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Detection of tomato water stress
based on terahertz spectroscopy

Yixue Zhang1, Xinzhong Wang2*, Yafei Wang2, Lian Hu3

and Pei Wang2

1Basic Engineering Training Center, Jiangsu University, Zhenjiang, China, 2College of Agricultural
Engineering, Jiangsu University, Zhenjiang, China, 3Key Laboratory of Key Technology on Agricultural
Machine and Equipment, Ministry of Education, South China Agricultural University, Guangzhou, China
China’s tomato cultivation area is nearly 15 thousand km2, and its annual tomato

output is about 55 million tons, accounting for 7% of its total vegetable production.

Because of the high drought sensitivity of tomatoes, water stress inhibits their

nutrient uptake, leading to a decrease in tomato quality and yield. Therefore, the

rapid, accurate and non-destructive detection of water status is important for

scientifically and effectively managing tomato water and fertilizer, improving the

efficiency of water resource utilization, and safeguarding tomato yield and quality.

Because of the extreme sensitivity of terahertz spectroscopy to water, we

proposed a tomato leaf moisture detection method based on terahertz

spectroscopy and made a preliminary exploration of the relationship between

tomato water stress and terahertz spectral data. Tomato plants were grown at four

levels of water stress. Fresh tomato leaves were sampled at fruit set, moisture

content was calculated, and spectral data were collected through a terahertz

time-domain spectroscope. The raw spectral data were smoothed using the

Savitzky–Golay algorithm to reduce interference and noise. Then the data were

divided by the Kennard–Stone algorithm and the sample set was partitioned based

on the joint X-Y distance (SPXY) algorithm into a calibration set and a prediction set

at a ratio of 3:1. SPXY was found to be the better approach for sample division. On

this basis, the stability competitive adaptive re-weighted sampling algorithm was

used to extract the feature frequency bands of moisture content, and a multiple

linear regression model of leaf moisture content was established under the single

dimensions of power, absorbance and transmittance. The absorbance model was

the best, with a prediction set correlation coefficient of 0.9145 and a root mean

square error of 0.1199. To further improve the modeling accuracy, we used a

support vector machine (SVM) to establish a tomato moisture fusion prediction

model based on the fusion of three-dimensional terahertz feature frequency

bands. As water stress intensified, the power and absorbance spectral values

both declined, and both were significantly and negatively correlated with leaf

moisture content. The transmittance spectral value increased gradually with the

intensification of water stress, showing a significant positive correlation. The SVM-

based three-dimensional fusion prediction model showed a prediction set

correlation coefficient of 0.9792 and a root mean square error of 0.0531,

indicating that it outperformed the three single-dimensional models. Hence,

terahertz spectroscopy can be applied to the detection of tomato leaf moisture

content and provides a reference for tomato moisture detection.
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1 Introduction

Water resources are the key to agricultural development, and

China’s per capita water resource appropriation is extremely low: only

one quarter of the global average. As a large agricultural country,

agricultural water consumption accounts for 65% of total water

consumption in China, but its effective utilization rate is only 45%,

far lower than the levels of 70%–80% in advanced water-saving

countries (Zhang et al., 2020). At the same time, the production

approach of “big water and big fertilizer” also leads to a reduction in

crop quality. Therefore, vigorously improving the efficiency of

agricultural water use is an important strategic measure to ensure

water security and improve crop quality in China.

As one of the main facility crops, tomatoes are planted

throughout China. In 2017, China’s facility tomato planting area

was nearly 15 thousand km2 (Wang et al., 2021), and its annual

production accounted for nearly 1/3 of the global tomato output.

Tomatoes require a long growth period and a large amount of water,

and because of their extreme sensitivity to water, they have specific

requirements for water at different growth stages. Insufficient water

inhibits the absorption of nutrients by crops and slows the growth of

leaf area, plant height and stem thickness, resulting in reduced crop

quality and yield (Zhang et al., 2023). Therefore, the rapid, accurate

and non-destructive detection of tomato water status is very

important for scientifically and effectively managing tomato water

and fertilizer use, improving water resource utilization efficiency, and

ensuring tomato yield and quality in China.

