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The roles of short/small open reading frames (sORFs) have been increasingly

recognized in recent years due to the rapidly growing number of sORFs identified

in various organisms due to the development and application of the Ribo-Seq

technique, which sequences the ribosome-protected footprints (RPFs) of the

translating mRNAs. However, special attention should be paid to RPFs used to

identify sORFs in plants due to their small size (~30 nt) and the high complexity and

repetitiveness of the plant genome, particularly for polyploidy species. In this work,

we compare different approaches to the identification of plant sORFs, discuss the

advantages and disadvantages of each method, and provide a guide for choosing

different methods in plant sORF studies.
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Introduction

Short/small open reading frames (sORFs) with the capacity of encoding micropeptides

shorter than 100 amino acids (aa) are widely distributed in plants, ranging from green algae

(Xu et al., 2017a) to rice (Yang et al., 2021) and Arabidopsis (Hanada et al., 2007), and are

engaged in various biological and molecular processes, such as plant growth, nitrogen

response, symbiosis nitrogen fixation, stomatal closure, plant circadian clock, anther

development, pollen tube growth, abiotic responses, plant disease resistance,

morphogenesis, and growth regulation (Ong et al., 2022; Wu et al., 2022). sORFs are

pervasive in plant genomes and have been detected beyond the known coding regions.

According to their locations, sORFs can be classified into several groups, including uORF,

dORF, lncRNA-sORFs, and intergenic-sORFs (Table 1). As well as in mammals and yeasts

(Jeon et al., 2015; Libre et al., 2021), sORFs have also been reported in plants, and the

translation of uORFs can potentially repress the translation of downstream major ORFs

(mORFs) (David-Assael et al., 2005; Saul et al., 2009; Pajerowska-Mukhtar et al., 2012;
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Causier et al., 2022). Another function of sORFs is to mitigate the

abundance of miRNAs, and therefore influence the translation of

their target mRNAs. Lauressergues et al. (2015) reported two plant

primary transcripts (pri-miRNAs) that contain sORFs encoding

regulatory peptides, miPEP165a and miPEP171b, in A. thaliana

and Medicago truncatula, respectively. Overexpressing miPEP171b

in M. truncatula roots specifically improves the accumulation of

endogenous mature miRNAs, resulting in a reduction in lateral root

density to a similar extent as overexpression of the corresponding pri-

miR171b. Furthermore, the peptides encoded by the sORFs, per se,

can also be functional, involving various biological processes

(reviewed in Ong et al., 2022). Given that sORFs can substantially

regulate the translation of downstream ORFs and encode proteins

with crucial functions, the mutation of many sORFs, particularly

uORFs, would lead to dramatic phenotype changes in plants and

crops. Therefore, the natural or artificial mutation of these sORFs can

be used to improve vital plant processes and valuable crop traits (Xu

et al., 2017b; Si et al., 2020).

It is noteworthy that although reports of plant sORFs are

increasing dramatically, the identification of sORFs in plant

genomes is still challenging. The recent advancement and

application of Ribo-Seq technology have promoted the research of

plant sORFs; however, the existing studies on plant sORFs are only

focused on plants with simple genomes, including the model plants,

Arabidopsis and rice, while investigations into sORFs in complex

genomes are rare. In most, if not all, existing plant sORF studies, the

methods and tools developed in mammals or yeasts were directly used

to search for sORFs in plant genomes. Nevertheless, plant genomes

are generally more repetitive, and many of them are polyploid or

paleopolyploid. Special attention should be given to the studies of

sORFs in plant genomes.

Despite the challenges and difficulties, many efforts have been

made to identify sORFs from plant genomes. The first systematic

study of sORFs in plants was conducted on Arabidopsis thaliana,

where more than 7,000 sORFs were identified (Hanada et al., 2007),

including 49 that induced visible phenotypic effects or that are

associated with various morphological changes (Hanada et al.,

2013). Subsequently, a total of 48,620 sORFs were identified in

Oryza sativa through microarray analyses, and at least 36 were

involved in Fe deficiency and excess (Bashir et al., 2014). Generally,

plant sORFs can be identified using three different strategies: the

conservation of coding sequences, ribosome-protected footprints, and

nucleotide diversity in the natural population. In this review, we

summarize the methods of sORF identification used in plant studies
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and discuss the challenges and caveats in plant sORF identification

and possible solutions for future studies.
sORF identification through
sequence conservation

