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As a result of climate change, climatic extremes are expected to increase. For

high-value crops like vegetables, irrigation is a potentially economically viable

adaptation measure in western Europe. To optimally schedule irrigation, decision

support systems based on crop models like AquaCrop are increasingly used by

farmers. High value vegetable crops like cauliflower or spinach are grown in two

distinct growth cycles per year and, additionally, have a high turnover rate of new

varieties. To successfully deploy the AquaCrop model in a decision support

system, it requires a robust calibration. However, it is not known whether

parameters can be conserved over both growth periods, nor whether a cultivar

dependent model calibration is always required. Furthermore, when data are

collected from farmers’ fields, there are constraints in data availability and

uncertainty. We collected data from commercial cauliflower and spinach fields

in Belgium in 2019, 2020 and 2021 during different growing periods and of

different cultivars. With the use of a Bayesian calibration, we confirmed the need

for a condition or cultivar specific calibration for cauliflower, while for spinach,

splitting the data per cultivar or pooling the data together did not improve

uncertainty on themodel simulations. However, due to uncertainties arising from

field specific soil and weather conditions, or measurement errors from

calibration data, real time field specific adjustments are advised to simulations

when using AquaCrop as decision support tool. Remotely sensed or in situ

ground data may be invaluable information to reduce uncertainty on

model simulations.

KEYWORDS

Bayesian calibration, crop model, decision support tool, spinach, cauliflower,
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1 Introduction

Because of increased frequencies of extreme events such as heat

waves and droughts, it is increasingly important to adapt our

agricultural practices to these changing conditions (Challinor

et al., 2014). For high-value vegetable crops, sustainable use of

irrigation can be part of an integrated strategy of adaptation to drier

conditions, next to improvement of soil structure and quality,

breeding for adapted varieties, growing alternative species or use

of mixed cropping systems such as agroforestry. Sustainable use of

irrigation should prevent depletion of water sources and safeguard

agricultural soil quality. Therefore, we need to optimize the timing

and amount of irrigation water. Crop models like AquaCrop have

been used extensively as part of a decision support tool for irrigation

water management (e.g. Cusicanqui et al., 2013), to characterize the

response of crops to water stress (Geerts et al., 2010; Abedinpour

et al., 2012), to quantify crop water use (Gobin et al., 2017;

Kersebaum et al., 2016), and to assess the impact of climate

change on crop production (Vanuytrecht et al., 2014). This model

has been developed by the land and water division of the Food and

Agriculture Organization of the United Nations (FAO) and is

characterized by its simplicity and robustness. It provides insight

into the development of crops in response to environmental

conditions and is especially well suited for conditions where water

is the limiting factor (Hsiao et al., 2009; Raes et al., 2009; Steduto

et al., 2009; Vanuytrecht et al., 2014).

Before crop models can be used as part of a decision support

system to guide management practices, it is of great importance that

parameters are properly calibrated. However, model calibration

requires a substantial amount of data (Coudron et al., 2021).

Ideally, the model calibration can be done per crop species and is

valid over a wide range of plausible conditions. This should ensure

robust model performance and adequate crop growth predictions

for the targeted population of environments (cf. mega-

environment) and the crop species. However, as a result of

climate change, spatial and temporal variation in climate is

expected to increase (van Oldenborgh et al., 2013). Second, also

the turnover rate of new varieties for vegetable crops is high. As a

result, it is not well-known how robust the AquaCrop model

performs over this extended range of conditions, and whether a

cultivar dependent model calibration is always required.

Additionally, when using AquaCrop as a decision support tool

for generic advice about field management, data sources will often

be used with different levels of uncertainty ranging from soil maps,

weather data and management conditions which may or may not be

provided by government instances or farmers. As such,

uncertainties regarding input and output for model simulations

are a given.

Here we aim to evaluate the stability of AquaCrop parameters

across environmental conditions and cultivars for two (often

irrigated) vegetable crops in Flanders, spinach (Spinacia oleracea

L., Amaranthaceae) and cauliflower (Brassica oleracea L.,

Brassicaceae). For both of these crops we collected field data

across different locations and for different cultivars. Both crops

are cultivated twice per growing season (early: April-July and late:
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July-October) and thus provide data in substantially different

weather conditions.

