerequisite for a protein to function as a

TF; thus, NACs contain a bipartite NLS within the D subdomain.

However, the Arabidopsis NTL4/AtNAC053 protein accumulates

early in the ER, and its C-terminal portion may move to the

nucleus after its cleavage from the ER (Kim et al., 2007), as

confirmed by several similar reports on NACs targeted to the

nucleus by homomerization/heteromerization (Seo et al., 2010; Ng

et al., 2013; Lee et al., 2014; Mathew et al., 2016). These findings

uncover an important regulatory mechanism of the activity of NACs

from early PM/ER localization to nucleus translocation.

In addition, NACs participate in post-translational modifications

through reversible acetylation and phosphorylation, protein–protein

interactions, and ubiquitin-mediated proteolysis. For instance, the

phosphorylation of the membrane-associated NTL6/AtNAC062 by

SnRK2.8 (SNF1-related protein kinase) promotes the entry of NTL6

into the nucleus during drought conditions (Robertson, 2004; Kim

et al., 2012; Guan et al., 2014). NAC proteins can form both homo-

and heterodimers through the conserved b-sheet domain, which is

influenced by the TRR/TAR (Zhu et al., 2012). The rice OsNAC29

and OsNAC31 independently interact with OsSLR1 (SLENDER

RICE1), a repressor for OsMYB61, which promotes cellulose

synthesis by increasing the transcripts of a cellulose synthase gene

(Huang et al., 2015). The involvement of NAC1 in auxin signaling is

ubiquitinated by SlNAT5, an E3 ubiquitin ligase, which leads to the

degradation of NAC1 and the downregulation of the auxin signal in

plant cells (Xie et al., 2002; Guo et al., 2015). In summary, NAC TFs

have shown varied regulatory mechanisms at the transcriptional,

post-transcriptional, translational, and post-translational levels.
NAC transcription factors regulate the
transition from vegetative to
reproductive growth and flower
formation essential to crop yield

Flowering is a critical agricultural trait associated with fruit yield.

Flower initiation and fusion congenitally occur within a single whorl

of floral organs to form a connation or union, such as the union of

sepals to form a calyx tube, the adnation of stamens and petals to form

a corolla tube, and the connation of carpels to form the gynoecium

(Ma et al., 2017; Phillips et al., 2020). In most angiosperms, the fusion

of various floral organs to form diverse flowers and inflorescences
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with different floral colors, sizes, shapes, scents, inflorescences, and

flowering times that are linked to sepals/petals, stamens, and carpels

—from free to fused structures, in addition to a spiral arrangement

from the whorled corolla and androecium to a single flower or various

inflorescences—is closely related to NAM/CUC3-mediated boundary

formation through meristematic development and differentiation (Ma

et al., 2017; Phillips et al., 2020).

In the primordium, the formation of distinct boundaries is a

critical step to floral organ initiation. The meristematic activity

between organs allows floral fusion, which is associated with the

early identified genes that are key to boundary formation, separate

lateral organ development, and floral fusion, such as the Arabidopsis

LOB (lateral organ boundaries) and Petunia hybrida NAM/CUC3 (no

apical meristem), during the transition from vegetative to

reproductive growth (Souer et al., 1996; Husbands et al., 2007).

Indeed, variations in the expression of the NAM/CUC3 genes

correlate with the variations in fusion within floral organs due to

nam mutants failing to initiate a SAM (Zhong et al., 2016). Similarly,

the Arabidopsis genes CUC1/CUC2 and ATAF1/ATAF2 possess a

mutant phenotype similar to the nam mutant. These mutations are

associated with failure to initiate the SAM and defective to boundary

formation, leading to the fusion of cotyledons and floral whorls (Aida

et al., 1997). A distinct boundary is required for proper leaflet

formation, as evidenced by a tomato gob (goblet) mutant similar to

the nam (Berger et al., 2009). Taken together, the tomato gob mutant

is phenotypically similar to the nam/cuc3mutants in both Arabidopsis

thaliana and P. hybrida, in terms of failing to initiate the SAM and the

presence of fused cotyledons and floral organs, suggesting a model to

meet the requirements of higher NAM/CUC3 expression to increase

the separation of the structures and lower expression to promote

organ fusion. To a large extent, the NAM/CUC3 family promotes the

evolution of floral fusion phenotypes by controlling organ boundary

formation (Phillips et al., 2020).