Nondestructive detection of crop water stress has been studied

extensively, and the most important methods include spectroscopy,

the infrared canopy temperature method, and imaging. Fitzgerald

et al. (2006) tested the ability of several multispectral indexes to

estimate the nutrient status of the wheat canopy grown under

different degrees of water stress and derived the canopy reflectance

index that was closely related to these factors. Although moisture

status was diagnosed, no quantitative moisture detection method was

established. Huang et al. (2009) analyzed the factors that affected the

accuracy of a near-infrared (NIR) spectral straw moisture model,

introducing the LOCAL algorithm for nondestructive detection of

straw moisture and establishing an NIR straw moisture prediction

model. Nevertheless, the influence of environmental factors such as

changes in natural light intensity was ignored, suggesting that the

detection accuracy required further improvement. Zhang et al. (2018)

used drones equipped with thermal infrared sensors for temperature

detection in cotton fields and found that cotton canopy temperature

characteristics were correlated with cotton moisture. However, the

use of drones is greatly influenced by environmental uncertainties

such as ground evaporation, environmental heat exchange, and

airflow, and the stability and accuracy of the model are low. Tian

et al. (2016) used NIR hyperspectral imaging to extract images of

maize grain embryo structure and established a maize grain moisture

content prediction model. Unfortunately, the sample processing and

analysis process was relatively complicated, which is not conducive to

rapid moisture detection. The studies above show that although NIR

hyperspectral and thermal infrared data show good correlation with

water stress, they are greatly influenced by field energy exchange, solar

radiation, and other environmental changes because of the use of
Frontiers in Plant Science 02
thermal radiation detection. These methods often cannot

comprehensively describe the physical characteristics or internal

tissue physiological and biochemical characteristics of leaves under

water stress, which undoubtedly impacts the accuracy of

the measurements.

Terahertz spectroscopy has been described as one of the ten

technologies that will influence the future of mankind in the 21st

century (Zhang et al., 2022). Terahertz waves are electromagnetic

waves with the frequency between 0.1 and 10 THz and a wavelength

range of 30 mm to 3 mm; they lie between microwave and infrared

radiation on the electromagnetic spectrum (Luo et al., 2019). Terahertz

radiation is penetrating, fingerprinting, and coherent, and it has the

advantage of multi-dimensional fusion detection. Traditional

spectroscopic and imaging methods typically obtain information about

only the reflection characteristics of the detected object and its

distribution (image) in different characteristic spectral bands. By

comparison, terahertz time-domain spectroscopy is rich in information

about the substance (Wang et al., 2017). Under terahertz radiation, polar

molecules such as water undergo hydrogen bond breaking and formation

on picosecond timescales, leading to intense absorption of terahertz

waves (Yada et al., 2008; Yang et al., 2018). The terahertz technique can

be used to detect the water status of crops based on this phenomenon.

Terahertz spectroscopy has been applied to nondestructive

moisture detection. Because the absorption of terahertz spectra by

proteins, amino acids, and other substances in biscuits is much lower

than that of water, Liu et al. (Liu and Han, 2014) modeled the

frequency domain, refractive index, and absorption coefficient of

terahertz spectra by principal component analysis (PCA) and

partial least squares separately, and the absorption coefficient was

better than the other spectra. Breitenstein et al. (2011) examined

water stress in coffee plants and demonstrated the great potential and

reliability of terahertz spectroscopy for monitoring leaf moisture

content in the field. Gente et al. (Gente et al., 2013; Gente et al.,

2015) established a moisture prediction model for barley leaves by

combining the transmission and absorption coefficients in the

terahertz spectra, and its results were consistent with the true leaf

moisture content. Long et al. (2017) scanned green herb leaves in vitro

point-by-point at intervals using a terahertz spectrometer and

reconstructed images to observe the differences in moisture content.

They established a regression prediction model based on water

content and the time-domain and frequency-domain mean values

of the images, thereby demonstrating the applicability of terahertz

technology to leaf moisture detection. Zhao et al. (2018) studied

soybean canopy moisture content using terahertz spectroscopy by

simulating drought stress. They used partial least squares and

multiple linear regression to establish a correlation model of the

time-domain spectra, absorption coefficient, and refractive index with

leaf moisture content, providing a solution for rapid monitoring of

soybean canopy water content. The studies above show the potential

of terahertz spectroscopy for moisture content detection.