We use a Bayesian calibration framework to calibrate the

AquaCrop model, which allows us to assess prediction

uncertainty. This is considered to be a standard part of modelling

to determine liability of model simulations (Wallach and Thorburn,

2017). Thereby we altered the stratification of the available data into

different groups: all available data, data per cultivar and data per

growing period. The resulting parameter distributions are used to

simulate the uncertainty in model outputs which are compared in

terms of mean values and mean absolute deviation (MAD). Finally,

the accuracy and uncertainty of the model on these levels is assessed

to highlight the potential need for model adjustment as a decision

support tool.
2 Materials and methods

2.1 AquaCrop: Model description

AquaCrop is a water-driven production model which is able to

simulate plant growth of several herbaceous crops. As such, it is well

suited for conditions in which water is the main limiting growth

factor and thus makes it an interesting model for irrigation advice in

drought sensitive regions. At each simulation time step, yield is the

ultimate model output, resulting from a number of calculation

steps. First, the green canopy cover is calculated based on the

available soil water content. This canopy cover allows to separate

crop transpiration and soil evaporation and thus avoids the

confounding effect of the nonproductive consumptive use of

water. The amount of water transpired by the crop is then linked

to the amount of biomass produced through the water productivity

(WP), which is one of the crucial parameters linking transpiration

to biomass production. Lastly, a specified fraction of the biomass is

apportioned to the final yield by the harvest index parameter.

During these calculation steps, different stress coefficients are

introduced for water, heat, cold and soil fertility. Most

importantly, four water stress thresholds define how canopy

development is limited. As such there is a threshold for:

(1) canopy expansion, (2) stomatal closure, (3) early canopy

senescence, and (4) aeration stress (as a result of an excess of

water in the soil). AquaCrop is a generic model and thus can

simulate growth of a variety of crop species. Therefore, the model

should be parameterized by altering conservative and non-

conservative parameters. Conservative parameters are typically

fixed for a crop species, while non-conservative may vary with

crop cultivar. AquaCrop can be freely downloaded at (http://

www.fao.org/nr/water/aquacrop.html). More information on the

model is provided by Steduto et al. (2009) and Raes et al. (2009).
2.2 Study region

To collect the required calibration and validation data, actual

fields used by commercial farmers were monitored in Belgium
frontiersin.org
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during the years 2019, 2020 and 2021 thereby capturing a variety of

weather, soil conditions and crop cultivars (Table S1 and Figure 1).

In total, sixteen cauliflower fields were monitored from cultivars

Giewont (Seminis) and David (Syngenta), and twelve spinach fields

from cultivars Berkner (Seminis), Bonobo (Rijk Zwaan), Eagle (Rijk

Zwaan), Puma (Rijk Zwaan), Sacramento (Pop Vriend), Spirico

(Nunhems) and Whale (Rijk Zwaan). Soil texture classes in these

fields were determined according to the Belgian soil classification

system as sand, loamy sand, sandy loam and loam. Additionally,

farmers were requested to inform us about irrigation timing and

amounts and to communicate about other management practices.

For multiple fields, soil EC (electric conductivity), pH and organic

matter were determined at the start of the growing season.
2.3 Crop and microclimate data collection

Some of the most important output variables for AquaCrop

calibration are yield, biomass, canopy cover and soil moisture

content (Coudron et al., 2021). Therefore, these variables were

monitored during the growing periods in 2019, 2020 and 2021 on

actual commercial fields (Table S1). To use AquaCrop as a decision

support tool in Flanders, weekly to bi-weekly data were gathered in

different environmental conditions for calibration on a total of 28

fields (sixteen of cauliflower and twelve of spinach).
2.3.1 Sampling biomass and yield
Destructive samples of the cauliflower plants were taken

approximately every two weeks from the time of planting to the

time of final harvest. Spinach was sampled more frequently

(approximately every week) to guarantee sufficient data because

of its short growing period. Yield for cauliflower was determined as

the dry weight of the heads, while biomass was determined as the

total aboveground dry weight of the entire plant.

For spinach, plants were sampled on a surface area of 40 by

40 cm at six locations in the field and the number of plants were

counted to determine the sowing density. For cauliflower, four

plants were harvested at two locations in the field. Afterwards,

samples of biomass and yield were dried for 72 h at 70°C and

weighed to determine the dry matter yield and dry matter biomass.

