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Water plays a very important role in the growth of tomato (Solanum

lycopersicum L.), and how to detect the water status of tomato is the key to

precise irrigation. The objective of this study is to detect the water status of

tomato by fusing RGB, NIR and depth image information through deep learning.

Five irrigation levels were set to cultivate tomatoes in different water states, with

irrigation amounts of 150%, 125%, 100%, 75%, and 50% of reference

evapotranspiration calculated by a modified Penman-Monteith equation,

respectively. The water status of tomatoes was divided into five categories:

severely irrigated deficit, slightly irrigated deficit, moderately irrigated, slightly

over-irrigated, and severely over-irrigated. RGB images, depth images and NIR

images of the upper part of the tomato plant were taken as data sets. The data

sets were used to train and test the tomato water status detection models built

with single-mode and multimodal deep learning networks, respectively. In the

single-mode deep learning network, two CNNs, VGG-16 and Resnet-50, were

trained on a single RGB image, a depth image, or a NIR image for a total of six

cases. In the multimodal deep learning network, two or more of the RGB images,

depth images and NIR images were trained with VGG-16 or Resnet-50,

respectively, for a total of 20 combinations. Results showed that the accuracy

of tomato water status detection based on single-mode deep learning ranged

from 88.97% to 93.09%, while the accuracy of tomato water status detection

based on multimodal deep learning ranged from 93.09% to 99.18%. The

multimodal deep learning significantly outperformed the single-modal deep

learning. The tomato water status detection model built using a multimodal

deep learning network with ResNet-50 for RGB images and VGG-16 for depth

and NIR images was optimal. This study provides a novel method for non-

destructive detection of water status of tomato and gives a reference for precise

irrigation management.
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1 Introduction

The global tomato (Solanum lycopersicum L.) harvest areas

reached approximate 5.052 million hectares in 2020 (FAO, 2021).

Irrigation management affects the growth and development of

tomatoes (Ma et al., 2022; Zhao et al., 2022). Both excessive or

deficient water supply have influence on the yield and quality of

tomatoes. Deficient water supply may lead to water stress, and

excessive water can affect root respiration (Liu et al., 2019) which

results in the waste of water resources. Water status of tomatoes can

provide guidance for irrigation management (Scalisi et al., 2019; Li

et al., 2021). It has a key role in future irrigation management,

therefore, research on water status detection in tomato is urgent.

At present, research on crop water status detection have received

increasing attentions from scholars. The leaves of plants are sensitive

to water change, and the drying method can measure the water

content of leaves or the whole plant, which can obtain the accurate

water content. Leaf water potential measured by the pressure

chamber method, or the small liquid flow method is also an

indicator to reflect the water status of plants. However, the pressure

chamber method and the small liquid flow method involve taking

samples from crops, which is not only time-consuming and labor-

intensive, may causes some damage to the crops and cannot be

applied to real-time irrigation. To avoid damage to the crops, many

researchers have been dedicated to the real-time nondestructive

detection of the water status of the crops. It mainly includes

judgments based on RGB images (Li et al., 2020), terahertz spectra

(Li et al., 2020), NIR hyperspectral (Duarte-Carvajalino et al., 2021),

infrared thermography (Khorsandi et al., 2018), 3-D images (Zhao

et al., 2012) and the variation of stem diameter (Meng et al., 2017).