Interestingly, phylogenetic analyses based on comparative

genomics across algae and higher plants showed that the NAC

family might date back to streptophyte green algae (Maugarny-

Calès et al., 2016). From the view of evolution, after the transition

of NACs from algae to land organisms, they subsequently expanded

throughout land plants, from 20–30 proteins in mosses and

lycophytes to over 100 copies in various angiosperm species (Zhu

et al., 2012; Pereira-Santana et al., 2015; Maugarny-Calès et al., 2016),

among which NAM/CUC3 became a distinct subfamily while the

NAM clade (NAM/CUC1/CUC2) was clustered as a sister group of

the CUC3 proteins throughout angiosperms (Maugarny et al., 2016).

The function of NACs in the formation of vascular tissues promotes

flower diversification and makes plants more adaptable to various

land environments through seed propagation, which is a landmark

event in the evolution of land plants (Maugarny-Calès et al., 2016). In

summary, the NAC family plays a pivotal role in the formation of the

SAM, which is fundamental to flowering and post-flowering

phylogenetic processes, including organ boundary formation,

secondary wall thickening, floral development, flowering, embryo

and seed development, and fruit development and ripening.

Indeed, the identification of the nammutant and the evolution of

the later redundant CUC1/AtNAC054, CUC2/AtNAC098, and CUC3/

AtNAC031 uncovered the specialization and diversification of NACs

in the formation of embryos and flowers (Souer et al., 1996; Hibara
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et al., 2006; Raman et al., 2008). At the molecular level, CUC1 directly

regulates the expression of LSH3/LSH4 (light-dependent short

hypocotyls 3/4) in shoot organ boundary cells, which are associated

with the transition from shoot vegetative growth to flower

reproductive growth (Takeda et al., 2011). It was further found that

SlNAM2 participates in establishing the tomato flower whorl and

sepal boundaries (Hendelman et al., 2013). In addition, CUC1–

CUC3, NAM, and NH16 can suppress vegetable growth and, thus,

promote establishment of the boundaries of the floral organs, such as

petals, sepals, and stamens, of plants (Vroemen et al., 2003; Zhong

et al., 2016). Therefore, NACs are important in the formation and the

maintenance of the different meristem tissues for organ boundary

formation and are essential to the transition from vegetative to

reproductive growth, which is necessary for embryogenesis, seed

formation, and fruit development.

Owing to the vital role of NACs in cell wall biosynthesis in higher

plants, it is reasonable that some of the NAC TFs, such as NST1/

AtNAC043, NST2/AtNAC066, and NST3/AtNAC012 (NAC

secondary wall thickening promoting factors 1–3), positively

regulate secondary wall thickening and, thus, function in

Arabidopsis silique formation and anther dehiscence, which are also

negatively regulated by AtNAC053, an anther indehiscence factor

(Mitsuda et al., 2005; Shih et al., 2014). In addition, NARS1/NARS2

(NAC-regulated seed morphology1/2), also known as NAC2 and

NAM, redundantly mediated Arabidopsis seed embryogenesis by

regulating the development and degeneration of ovule integuments

(Kunieda et al., 2008). Moreover, the three CUC proteins (CUC1–

CUC3) are involved in the initiation and separation of ovules during

Arabidopsis reproductive development. CUC1 and CUC2 determine

the number of ovules, while CUC2 and CUC3 control organ

separation (Gonç alves et al., 2015). Interestingly, NAM-B1

participates in the remobilization of nutrients from the vegetative

tissue to grain formation in wheat (Waters et al., 2009). In addition,

three rice NAC TFs, namely, OsNAC020, OsNAC026, and

OsNAC023, were found to be strongly associated with seed size and

grain yield (Mathew et al., 2016), as well as another NAC TF

(RhNAC100) in ETH-promoted rose flower opening (Pei et al.,

2013). Interestingly, a recent study has found loss of function in

tomato OPEN STOMATA 1 (SlOST1), a protein kinase essential for

ABA signaling and abiotic stress response. slost1 mutants also

exhibited a late flowering phenotype under normal and drought

stress conditions through SlOST1 interacting with and

phosphorylating the NAC-type TF, VASCULAR PLANT ONE-

ZINC FINGER 1 (SlVOZ1), providing insights into a novel strategy

to balance drought stress response and flowering (Chong et al., 2022).