Based on the plant or sowing density, dry matter values could

afterwards be converted to ton ha-1 as the corresponding unit used

by AquaCrop.
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2.3.2 Determining the canopy cover
To determine canopy cover, pictures were taken above the crops

(at 1.5 m above the soil surface) with a mobile camera (Samsung

galaxy j6 and Samsung galaxy a6) at fifteen randomly selected

locations in the field at the same places soil samples were taken for

determining soil moisture contents. Afterwards, these pictures were

processed with ImageJ (https://imagej.nih.gov/ij/) to determine the

percentage ground cover of the crop.

2.3.3 Soil water content
Manual soil samples were taken every two weeks with an auger

at 0-30cm and 30-60cm depth for cauliflower fields at fifteen

locations in the field and were pooled for analysis. For spinach

fields, samples were only taken in the 0-30 cm soil layer because

roots of spinach do not grow in deeper soil layers. Soil samples were

dried in the oven at 105°C and weighed after one day to obtain

gravimetric water content. Bulk density was determined using

Kopecky rings. With this information, the volumetric water

content of the soils was calculated.

Additionally, on every field, 10HS soil moisture sensors (Geobas

Pro, Vantage Agrometius) were installed for monitoring volumetric

moisture content at two different depths, at 15 cm and 45 cm in

cauliflower fields and at 10 cm and 35 cm in spinach fields.

Additionally, the Geobas station also monitored soil temperature,

precipitation and soil water retention at two depths.

2.3.4 Meteorological data
AquaCrop needs a number of meteorological data as input

variables, such as daily precipitation, maximum daily temperature,

minimum daily temperature and reference daily evapotranspiration

as calculated via the Penman-Monteith equation (Howell and Evett,

2004). Precipitation was measured locally at every field by the

Geobas stations. Other meteorological data, or missing

precipitation data, were obtained from the Royal Meteorological

Institute of Belgium (RMI) which provides daily interpolated

climatic data on a resolution of 5 by 5 km in Flanders.
2.4 Calibration procedure

2.4.1 Sensitivity analysis
Before starting the Bayesian calibration, we performed the

Morris method (Morris, 1991) as modified by Campolongo et al.

(2007) from the sensitivity package (Iooss et al., 2020) in R [R
FIGURE 1

All field locations monitored of cauliflower and spinach in Flanders during the growing seasons of 2019, 2020 and 2021.
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version 4.1.2, RStudio Team (2020)] to determine the most

important parameters in the studied environmental conditions.

The Morris method is a global screening method which randomly

samples the parameter space and changes every parameter one at

the time (OAT) after which the mean of the absolute values of the

elementary effects for all parameters (µ*) are calculated. However,

for screening the effect of parameters on all the output variables, the

elementary effect vectors were rescaled with the mean output of the

simulations for the specific output variable (Campolongo et al.,

2007). To get a general idea of the sensitivity of all output variables

over the growing season, we averaged the sensitivity functions over

the whole growing season and over all the output variables

measured in the calibration fields. This way, non-influential or

low influential parameters could be identified and removed from

the Bayesian calibration. These parameters were fixed to set values

based on literature and expert knowledge. The Morris method was

performed with the parameter space divided in eight levels and the

number of replicates was chosen to be 100 (Vanuytrecht et al., 2014;

Coudron et al., 2021).

2.4.2 Bayesian calibration
Bayesian analysis allows to get insight on the uncertainty of

parameter estimations, and the subsequent model output. With our

approach, we aim to dissect whether the AquaCrop model needs to

be calibrated at the cultivar level for two vegetable types: a leafy

vegetable (spinach) and a cabbage crop (cauliflower). Both crops are

most commonly grown in two distinct growth periods and have a

rapid turnover in terms of varieties. To ensure robust decision

support systems based on crop models such as AquaCrop, model

parameters should preferably be transferable across years, growth

periods and cultivars.

The basic idea behind a Bayesian approach is to increase the

belief concerning the probability of an event through the

incorporation of observational data. Bayesian calibration is used

to generate likelihood distributions instead of optimizing the model

to a specific point in parameter space which is commonly

performed in many calibration methods (Price, 1977; Powell,

2009). This framework starts with defining the uncertainty or

prior distribution of the parameter values after which the prior

belief is updated with observational data through application of

Bayes’ theorem: P(ϑ|D) = P(ϑ) x P(D|ϑ)/P(D), where P(ϑ)