As functional ORFs are conserved across genomes, early attempts

at sORF identification were primarily based on sequence similarities

using sequence alignment tools, such as BLAST (Altschul et al., 1997),

coupled with ORF Finder (Wheeler et al., 2002), assuming that the

functional sORFs would also have been preserved by natural selection

(Figure 1A). For example, a total of 26 groups of conserved uORFs

were identified in O. sativa and A. thaliana using uORF-Finder

(Hayden and Jorgensen, 2007). In another study, sequence

similarity was also observed at the amino acid level of uORFs

across Arabidopsis and rice, 11 rice uORFs were conserved in

Arabidopsis, and most of them were also conserved in other cereals

(Tran et al., 2008). These conserved sORFs can be true; however,

recent evidence has revealed varied degrees of sORF conservation.

Although many sORFs are conserved, there are also many species- or

lineage-specific sORFs (Hsu et al., 2016; Wang et al., 2021), which

cannot be identified through sequence comparisons.
sORF identification using ribosome-
protected footprints

Ribo-seq is an emerging technology that enables the identification

of sORFs (Ingolia, 2010). To date, most plant sORFs are identified

using RPFs. Briefly, the ribosome-associated mRNAs are digested by

RNase, and the fragments bound by ribosome are protected; they can

then be isolated and sequenced using next-generation sequencing

(NGS) technology. As ribosomes move along mRNA strands with a

step of three nucleotides during the translation of mRNAs, the

mapping loci of RPFs on mRNAs show a strong 3-nt periodicity,

which provides information for the identification of translating

frames on mRNAs (Figure 1B). To better analyze and mine the

information in RPFs, many computation tools implementing different

algorithms have been developed to predict sORFs or ORFs on

noncoding RNAs (see review of Ong et al., 2022), including FLOSS

(Ingolia et al., 2014), RiboTaper (Calviello et al., 2016), RiboCode

(Xiao et al., 2018), ORFquant (Calviello et al., 2020), RiboNT (Song
TABLE 1 Categories of sORFs.

Categories Description Putative functions References

uORF sORFs located in the upstream ORF of an mRNA Repressing main ORF translation (Zhang et al., 2020)

CPuORF Conserved peptide uORF Control translation of the downstream ORF (Jorgensen and Dorantes-Acosta, 2012)

dORF sORFs located in the downstream ORF of an mRNA Enhances translation of main open reading frames (Wu et al., 2020)

lncRNA-sORFs sORFs located in long noncoding RNAs Plant growth (Yang et al., 1993)

Intergenic-sORFs sORFs located in an Intergenic region Plant growth (Frank and Smith, 2002)
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et al., 2021), and slORFfinder (Song et al., 2023). Among them,

ORFScore and RiboTaper are the most frequently used tools in plant

sORF studies. For example, Hsu et al. (2016) detected 187 uORFs, 10

dORFs, and 27 translated sORFs from annotated non-coding RNAs

in Arabidopsis using RiboTaper (Hsu et al., 2016), and Wu et al.

(2020) detected 1,406 and 1,153 dORFs in human cells and zebrafish

embryos using ORFScore (Wu et al., 2020). As a caveat, it should be

noted that most of these tools were originally developed in the study

of mammals or yeasts, the genomes of which are much simpler than

those of plants; the challenges in plant studies were not fully

considered. sORF identification using RPFs is highly dependent on

the accurate mapping of RPFs, and the Ribo-Seq strategy has some

inherent shortcomings when it is applied in plant studies because of

the short lengths of RPFs (~ 30 nt) and the complexity and

repetitiveness of plant genomes. It is difficult to accurately map the

short RPFs to the loci they are derived from in a complex and

repetitive genome. In most of the existing studies, the solutions to this

problem are either to remove the RPFs with multiple hits or to

randomly retain only one of them (Hsu et al., 2016; Bazin et al., 2017;

Erhard et al., 2018). However, these processes would certainly

introduce errors in ORF identification, resulting in missing ORFs in

the genome. Recently, a protocol profiling the footprints of two

closely packed ribosomes (disomes) that can double the size of

footprints was reported (Arpat et al., 2020). The RPFs of disomes

(~60 nt) can somehow compromise the mapping problem caused by

their short lengths; nevertheless, they are still too short to completely
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solve this problem, particularly in the study of polyploidy genomes.