It is worth noting that, in the long-day (LD) model plant

Arabidopsis, about 180 regulators have been confirmed to be

involved in the control of flowering time, among which

CONSTANS (CO) is a central activator, FLOWERING LOCUS C

(FLC) is a central suppressor, and SQUAMOSA PROMOTER

BINDING LIKE (SPL) is a positive TF, together with their

downstream floral TFs, including FT (FLOWERING LOCUS T),

SOC1 (SUPPRESSOR OF OVEREXPRESSION OF CO1), and

AGL24 (AGAMOUS-like24) that activate the meristemic genes LFY

(LEAFY), AP1 (APETALA1), SEP3 (SEPALLATA3), and FUL

(FRUITFULL) (Blüemel et al., 2015). A more recent study has

reported that strawberries (Fragaria sp.), a high-value horticultural
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crop, initiate flowering during the short photoperiod and low

temperatures in the autumn (Liang et al., 2022). With the onset of

inflorescence, the SAM may undergo a leaf-to-flower primordium

transformation through floral induction, during which SOC1, TFL1,

AP1, and CUC2 are vital for floral initiation (Liang et al., 2022). The

diversity of NAC proteins is critical for flower formation and fruit

development in higher plants. Although much progress has been

made toward understanding the molecular mechanisms underlying

the formation of a terminal flower through a series of important genes

(such as LFY and AP1) to control the transition from SAM to flower

formation (Figure 2) (Ma et al., 2017), how NACs regulate the

expression of these genes is poorly understood and needs to be

urgently explored in the future.
NAC transcription factors regulate
fruit ripening fundamental to
quality formation

Fruits include seeds with flower accessories, and fruit ripening is

essential to human food, nutrition, and health. Ripening is regulated

by plant hormones, including ETH in climacteric fruits and ABA in

non-climacteric fruits (Bai et al., 2021; Kou et al., 2021; Li S. et al.,

2021). Using the model plant for climacteric fruits, tomato, much

progress has been made toward understanding the molecular

mechanisms of NACs in fruit ripening through the biosynthesis

and activity of ETH and ABA (Bai et al., 2021; Kou et al., 2021; Li

S. et al., 2021). As a precursor of ETH biosynthesis, methionine (Met)

is transformed into S-adenosyl methionine (SAMe) by SAMS (SAMe

synthetase), and then SAMe is converted to ETH by 1-

aminocyclopropane-1-carboxylic acid synthase (ACS) and 1-

aminocylopropane-1-carboxylic acid oxidase (ACO). The ripening

signal is relayed through a series of ETH perception and signaling
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transduction events involving ETH receptors (ETRs), ethylene-

insensitive 2 (EIN2), EIN3/EIN3-like, and ETH response factors

(ERFs). Similarly, 9-cis-epoxycarotenoid dioxygenase (NCED) and

ABA 8′-hydroxylase (CYP707A) are key enzymes in ABA

homeostasis. The ABA perception and signaling components

include PYR/PYL/RCAR receptors, type 2C protein phosphatase

(PP2Cs), SNF1-related kinase subfamily 2 (SnRK2), and

downstream TFs, such as the ABA-responsive element binding

proteins (AREBs) and ABA-responsive element binding factors

(ABFs) (Bai et al., 2021; Kou et al., 2021; Li S. et al., 2021).
Tomato is a model for studying the roles of
NACs in fruit ripening

The first landmark finding for NAC function in ripening was

from the non-ripening mutant (nor) of tomato (Solanum

lycopersicum) fruit, known as NAC-SlNOR, which plays a central

role in its ripening (Giovannoni, 2004). However, recent studies have

considered that nor is a gain-of-function, rather than a loss-of-

function, mutant of SlNOR, and SlNOR positively regulates fruit

ripening by binding to the promoter of SlACS2 as an activator (Wang

et al., 2019; Gao et al., 2020). In addition, SlNOR is a direct target gene

of SlRIN/SlMADS-RIN (RIPENING INHIBITOR) and SlAREB1 (a

TF in ABA signaling). SlRIN and SlAREB1 bind to the SlNOR

promoter to activate its expression and to promote the expression

of SlACS2/SlACS4 and SlACO1 for ETH burst, suggesting that the

SlAREB1-mediated transcriptional regulation of SlNOR is involved in

the crosstalk between ETH and ABA in ripening (Fujisawa et al.,

2013; Mou et al., 2018).