represents the prior distribution and P(ϑ|D) the posterior

distribution for the parameter ϑ given the input data D, P(D|ϑ) is

the likelihood of the data given model output using parameters ϑ,

and P(D) is a normalization constant. The posterior distribution

allows to quantify the predicted uncertainty on the parameter

values. This may be used to predict the subsequent uncertainty in

model output by sampling parameter values from the posterior

distribution and run model simulations. In this study, we used the

ModMCMC function from the FME package (Soetaert and

Petzoldt, 2010) in R (R version 4.1.2). This function performs a

(MCMC) Markov Chain Monte Carlo simulation using an adaptive

metropolis algorithm including a delayed rejection procedure which

is the optimization algorithm used to determine whether to reject or

accept the proposed jump. Gao et al. (2020) explain that the use of
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MCMC, coupled with the estimation of model error variance is a

promising calibration method for the quantification of

prediction uncertainty.

The number of iterations used to perform the Bayesian

calibration was 30,000, with a burn-in-length of 3,000 and a jump

of one tenth of the range between every parameter. Distributions of

the parameters were set to be uniform, making sampling between

the parameter ranges equally likely. The calibration was performed

with the collected time series data from yield, biomass, canopy cover

and water content (Table S1) pooled over the studied levels (See

section 2.4.4 Data stratification).

2.4.3 Calibration and sensitivity settings
In both the sensitivity analysis and the Bayesian calibration

method, it is important to give plausible parameter ranges. Table

S2 shows the parameter ranges used for spinach and cauliflower,

these ranges were determined based on literature values and

expert knowledge. Since spinach is a short growing crop,

several parameters that only become relevant in a later stage of

the crop development, were not considered in this study.

Additionally, when performing Bayesian calibration, explicit

assumptions have to be made about the distribution of errors,

whether the errors have the same distribution and whether errors

for different variables are correlated (Wallach et al., 2021). In this

study, we assumed the errors for all output variables to have the

same distribution and that they are not correlated. These

assumptions were tested using a Levene test using the R

function leveneTest in the package ‘car’ (Fox and Weisberg,

2019) and a Pearson correlation test using the R function

cor.test (Table S5).

2.4.4 Data stratification
To test the performance over an extended range of conditions

and cultivars, we stratified the data gathered from the cauliflower

and spinach fields according to different levels for calibration. The

levels at which data was stratified are:
• All fields together for calibration for spinach or cauliflower

(All).

• Splitting the data according to the cultivars (Spinach: Eagle

and Whale, Cauliflower: David and Giewont). For spinach,

data was split into Eagle and whale, and no other varieties,

since for these varieties three or more fields were

monitored.

• Splitting the data according to growing period (First: April –

July, and Second: July-October).

• Splitting the data according to growing period and cultivars

(David 1, David 2, Giewont 1 and Giewont 2).
2.5 Output uncertainty

After calibration we tested the model performance by means of

calculating uncertainty on model simulation for a selected field
frontiersin.org
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during ten different years and for two different soil types (loam and

loamy sand). 5000 parameter vectors were randomly selected from

the posterior distributions from the Bayesian calibration of all

available data (all fields) or subsets from that data (cultivars and

growing periods) for each year and soil type. The likeliness of the

occurrence of certain yield or biomass output values could therefore

be assessed. For spinach, the biomass was calculated at day 38 after

sowing, while for cauliflower, yield was calculated at 84 days after

planting. Differences between subsetting during calibration could

then be visualized in terms of the mean output values and spread

(Mean Absolute Deviation, MAD) when subsetting for cultivation

period or cultivars. In this study, we determined whether data

subsetting according to cultivar and/or cultivation period was

superior to keeping all data together to perform calibration for

each crop type (spinach and cauliflower).
Frontiers in Plant Science 05
3 Results

3.1 Morris method to determine
influential parameters

The Morris method produces two important metrics to describe

the effects of parameters on the model output: the mean elemental

effect (µ*), and the interaction effect (s). Generally, parameters with

a large m* also display larger interaction or non-linear effects on the

model output (Figures 2C, D). Multiple parameters (plan, cgc, kc,

ccs, wp) showed a large impact on all output variables in both

spinach and cauliflower, while other parameters (anaer, evardc,

psenshp) had little or no impact on the model output of both crops.