Nondestructive detection based on terahertz time-domain

spectroscopy has the advantages of speed, convenience, and minimal

disturbance compared with other detection methods. Existing studies

reveal a significant correlation between terahertz spectroscopy data and

crop moisture content, and the use of terahertz spectroscopy holds

promise for water stress detection.
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Leaf moisture content is an important indicator for diagnosing

tomato water stress. In this study, we cultivated tomatoes at different

levels of water stress and used terahertz spectroscopy to acquire time-

domain terahertz spectra of tomato leaves, including the power

spectrum, absorbance, and transmittance. A high-precision tomato

leaf moisture content prediction model was established. This study

provides a basis for scientific and appropriate precision management

of water and fertilizer during tomato cultivation.
2 Materials and methods

2.1 Sample cultivation

The quality of the test sample cultivation has a direct impact on

the test results. Therefore, in the process of sample cultivation, the

influence of environmental factors should be minimized and the

accuracy of the sample data should be improved. The experiment was

carried out in a Venlo-type greenhouse (32.2°N, 119.5°E) at the Key

Laboratory of Modern Agricultural Equipment and Technology,

Ministry of Education, Jiangsu University. The environmental

temperature of the greenhouse was maintained at 10.7-29.4°C, and

the relative humidity was 37.3%-87.9%. The test samples were 906 red

tomatoes (Shanghai Changchong Tomato Seed Industry Co., Ltd.).

Tomato seeds with large, plump grains and similar shapes were

selected, and the selected seeds were placed in lightly salted water

to screen out diseased seeds and sclerotia. The experimental samples

were cultivated in a soilless pot with nutrient solution based

on perlite.

In order to study the condition of tomatoes under different water

stress and accurately control the water under the condition of

ensuring the balance of nutrient elements, four water stress

gradients were set according to 20%, 40%, 60% and 80% of the
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standard irrigation (600 mL, a mixture of water and nutrient solution)

amount from the 5th day of planting, and 10 pots of tomato samples

were cultivated in each gradient. During the experiment, the cultured

tomato plants were watered with the Japanese Yamazaki nutrient

solution formula.
2.2 Instruments and equipment

In this study, the TS7400 THz time-domain spectral

measurement system produced by Edevan Company of Japan is

used to collect the terahertz information of samples. This system is

specially customized for agricultural biological information detection.

It has an ART attenuated total reflection module that can detect

biological tissues and living samples with high water content. Figure 1

shows the structure and working principle of the TS7400 THz time-

domain spectral measurement system. When the measurement

system is working, the laser light source emits laser pulses. Under

the action of the beam splitter, it is divided into two mutually

perpendicular lasers. One is a strong pump light, and the other is a

weak probe light. The pump light passes through the terahertz

transmitter and reflector, passes through the measured sample, and

then, collinear with the multiple reflected probe light, passes through

the probe crystal and is transmitted to the terahertz detector. The

detector transmits the difference between the two laser beams to the

A/D module, The time-domain terahertz spectrum and its

distribution information of the samples are obtained by comparing

their differences through data processing.

1. Operating/analyzing computers; 2. Ethernet; 3. Optical fiber; 4.

Analysis unit; 5. Measurement unit; 6. THz transmitter; 7. THz

detector; 8. Sample stage; 9. Cryostat transfer module; 10.

Removable stand.
FIGURE 1

The structure and working principle of the Advantest-TS7400 THz-TDS measurement system.
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Compared with the traditional terahertz device, the device not

only has higher accuracy, but also can detect samples with a scale of

up to 3 cm² Expand to 225 cm², It can better meet the measurement

needs of crop samples. The measurement frequency range of TS7400

THz time-domain spectrum measurement system is 0-4 Thz, the

resolution is less than or equal to 5 Ghz, the sampling interval is

0.0038 Thz, and the maximum sample area is 150 * 150 mm2.

The quality of tomato leaf samples was weighed with a high-

precision analytical balance with an accuracy of 0.1 mg.
2.3 Data collection

Tomato leaf samples were collected 65 days after water stress

treatment: healthy leaves were cut from the pinnate leaves of tomato

plants that were most representative of the growth state. The leaves

were immediately placed in fresh sealed bags and stored in a portable

refrigerated incubator to prevent evaporation. Twenty leaf samples

were selected from each water stress treatment for a total of 80

samples across all treatments.