Later, many NAC proteins of SlNOR homologs were identified in

ripening, such as SlNOR-like1 (SlNAC3/SlNAC4/SlNAC48) that

favors ripening by binding to the promoter of multiple target genes

involved in both ETH and ABA biosynthesis and signaling, including
B

A

FIGURE 2

A model for the roles of NACs (NAM, ATAF, and CUC) in flower formation and ripening. (A) NACs control the transition of the shoot apical meristem
(SAM) to the floral meristem (FM), including indeterminate inflorescence (up arrow) and determinate inflorescence (down arrow) (Ma et al., 2017). By
controlling the relative expression levels of TFL1 (TERMINAL FLOWER 1) and the FM identity genes, AP1 and LFY (APETALA1 and LEAFY, respectively), in
the distal inflorescence meristem (IM), the IM can remain meristematic and generate different numbers of FMs before converting to a terminal flower. A
higher relative expression ratio prevents the expression of the FM identity genes LFY and AP1 in the distal IM during the onset of indeterminate
inflorescence. However, during determinate inflorescence development, the expression of the FM identity genes in the distal IM can evoke the
expression of the C class AGAMOUS (AG) and E class SEPALLATA (SEP) genes, thus determining the floral fate of the apical meristem. FL, flowering.
(B) NACs control tomato fruit ripening through ethylene (ETH) and abscisic acid (ABA), which are involved in NOR, NORL, RIN, NAM1, and NAC1/4/9.
NOR, RIN, and NAC4/9 constitute an interaction complex in which NOR, together with NORL, NAC1, and NAM1, regulates ripening through ETH, while
NAC9 regulates ripening through ABA. NOR, non-ripening mutant; NORL, NOR-like; NAM, no apical meristem; RIN ripening inhibitor.
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SlACS2, SlACS4, SlACS8, SlACO1, SlACO6, SlCYP707A1, SAPK3, and

SlPYL9. In particular, SlNAC9 interacts with SlPYL9 and SlAREB1

(Kou et al., 2016; Gao et al., 2018; Yang et al., 2021). In contrast,

SlNAC1 (SlNAC033) can directly bind to the promoter regions of

SlACS2 and SlACO1 and has multiple effects on tomato fruit ripening

by inhibiting the biosynthesis of ETH while enhancing the expression

of SlNCED1 and SlNCED2 for the accumulation of ABA (Ma et al.,

2014; Meng et al., 2016). It has been reported that SlNAC4 may be

upstream of ETH biosynthesis by regulating the activities of SlRIN

and SlNOR (ZhuM. et al., 2014). On the other hand, the expression of

SlNAC7 was induced by ETH and ABA during color breaking, and,

together with SlNAC6, it induced the expression of SlACS2, SlACS4,

SlACO1, SlNCED1, SlNCED2, SlABA2, and aldehyde oxidase

(SlAAO1/2) (Zhu M. K. et al., 2014; Jian et al., 2021). Similarly, a

recent report has shown that the new NAC, SlNAM1, is a positive

regulator of ripening initiation by promoting the expression of

SlACS2 and SlACS4 (Gao et al., 2021). In addition, an Arabidopsis

NAC, JUNGBRUNNEN1 (AtJUB1), was overexpressed in tomatoes

and resulted in dwarf plants and delayed ripening fruits by directly

binding to a line of gene promoters of GA3ox1 (GA 3-oxidase 1) and

DWF4 (DWARF4), which are responsible for the biosynthesis of both

gibberellin (GA) and brassinosteroid (BR), and indirectly inhibited

the expression of ACS, ACO, SlERF.H15, and SlRIN (Shahnejat-

Bushehri et al., 2017).

Notably, a recent study has found that the NAC-NOR target gene

encoding lipoxygenase (SlLOXC) is involved in fatty acid-derived

volatile synthesis by epigenetics. NAC-NOR activated the expression

of SlDML2 (DNA demethylase 2) by directly binding to its promoter

both in vitro and in vivo (Gao et al., 2022). On the other hand, the

reduced NAC-NOR expression in the sldml2 mutant was

accompanied by the hypermethylation of its promoter,

demonstrating a relationship between SlDML2-mediated DNA

demethylation and NAC-NOR during tomato fruit ripening (Gao

et al., 2022).