Furthermore, only ~10% of the ribosomes can be captured in

disomes, with a significant bias towards rRNA and sequences

encoding signal peptides; whether they can be used to identify

sORFs genome-wide has not been tested. It is possible to increase

the size of RPFs to ~ 90 nt by profiling the footprints of trisomes, but

their representativeness should be evaluated before they can be used

in sORF identification.
sORF identification using
degradome sequencing

Degradome sequencing is a high-throughput method that was

originally used for the identification of endogenous siRNA and

miRNA targets by combining the modified rapid amplification of 5’

cDNA ends (5’-RACE) and NGS technology (Addo-Quaye et al., 2008).

Briefly, 5’-3’ exoribonuclease cleaves the translating mRNAs at the last

ribosomes that can be translocated codon by codon, leaving a set of

truncated transcripts with both free 5’monophosphates and 3-nt distance

in length. After being sequenced with the NGS platform, this 3-

nucleotide periodicity in the position of free 5’ mRNA ends could be

revealed bymapping reads to mRNAs (Bertoni, 2016), which provides an

alternative approach for sORF identification (Figure 1C) (Hou et al.,

2016). Using genome-wide mapping of truncated mRNAs, Yu et al.
A B C D

FIGURE 1

Graphic illustration for four different strategies of sORF identification. (A) Sequence conservation-based. It is assumed that functional sORFs are
preserved by natural selection and are conserved across species; sORF identification could be based on sequence similarities using sequence alignment
tools, such as BLAST. (B) RFP-based. The ribosome-associated mRNAs are digested by RNase and the fragments bound by ribosome are protected; they
can then be isolated and sequenced using next-generation sequencing (NGS) technology. As ribosomes move along mRNA strands with a step of three
nucleotides during the translation of mRNAs, the mapping loci of RPFs on mRNAs show a strong 3-nt periodicity. (C) Degradome sequencing-based. 5’-
3’ exoribonuclease digests translating mRNAs chasing after the last translating ribosome, which translocates codon after codon on mRNAs, leaving
truncated 5’ monophosphate mRNAs with a 3-nucleotide distance in length. After sequencing, this 3-nucleotide periodicity in the position of free 5’
mRNA ends can then be used for sORFs identification. (D) Natural nucleotide diversity-based. As only the nucleotide diversities in CDSs showed a
significant 3-nt periodicity, the single-nucleotide polymorphism (SNP) datasets of natural populations can be used to predict sORFs.
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(2016) discovered a 3-nt periodicity pattern throughout ORFs in