After collection, the fresh leaves were weighed in a laboratory

environment and then placed in a THz time-domain spectroscopy

system to scan the spectra. To eliminate the influence of water vapor

in the air on the THz spectra, we turned on the dehumidifier in

advance to regulate the relative humidity in the test chamber to less

than 5%. Each sample was scanned at 10 sampling points, and the

data were averaged. After scanning, the leaves were dried in a 70°C

incubator for more than 24 h. When sample quality no longer

changed, the dry leaves were weighed. The moisture content of the

tomato leaves (w, %) was calculated as:

w =
m1 −m2

m2
x100 (1)

where m1 and m2 are the fresh and dry weight (g) of the

sample, respectively.
3 Results and analysis

3.1 Terahertz spectrum analysis

3.1.1 Power
The power spectrum density function, or power, is defined as the

signal power per unit frequency band. It represents the variation of

signal power with frequency, i.e., the distribution of signal power in

the frequency domain (Du et al., 2022). The power spectrum can be

used to find the relationship between signal power and moisture

content. Figure 2 shows the curves of mean power for different water

levels in the frequency range of 0.5–1.5 THz.

As the leaf water level decreased, the mean curve of the power

spectrum also decreased. The power spectra from leaves of different

water contents clearly differed, and all were higher than the

background data.
3.1.2 Absorbance
Absorbance reflects the degree of light absorption by a substance,

and differences in moisture content among leaves cause differences in
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absorbance. Figure 3 shows the curves of mean absorbance for

different leaf water levels in the frequency range of 0.5–1.5 THz.

The water level of a sample was positively correlated with the

absorbance and frequency of its terahertz spectrum. The higher the

moisture content of the tomato leaf, the greater the absorbance, and

absorbance clearly increased with increasing frequency. Clear

differences were observed among different water levels, and there

was a significant correlation.

3.1.3 Transmittance
Transmittance indicates the light transmission property of a

sample. Because terahertz waves are sensitive to water, samples with

different water levels differ significantly in transmittance. Figure 4

shows the curves of mean transmittance for different water levels in

the frequency range of 0.5–1.5 THz.

In this frequency range, transmittance decreases with increasing

frequency. The lower the leaf water level, the higher the
FIGURE 2

Curves of mean power measured for different water levels. Reference
is the background data collected when no leaf samples were present.
FIGURE 3

Curves of mean absorbance for different leaf water levels.
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transmittance, and vice versa. The main reason for this phenomenon

is that multiple interactions between polar molecules (e.g., water)

occur during irradiation by terahertz waves, resulting in strong

absorption of the terahertz waves (Yang et al., 2014).
3.2 Spectral modeling

3.2.1 Data preprocessing
Terahertz time-domain spectral data will carry some noise during

the acquisition process, and the raw data contain much redundant

and invalid information and more interference noise. Hence, the data

must be preprocessed to effectively reduce interference and improve

the modeling efficiency and accuracy.

Here, the Savitzky–Golay (SG) smoothing algorithm was used to

pre-process the data. The choice of window width and polynomial

order are important when applying this algorithm; if the choice is

inappropriate, the effect of filtering and the accuracy of the data will

be affected.

Using power spectra as an example, Table 1 shows the Rc and

RMSE of the power spectra for the regression model of measured

moisture content in the same frequency band after SG smoothing

using windows of different widths. Figure 5 shows a comparison of

THz power data before and after smoothing.

During data preprocessing with the SG algorithm, the Rc of the

model decreased and the RMSE increased as the window width

increased beyond 5 (Table 1) , ser ious ly affect ing the

modeling accuracy.

After comparison of preprocessing results with different window

widths, we selected a width of 5 points/time for data preprocessing.
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3.2.2 Sample classification
To obtain better modeling results, we used both the Kennard–

Stone (KS) algorithm and the joint X-Y distance (SPXY) algorithm to

partition samples into the calibration set and the prediction set. The

modeling effects obtained after classification with the two algorithms

were compared, and the algorithm with a better effect was selected for

use in subsequent processing. The division ratio between the

calibration and prediction sets was 3:1, which meant that there

were 60 samples and 20 samples in the two sets, respectively.