In summary, a series of NAC TFs constitute a complex regulation

network in tomato fruit ripening, mainly through ETH and ABA

homeostasis and signaling levels, confirming that the NAC family

plays a central role in fruit ripening.
NACs play an important role in the ripening
of many climacteric fruits

In addition to tomatoes, the NAC family also plays vital roles in

many climacteric fruits. For instance, at least 13 NAC genes have been

found during apple (Malus domestica) fruit ripening (Wang et al.,

2011; Zhang et al., 2018; Migicovsky et al., 2021). In banana fruits

(Musa acuminata), a total of six NACs (MaNAC1–MaNAC6) were

associated with fruit ripening (Shan et al., 2012; Li et al., 2020; Shan

et al., 2020; Wei et al., 2021). In pear fruits (Pyrus pyrifolia), 185

NACs were found in the genome, among which 1) PpNAC56 may be

related to fruit ripening (Ahmad et al., 2018); 2) PpNAP1, PpNAP4,

and PpNAP6 may regulate ripening through ETH and ABA;

3) PpNOR controls fruit ripening in a conservative manner, similar

to SlNOR; and 4) PpNAC.A59 directly promotes PpERF.A16 by

binding to its promoter and facilitating the expression of PpACS1

and PpACO1, confirming that it plays an important role in fruit
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Ahmad et al., 2018; Guo et al., 2021; Tan et al., 2021).

Moreover, during ripening in papaya fruits (Carica papaya L.),

CpEIN3a could interact with CpNAC2 to activate the biosynthesis of

carotenoids, while CpNAC3 could interact with CpMADS4 to

activate the expression of pERF9 and CpEIL5 (Fu et al., 2017; Fu C.

C. et al., 2021). In apricot (Prunus sibirica) fruits, 102 NACs were

identified in the genome, among which PsNAC6/13/46/51/41/67/37/

59 were highly expressed during the ripening stage (Xu et al., 2021). In

kiwifruit (Actinidia deliciosa/Actinidia chinensis), AcNAC2–AcNAC4

are positive regulators of ripening through ETH production, while

AdNAC2/AdNAC3 are promoted by methyl jasmonate (MeJA),

suggesting a crosstalk between MeJA and ETH via AdNAC2 and

AdNAC3 (Wang et al., 2020). In addition, the positive regulators of

AdNAC6 and AdNAC7 in ripening are degraded by miR164, while

this degradation is inhibited by ETH. Interestingly, the miR164–NAC

pathway is conserved in both climacteric and non-climacteric fruits,

including apple, pear, banana, peach, strawberry, citrus, and grape

(Wang et al., 2020; Wu et al., 2020; Nieuwenhuizen et al., 2021).

Notably, a recent study has found that the NAC TF NOR is a

master regulator of climacteric fruit ripening. Melon (Cucumis melo)

(Rios et al., 2017) has climacteric and non-climacteric fruit ripening

varieties, such as the climacteric and non-climacteric haplotypes

CmNAC-NORS,N and CmNAC-NORA,S, respectively. A natural

mutation in the transcriptional activation domain of CmNAC-

NORS,N contributed to climacteric melon fruit ripening by directly

activating its carotenoid, ETH, and ABA biosynthesis genes. In

addition, CmNAC-NOR knockout in the climacteric-type melon

cultivar “BYJH” completely inhibited fruit ripening, while ripening

was delayed by 5–8 days in heterozygous cmnac-nor mutant fruits.

Finally, CmNAC-NOR mediated the transcription of the “CmNAC-

NOR–CmNAC73–CmCWINV2” module to enhance flesh sweetness.