Arabidopsis leaf samples, and the accumulation of cleavage events at

16 to 17 nucleotides upstream of the stop codons of both ORFs and

uORFs was also observed because of ribosomal pausing during

translation termination. These results, therefore, make it possible to

search for potential sORFs (Yu et al., 2016). In another research, 3-nt

periodicity was also observed, not only in Arabidopsis but also in Glycine

max andOryza sativa, and both novel and known uORFs were identified

by searching the accumulation of 5’ RNA ends peaking upstream of the

stop codons (Hou et al., 2016). While degradome-based ORF prediction

relies on the 3-nt periodicity of the mapping positions of NGS reads on

mRNAs, truncated RNA fragments are much longer than RPFs, making

them beneficial for resolving the mapping problems in complex genomes

caused by short lengths of RPFs (Carpentier et al., 2021). However, as

degradome sequencing was originally developed to identify the target of

sRNAs, the fact that the binding of sRNAs can result in the accumulation

of degradome reads out of the translating frames might, therefore,

introduce unexpected errors in the prediction of ORFs. Although ORF

prediction from degradome reads is similar to that from RPFs, whether

those RPF-based tools can also be used to predict ORFs from degradome

reads has rarely been tested. To better utilize the degradome datasets,

more tools need to be developed or tested for sORF prediction in

the future.
sORF identification using
nucleotide diversity

As the third nucleotides in codons are wobble nucleotides and are

therefore subject to a more relaxed purification selection in nature

(Hurst, 2002), resulting in higher nucleotide diversities every three

nucleotides in the coding sequences (Jiang et al., 2022). This pattern

resembles the 3-nt periodicity of RPFs on mRNAs and can therefore

also be used to predict ORFs (Figure 1D). Jiang et al. (2022) recently

developed a pipeline, OrfPP, to predict ORFs using the single-

nucleotide polymorphisms (SNPs) datasets of natural populations

and applied it to two polyploidy species: tetraploidy cotton

(Gossypium hirsutum) and hexaploidy wheat (Triticum aestivum).

As SNPs in most studies are usually called using 100 or 150 bp pair-

ended reads, this strategy can overcome the troubles caused by the

short lengths of RPFs in plant studies. Although SNP calling may also

introduce several errors caused by the mismapping or multiple

mapping of short reads, this problem can finally be solved by the

future application of long reads in plant population studies. Indeed,

long-read techniques have been used increasingly to detect genomic

variants in natural populations of plants (Dorfner et al., 2022; Tang

et al., 2022; Zhou et al., 2022). Another advantage of this method is

the direct use of existing datasets (SNPs) requiring no extra

experiments, such as the construction of Ribo-Seq libraries, which

could be costly and technically challenging in some organisms or

tissues, therefore allowing the large-scale identification of sORFs in

plants with genome-wide SNP datasets. The SNP-based strategy can

be used in complex genomes as long as their SNP datasets are

available. Nevertheless, genome sequencing and assembly are also

challenging and costly for these species, many of which do not have

genome-wide SNP datasets either. The lack of SNPs prevents the
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application of an SNP-based approach in these species. Fortunately,

for most polyploidy crops, such as oilseed, cotton, and wheat, the

reference genome assembly and population resequencing have been

completed, which can facilitate the identification of sORFs using the

SNP-based approach.
Discussion

Although several approaches have been developed to identify

sORFs, each has its own limitations, and caution should be taken in

the application of different methods. Sequence conservation-based

methods can only identify old and conserved sORFs but are powerless

in identifying young sORFs. RPFs can only make use of short reads,

thus resulting in incorrect mapping to genomes, and this problem

would be even worse in a complex and repetitive genome. The

degradome and SNP-based approaches take advantage of longer

reads to produce high-quality unique mapping and should lead to

better sORF prediction. Both the RPF and degradome-based

identification are affected by the reads captured in the experiments,

so the silent or lowly translated sORFs might have been missed in

these data and the results can be substantially varied across different

tissues or growth conditions. In contrast, the SNP-based strategy

relies on the preparation of a high-quality library and can predict both

active and inactive sORFs. Cross-identification using different

approaches was also reported. Of the 89 conserved Arabidopsis

sORFs, 39 were successfully identified by RPFs (Hsu et al., 2016).

More than a quarter of the sORFs predicted from SNPs, which were

actively translated, overlapped with those predicted using RPFs (Jiang

et al., 2022). Thus, the SNP-based strategy is an effective approach to

extending the study of sORFs, especially in complex genomes, but it

requires the accumulation of nucleotide diversity in natural

populations, and accuracy is also affected by the quality of the

reference genome and SNPs datasets. In practice, these approaches

are mutually complementary and can be chosen for different

purposes. Overall, it has become increasingly clear that sORFs play

important roles in various plant processes and are potential

candidates for crop improvement. Although the application of

Ribo-Seq in plant studies has substantially enhanced the

understanding of plant sORFs, most of these studies were

conducted in model species, such as Arabidopsis (Hsu et al., 2016;

Mahboubi et al., 2021) and rice (Su et al., 2018; Xu et al., 2021), or

crops with small and simple genomes, such as tomato (Wu et al.,

2019); the sORFs in other plants, particularly polyploidy species, are

poorly investigated. Given that approximately 47–70% of angiosperm

species are polyploid (Masterson, 1994), more advanced techniques

and algorithms are required in the future to enhance the

understanding of plant sORFs.
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