Table 2 shows the modeling results of power spectrum,

absorbance, and transmittance after classification by the KS or

SPXY algorithms. These results are not from the final model, so the

evaluation indexes associated with the calibration set are used

for comparison.

The data in the calibration set obtained with the SPXY algorithm

were more correlated and had a lower RMSEC than the data obtained

with the KS algorithm (Table 2). The calibration set models for power

spectrum had higher Rc, lower RMSEC, and higher model quality

than the calibration set models for absorbance and transmittance.

Subsequent data analysis and processing were based on the

SPXY algorithm.
3.2.3 Feature band extraction
The extraction of the feature frequency band is a key aspect of

THz time-domain spectral modeling. The full THz band typically

contains many variables that have a low correlation with the target

value, and there is also collinearity between similar variables. If

irrelevant variables are not eliminated and the full frequency band

is used for modeling, the model will be complex, and some of the

irrelevant variables will lower the modeling accuracy (Liu et al., 2014).

Because too few variables lead to low model accuracy and too

many variables result in excessive model complexity, we adopted the

stability competitive adaptive re-weighted sampling (SCARS)

algorithm to extract feature frequency bands, thereby simplifying

the model and improving its efficiency and accuracy. SCARS uses the

stability of the variable as a measure, and variables with greater

stability are more likely to be selected. Moreover, the frequency band

selected remains consistent for each iteration, ensuring that variable

selection is stable and fast.

The optimal potential band variables are selected by Monte Carlo

cross-validation, and the RMSEC is obtained after each cycle. Due to

the large number of sampling times, the subset combination with the

smallest RMSEC must be selected after several repeated tests for

comparison in order to obtain a better combination of characteristic

bands. Here, the number of sampling cycles was 50, and the operation

results therefore tended to be stable. The results of SCARS are shown

in Figure 6, using the power spectrum as an example.

The RMSECV of the cross-validation model of the power

spectrum reached a minimum of 0.2136 after 27 sampling runs and

then gradually increased, indicating that SCARS began to eliminate

feature variables that had a large impact on the algorithmic accuracy.

Therefore, the subset of feature variables obtained in the 27th run was

considered to be optimal, and a total of nine THz feature bands

significantly correlated with moisture content were selected.

The absorbance and transmittance feature bands were extracted

similarly (Table 3).
FIGURE 4

Curves of mean transmittance for leaves of different water levels.
TABLE 1 Preprocessing results with different window widths.

Points 5 7 9 11

Rc 0.8804 0.8605 0.8452 0.8097

RMSE 0.1432 0.1692 0.1908 0.2094
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The extracted feature bands were concentrated around 0.54, 0.59,

1.28, 1.34 and 1.45 THz, which were correlated with peaks or troughs

in the THz moisture content curves.

3.2.4 Model analysis
After the extraction of THz feature bands, multiple linear

regression models were built by combining the optimized frequency

bands of the three optical features with the measured moisture

content of the corresponding samples. The modeling results for the

single dimensions of power spectrum, absorbance, and transmittance

are shown in Table 4.

The model based on the dimension of absorbance showed the

highest correlation between the calibration and prediction sets,

reaching 0.9102 and 0.9145, respectively, and the RMSEs of the two

sets were 0.1072 and 0.1199, respectively. The model built from the

power spectrum dimension had the lowest correlation for the

calibration set (0.8917) with an RMSE of 0.1044.

Comprehensive analysis of the single-dimension models showed

that the calibration set and the prediction set produced unsatisfactory

results: the accuracy and stability were low and could be

further improved.
Frontiers in Plant Science 06
3.3 Fusion modeling

3.3.1 Normalization
3.3.2 PCA

After the fusion of spectral features from the three dimensions,

the number of feature bands obtained was greatly increased and the

data dimension was enhanced, making the model inconvenient. To

reduce the model complexity, we used PCA to reduce the data

dimensionality after feature fusion.

PCA is a multivariate statistical method that selects a small

number of variables from a large number of variables, such that

most of the information in the raw data can be replaced by a series of

linear transformations (Wang et al., 2017).

The contribution rate and cumulative contribution rate of the

principal components after performing data dimension reduction

through PCA are shown in Table 5.

When the number of principal components was 7, the cumulative

contribution reached 0.9519 (>95%), and most of the valid

information from the feature fusion was retained. Hence, reducing

the raw feature variables from 22 to 7 dimensions can avoid

overfitting and reduce model complexity.