Altogether, the transcriptional activation activity of the climacteric

haplotype, CmNAC-NORS,N, on these target genes was significantly

higher than that of the non-climacteric haplotype, CmNAC-NORA,S,

providing insights into the molecular mechanism of climacteric and

non-climacteric fruit ripening in melon (Zhang et al., 2022). In

addition, single-cytosine methylome analyses of a DNA

demethylase ROS1 (MELO3C024516)-knockout mutant revealed

changes in DNA methylation in the promoter regions of the key

ripening genes, such as ACS1, ETR1, and ACO1, suggesting the

importance of DNA demethylation in melon fruit ripening

(Giordano et al., 2022). Thus, the NAC family participates in

climacteric fruit ripening at multiple regulation levels.
NACs also play a role in the ripening of
many non-climacteric fruits

Strawberry (Fragaria ananassa) is a non-climacteric model plant,

and 112 NAC genes have been found in the genome, including six

NACs, FaNAC006/021/022/035/042/092, related to fruit development

and ripening. FaNAC035/FaRIF regulates ripening via ABA

biosynthesis and signaling, demonstrating the presence of not only

a FaNAC035-mediated crosstalk among various plant hormones but

also a feedback mechanism between the ABA level and its signaling

(Moyano et al., 2018; Martı́ n-Pizarro et al., 2021). In addition,
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FcNAC1 could participate in ripening regulation by responding to

upstream hormone signals, such as those of ABA and auxin

(Carrasco-Orellana et al., 2018).

In citrus (Citrus reticulata) fruits, an ABA-deficient mutant

resulted from the abnormally high expression of CrNAC036, which

bound to the CrNCED5 promoter to inhibit its expression. On the

other hand, CrMYB68 interacted with CrNAC036 to further inhibit

CrNCED5 expression, finally synergistically retarding fruit ripening

(Zhu et al., 2020). Although CitNAC62 is located in the cytoplasm,

the nucleus-localized CitWRKY1 may interact with CitNAC62 to

promote its movement (Li et al., 2017). In jujube (Ziziphus jujuba

Mill.) fruits, the NAC LOC107435239 positively regulated the

pericarp lignin accumulation during winter jujube fruit coloration

by promoting the transcription of F5H (ferulate 5-hydroxylase), and

ZjNAC13/14/38/41 showed high expression levels during ripening (Li

M. et al., 2021; Zhang Q. et al., 2021). In grape (Vitis vinifera) fruits,

VvNAC26 interacted with VvMADS9 to induce the gene expression

related to ETH and ABA biosynthesis, resulting in early fruit ripening,

suggesting that VvNAC26 promotes ripening by activating the levels

of ETH and ABA (Zhang S. et al., 2021). In litchi (Litchi chinensis)

fruits, LcNAC13 and LcR1MYB1 may antagonistically regulate the

accumulation of anthocyanin during ripening (Jiang et al., 2019). In

watermelon (Citrullus lanatus) fruits, ClNAC68 positively regulated

sucrose accumulation during ripening by directly binding to the

promoters of both the invertase (ClINV) and IAA-amino synthetase

(ClGH3.6) to inhibit their expression (Lv et al., 2016; Wang

et al., 2021).

In summary, NAC TFs not only directly target genes encoding

enzymes related to ripening parameters, softening, sugar, coloring,

and aroma but also indirectly affect fruit ripening by regulating the

homeostasis of ABA and ETH through conserved and specific

mechanisms, which are closely related to fruit quality. ETH-

controlled climacteric fruit ripening (such as in tomato) via NAC

TFs is directly targeted to the ETH biosynthesis-related genes

including ACO and ACS, while also involved in the interaction

between ABA and ETH, mostly through ABA to activate NOR

transcription and ETH synthesis. With regard to non-climacteric

fruit ripening, a homolog of the tomato NOR in strawberry, the NAC

TF FaNAC035/FaRIF, can promote ABA biosynthesis via FaNCED3.

Thus, NAC TFs play a core role in the two ripening types through the

interplay of ETH and ABA.
Conclusion

The plant-specific NAC TFs not only control the aquatic-to-

terrestrial evolution through vasculature formation but also govern
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directing SAM differentiation. In addition, they constitute a

complex regulatory network that regulates fruit ripening via ABA

and ETH, improving our understanding of the molecular

mechanisms of NACs in fruit ripening (Figure 2). Nevertheless, the

mechanisms through which NACs regulate the inflorescence

formation-related genes are largely unknown. Given that NAC TFs

belong to a large family, more focus should be given to the analysis of

their redundancy in order to identify pivotal players in the regulation

of flowering and ripening. In addition, more attention should be paid

to the regulatory network of NACs regulating the ripening of non-

climacteric fruits. Finally, NACs are potentially important

manipulation targets for improving fruit quantity and quality in the

future, likely through water control.
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