In contrast, some parameters (baseT, stbio) had a large impact on

spinach while the impact on cauliflower was low. Additionally, since
D

A B

C

FIGURE 2

Morris method applied for the spinach and cauliflower fields under study for determining the most influential parameters. Plots (A, B) show the
cumulative sensitivity of the parameters on the model outputs (A for cauliflower, B for spinach). The horizontal red line indicates 95 percent of the
total sensitivity for determining the most influential parameters to be used in the Bayesian calibration. Plots (C, D) show the sensitivity (m*) calculated
for every output variable separately (C for cauliflower, D for spinach). X-axis indicate the sensitivity of each parameter on the model output, the
Y-axis (s) indicates interaction and non-linear effects of each parameter.
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spinach has a short growing period, several parameters (sen, yld,

cdc, hilen, hi, hinc, hingsto, hipsflo) concerning senescence or yield

were not considered or influential for this crop type, while multiple

have a large impact on cauliflower (yld, hi, hilen). The pooled output

variables indicated fifteen parameters constituting more than 95%

of the variation in output for cauliflower and only ten parameters

for spinach (Figures 2A, B). These parameters were further used for

the Bayesian calibration.
3.2 Bayesian calibration:
Posterior distributions

3.2.1 Posterior distributions spinach
The posterior distributions of spinach parameters show that

multiple parameters (root, rtx, stbio, css, wp) are characterized by a

wide spread and the absence of a clear peak, which points towards a

large uncertainty on these parameters (Figure 3). Like the parameter

kc, they also do not display a large difference between calibrations

with pooled or subsetted data (Table S3), although kc does have a

clear maximum in its distribution. In contrast, the parameters plan,

cgc and baseT have clearer differences between the different

calibrations, and the calibrations done on the pooled data (‘All’)

tend to result in a narrower distribution. Finally, the parameter mat

has a marked peak for some of the subsets.

3.2.2 Posterior distributions cauliflower
There were clear differences in posterior distribution for

multiple parameters (plan, kc, cgc, hi, mat) in cauliflower as well
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(Figure 3; Table S4). Interestingly, the distribution for plan was

different when only data from the second growth period were used

for model calibration, regardless of the cultivar, while for hi, it was

different for the first growth period. Further, the distribution for kc

was completely different when the pooled data was used, while all

other subsets of data resulted in similar distributions. The

distributions of the parameter cgc was only different for the

cultivar Giewont in the second growth period. Multiple

parameters also display a wide, almost uniform distribution

(hilen, wp, pexlw, ccs), with little or no difference between

calibrations. For the parameters pexhp, rtx and root, the use of all

data in the calibration resulted in a narrower distribution, as

compared to subsetted data.
3.3 Spinach and cauliflower
output uncertainty

The uncertainty, represented by the MAD, on the yield of

spinach and cauliflower are large and may scale up to more than

half a ton ha-1 (Figure 4). The horizontal lines display the MAD on

the simulated output based on the calibration of all available data

(All), while the vertical lines are the MAD on the output from the

calibration based on the subsets of data. In spinach (Figures 4I–L),

no substantial differences between the studied levels can be

observed, partly because of the large uncertainty. Strikingly, the

uncertainty on the output seems at least as large for the calibration

based on all available data as for the calibration based on the four

subsets of data for spinach.
FIGURE 3

Plots showing the uncertainty of the parameters when splitting data into growing period (First, second), variety (Eagle, Whale, Giewont and David) or
both growing period and variety (David 1, David 2, Giewont 1 and Giewont 2) of important parameters of the AquaCrop model for spinach and
cauliflower. Posterior distributions calculated by the MCMC Bayesian calibration for spinach and cauliflower for the parameters explaining more than
95 percent of the model sensitivity. Rows indicate the Bayesian calibration determined through the different levels (Period, Year and Cultivar). On
every plot a red reference line is plotted where all fields were pooled together for calibration.
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In contrast, cauliflower generally shows a smaller uncertainty

for the calibration based on all available data. However, the mean of

these distributions differs from the 1:1 line when splitting the data at

cultivar and cultivation period level (cultivar level: David vs

Giewont, cultivation period level: first vs second). For example,

the calibration based on all data from the cultivar David (Figure 4A)

result in higher mean outputs for yield, while the calibration based

on all data from Giewont (Figure 4B) shows lower mean outputs, as

compared to the calibration done on all data. Also, the calibrations

based on all data from the first growth period (Figure 4C), and the

calibrations based on de data from David in the first growth period

(Figure 4E) show a higher mean yield prediction.
4 Discussion

4.1 Spinach

Splitting the data per cultivar does not contribute to a lower

prediction uncertainty spinach (Figure 4). This can be explained by

the fact that spinach is a fast-growing crop that only produces leaves
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as biomass. As many relevant parameters in AquaCrop for this early