3.3.3 Support vector machine (SVM)
SVM based on statistical learning theory has strong learning

ability for small samples, high model generalization performance, and

the ability to handle high dimensional data, making it particularly

suitable for dealing with small samples, nonlinearity, and high

dimensional problems encountered in practical applications.

Therefore, the dimensionality-reduced fused feature variables were

used for regression modeling with SVM.

The regression model was built using the LibSVM package in

Matlab and was developed and designed by Professor Lin Chih-Jen of

National Taiwan University. This model is simple and easy to use, and

it can solve problems of classification, regression, and distribution

estimation. Among the many nuclear functions, the radial basis
FIGURE 5

Comparison of data before and after smoothing.
TABLE 2 Modeling results after classification by the KS and SPXY
algorithms.

Model Methods Rc RMSEC

Power
KS 0.8849 0.1601

SPXY 0.8969 0.1530

Absorbance
KS 0.8404 0.1893

SPXY 0.8792 0.1702

Transmittance
KS 0.8805 0.1640

SPXY 0.8908 0.1586
FIGURE 6

Results of the SCARS algorithm.
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nuclear function (RBF) has low computational complexity and is a

reasonable first choice (Wang et al, 2022).

The main parameters of an RBF model are the nuclear function of

the Gamma function parameter g, the error penalty factor C, and the

loss function p. Parameter settings can be adjusted based on the

output results and the law of curve changes until prediction accuracy

meets the requirements.

A cross-validation approach was used to select the best

parameters, and the highest Rc was 0.9815 when g, C and p were

8.65, 2.41 and 0.01, respectively. The results of fusion modeling are

shown in Figure 7.

The scatterplot relationship analysis showed that the Rc and Rp

were 0.9815 and 0.9792, respectively, higher than the highest values of

0.9102 and 0.9145 from the single-dimension models. The RMSRC

and RMSRP were 0.0453 and 0.0531, respectively, lower than those of

all the single-dimension models. Hence, the results of the fusion

model created from different dimensions by SVM outperformed the

results of all the single-dimensional models.
4 Conclusions

The relationships among the THz spectra in the power spectrum,

absorbance, and transmittance were studied and modeled separately.

Finally, a fusion model for tomato leaf moisture content prediction

was developed by fusing the feature bands from the three dimensions

using SVM. In the frequency range of 0.5–1.5 THz, leaf moisture

content level was positively correlated with absorbance and negatively

correlated with both transmittance and frequency. At the same

frequency, as the water level decreased, the power spectrum and

absorbance decreased with significant negative correlations, and

transmittance increased with a significant positive correlation. The

model based on absorbance feature frequency produced the best

results, with a correlation coefficient of 0.9145 and a root mean

squared error of 0.1199 for the prediction set.(1) The prediction set

correlation coefficient of the fusion model was 0.9792, an

improvement in accuracy of 7.1% compared with the absorbance

model, and its root mean square error was 0.0531, indicating a better

prediction effect.
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TABLE 4 Results of single-dimension models.

Index Power Absorbance Transmittance

Rc 0.8917 0.9102 0.9039

RMSEC 0.1044 0.1072 0.1061

Rp 0.8996 0.9145 0.8979

RMSEP 0.1482 0.1199 0.1132
TABLE 3 esults of feature frequency band extraction.

Model Times Select minRMSECV Frequency
point/THz

Power 27 9 0.2136
0.53, 0.60, 0.76, 0.81,
1.08, 1.14, 1.26, 1.35,
1.45

Absorbance 29 6 0.2081
0.54, 0.59, 1.19, 1.28,
1.34, 1.45

Transmittance 35 7 0.1963
0.51, 0.54, 0.59, 1.24,
1.28, 1.30, 1.46
FIGURE 7

Scatter plot of SVM.
TABLE 5 Results of PCA algorithm.

Number Contribution (%) Cumulative contribution (%)

1 0.3332 0.3332

2 0.2452 0.5784

3 0.1631 0.7415

4 0.1085 0.8500

5 0.0574 0.9074

6 0.0256 0.9330

7 0.0189 0.9519

8 0.0092 0.9611

22 0.0008 1.0000
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