stage of crop development are conservative, these parameters should

be fairly stable in different environmental conditions and across

different cultivars (Raes et al., 2018). Nevertheless, clear differences

in posterior distributions arise for some parameters on all studied

levels (plan, mat) (Figure 3 and Table S3). And, more importantly,

there are large uncertainties in model output. The slight differences in

posterior parameter distribution between calibrations (Figure 3 and

Table S3) do not result in clear differences between the uncertainties

calculated on the model output (Figure 4). When performing model

simulations with the parameter values with the highest probability

based on calibrations with all available data, the model performance

seems to be rather low (Figure S1). However, while uncertainty on

model output is not reduced by including more fields as calibration

data, the uncertainty on a number of important parameters (cgc,

baseT) improved (Figure 3).

A substantial part of the large uncertainty in the model

simulations can be attributed to the fact that the spinach crop

was harvested during the stage of fast growth (38 days after sowing).

This inherently results in substantial differences in the observations

of biomass. Additionally, interaction effects between parameters
DA B
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FIGURE 4

Plots showing the propagated simulation uncertainty (MAD) on yield output (t DM ha-1) at day 84 after planting for cauliflower (subplots A–H) and
day 38 after sowing for spinach (subplots I–L) when splitting the calibration data into period and variety plotted as compared to calibrations
performed on all available data. Every cross indicates output uncertainty (the mean plus or minus the MAD) calculated based on 5000 random
samples from the posterior distributions with calibrations performed with multiple subsets of data for spinach (All, first, second, Eagle and Whale) and
cauliflower (All, David, Giewont, first, second, David 1, David 2, Giewont 1 and Giewont 2). Every plot contains twenty crosses for conditions in which
simulations were performed (ten years (2009 - 2018) in two different soil types (loam and loamy sand)). The number of fields included in the subset
data are indicated in the y axis title.
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may account for a large portion of the uncertainty. For example, the

ccs and cgc parameters show large interaction effects (Figure 2. This

is also visible from their rather uniform distributions without any

clear peaks (except the cgc parameter shows a clearer peak when all

data is pooled together; Figure 3). Similarly, the parameters stbio

and baseT, and root and rtx are interacting parameters. Also

because of the large uncertainties on the model output, it is

difficult to decide whether calibration is ideally performed at the

cultivar level or if data should be pooled together. Potentially, some

cultivar specific parameters are ideally estimated per cultivar, and

more conservative parameters (which should be stable across

cultivars) are better estimated based on all available data.

To break the dependency and interactions between parameters,

the availability and quality of the experimental data is crucial. First,

the quality of the gathered data may need to be improved since

farmers’ fields were monitored in uncontrolled conditions, meaning

a larger error on measurements is inherently present. E.g., the

uncertainty on the sowing density of spinach (1 190 000 – 2 500 000

plants ha-1), causes a difficult assessment of the surface area of the

individual seedlings (ccs) and canopy growth coefficient (cgc).

Second, regarding data availability, parameters may not be

identifiable based on the gathered data (Coudron et al., 2021),

meaning important moments in development were not be caught

during the field measurements. This may be because measurements

were not performed frequently enough or because certain events did

not occur in the field trials. E.g., drought periods to derive water

stress coefficients.
4.2 Cauliflower

In contrast with spinach, for cauliflower, we observed clear

differences between posterior distributions as a result of data

subsetting (Figure 3 and Table S4). Consequently, these

differences also resulted in differences in distributions from the

simulation outputs, based on data splitted per cultivar or growing

period (Figures 4A–D). However, further splitting of the data (by

cultivar and growth period) results in larger uncertainties on the

model output and less clear differences between the data subsets

(Figures 4F, H). In these cases the number of data points probably

becomes too small for proper calibration (Coudron et al., 2021).

Figures 4A, B suggest that a cultivar dependent calibration is

advisable, as both calibrations deviate from each other and from

the calibration based on all data. Interestingly, the calibration based

on data from the first growth period also deviates from the

calibration with all data (Figure 4C), whereas the calibration with

data from the second growth period does not (Figure 4D). However,

as the data was collected on farmers’ fields, the experimental set-up

was not completely balanced, and data available for the first growth

period was dominated by one cultivar (7 fields with David, and only

2 for Giewont). Our results therefore suggest that, if sufficient data is

available, calibration is best performed at the cultivar level

for cauliflower.

Also in the case of cauliflower, uncertainties may be attributed

to errors on field measurements which are performed in non-
Frontiers in Plant Science 08
controlled conditions, interacting parameters which are difficult to

determine independently, field heterogeneity, model errors etc. A

full uncertainty study should be performed to determine the exact

uncertainty sources and how these may be reduced (Wallach et al.,

2017). However, errors on model output are smaller than spinach.

This may be caused by multiple factors. First, cauliflower is not as

fast-growing as spinach and harvest is performed closer to the

saturation phase (84 days after planting). Second, the calibration

data for spinach contained more cultivars than the calibration data

gathered for cauliflower.

Even though uncertainties on model simulations from

cauliflower appear not as large as spinach, field specific

adjustments may still be needed to capture field specific

growth dynamics.
4.3 Implications for crop modelling and for
farmers: Adjust model parameters with real
time data

AquaCrop is a simulation model that is commonly used in

decision support tools (Cusicanqui et al., 2013). Our study has

demonstrated that uncertainty on the model simulations can be

quite large, given that parameter estimation was done on

observational data from farmers’ fields (Figure 4). This highlights

the need for good calibration practices such that end-users can

determine if the simulations are sufficiently reliable for their

particular applications (Seidel et al., 2018; Gao et al., 2020), and

model misspecification can be avoided (Wallach, 2011). Because of

the large model uncertainties, multiple additional sources of

information are recommended to adjust and improve model

simulations for farmers’ fields based on real time observations

(Zhang et al., 2021). This should capture field, cultivar and growing

period specific dynamics which cannot always be captured based

on collected calibration data. This includes satellite images,

biogeochemical and texture analysis of soil samples, regular

canopy cover pictures (e.g. taken by the farmer) (Dehnen-

Schmutz et al., 2016) etc. For example, satellite images may give

us a better understanding of the canopy development in fairly high

resolution and can therefore be useful to estimate multiple

developmental parameters with more accuracy. Indeed, Sentinel

satellite images can be used to monitor the crop performance on a

resolution of 10m by 10m (Vannoppen and Gobin, 2022) and can

be used to adjust AquaCrop model simulations (Sallah et al., 2019).

From the posterior distributions, it is clear that the parameters ccs

and cgc are difficult to estimate well, based on the collected

calibration data. Such parameters strongly depend on the

management practices by the farmer. In case of AquaCrop, these

parameters can be better determined with field specific canopy

cover measurements. Therefore, remotely sensed data such as

satellite and/or drone images and extra ground observations by

farmers, scientists, consultants or other stakeholders therefore play

an important role in reducing the uncertainty on these parameters

and improving model performance in near-real time. For example,
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Sentinel 2 satellite images are freely available from Terrascope

(https://terrascope.be/) and have been used for monitoring potato

growth and canopy cover (Vannoppen and Gobin, 2022).

Therefore, being a valuable source of information for calibration

of models such as AquaCrop. Additionally, local soil texture

analysis or information about the ground water depth may prove

to be important sources of information to reduce errors in the

AquaCrop model prediction for a specific field (Vanuytrecht et al.,

2014; Zhao et al., 2020).

Multiple platforms exist which bring these data sources together

and which aim at aiding the farmer in the monitoring of their fields

(Minet et al., 2017). These platforms are ideal to implement crop

models such as AquaCrop that can make use of all the data sources

to perform more accurate simulations with real time data. This not

only reduces uncertainty on model simulations, but also allows the

option for more general calibrations on crop varieties which can be

fine-tuned with the available data.
5 Conclusion

We tested the need for cultivar and growth period specific

calibration of the AquaCrop model for cauliflower and spinach

with a Bayesian calibration approach in Belgian climatic

conditions. Our results indicate a need for cultivar specific

calibration for cauliflower, whereas for spinach, splitting the

data per cultivar or pooling the data together did not improve

uncertainty on the model simulations. However, due to

uncertainties arising from field specific soil/weather conditions,

measurement errors on calibration data, and constraints

associated with data collection on farmers’ fields, it is advised

to make real time field specific adjustments to simulations when

using AquaCrop in a decision support tool which captures field,

growing period and cultivar specific dynamics. Remotely sensed

or ground data may be invaluable information to reduce

uncertainty on model simulations.
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