Currently, RGB images used for crop water status detection

commonly apply deep learning networks to classify the collected

RGB images for detection, and deep learning networks usually utilize

CNNs. However, RGB images are easily affected by light and

background (Hu et al., 2019). The waveband of terahertz

spectroscopy has sensitive absorption of moisture, and researchers

have studied the variation of terahertz parameters of crops with

different water status and constructed a detectionmodel of crop water

status, which has high detection accuracy in the laboratory; however,

terahertz spectroscopy cannot be environmentally controlled in

actual detection as in the laboratory, and water in the environment

can also interfere with the detection (Wu et al., 2022). Hyperspectral

images are rich in information and can predict the moisture content

of crops based on NIR hyperspectral images. Infrared thermography

detects the temperature information of the crop and thus determines

the water status of the crop. NIR spectroscopy and infrared

thermography for crop moisture detection are based on the

principle of thermal radiation, which is influenced by

environmental changes (Zhang X. et al., 2021). It is possible to

determine the water status of a crop based on its 3-D morphology,

but it is difficult and complicated to obtain 3-D images and process

them (Zhao et al., 2016). The change of stalk diameter is closely

related to the crop water status, which is an effective indicator to

detect the crop water status, but the stalk will harden when the crop

grows and gradually stops changing, and the position of the

measuring instrument needs to be changed regularly (Namba et al.,
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2018). Besides, the stem thickness measurement sensors are more

expensive (Wakamori et al., 2020).

In recent years, great progress has been made in the field of

artificial intelligence (Baltrusaitis et al., 2019). With the proposal of

precision agriculture, artificial intelligence has been used in agriculture

in many applications. In comparison with the traditional methods, the

method using deep learning can get more accurate detection results

(Garillos-Manliguez & Chiang, 2021). Multiple modal data can be

obtained for the same object, and the data of different modalities can be

complemented with each other to make the data more comprehensive

and help improve the accuracy by fusing the data of different modalities

(Garillos-Manliguez & Chiang, 2021).

The objective of this research is to detect the water status of

tomatoes by fusing RGB, NIR and depth image information

through deep learning. It will provide a novel method for non-

destructive detection of water status of tomatoes and give a

reference for irrigation management.

2 Materials and methods

2.1 Experimental design

The water status of the test samples was controlled according to the

Penman-Monteith equation for irrigation at different percentages to

cultivate tomatoes with different moisture contents. The data collection

section introduced the instrumentation, collection methods and the

processing of the data set. The tomato water status detection network

construction section investigated the performance of different

combinations of neural networks, and the idea of tomato water

status detection model construction is shown in Figure 1:
1. To determine the parts of tomatoes that first exhibited water

deficiency symptoms during water deficiency so that images of

the appropriate parts can be acquired later. To cultivate

tomatoes with different water status, RGB images, depth

images and NIR images of the upper leaves of tomatoes

were captured using a RealSense camera (it can capture

RGB images, depth images and NIR images) as shown in

Figure 2. The captured images were made into a dataset and

divided into a training set, a validation set and a test set.

2. In order to obtain the most suitable detection model for the

water status of tomatoes, the detection model constructed

using one kind of image was first trained, then the detection

model constructed using two kinds of images was trained,

and finally the detection network constructed using three

kinds of images was trained.

3. The three types of trained multiple detection models were

tested on the test set, and each detection model was compared

and analyzed to select the appropriate detection model.
2.2 Cultivation of the experimental samples

The experiments were conducted in the Venlo continuous glass

greenhouse at Jiangsu University from June 2021 to January 2022, and
frontiersin.org
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the tomato variety used was “Pink Crown F1” (Shouhe). The substrate

used was perlite and the nutrient solution formulation was “Yamazaki

Nutrient Solution Formula” (Zhang X. et al., 2021). Five irrigation

levels were set, with five tomato plants at each irrigation level, irrigated

at 50%, 75%, 100%, 125%, and 150% of the reference

evapotranspiration of tomatoes, corresponding to the water status of

tomatoes as severely irrigated deficit, slightly irrigated deficit,

moderately irrigated, slightly over-irrigated, and severely over-

irrigated. The reference evapotranspiration of tomato was calculated

by the modified Penman-Monteith equation. According to Xu et al.

(2020), the reference evapotranspiration of tomato is defined as Eq.(1).

ETr =
0:408D(Rn − G) + g 1713(ea−ed)

T+273

D + 1:64g
� Kc (1)

where ETr is the reference evapotranspiration (mm/d), D is the

slope of saturated water vapor pressure versus temperature curve, Rn
is the net radiation (MJ/m2d), G is the soil heat flux (MJ/m2d), g is

the psychrometer constant (kPa/°C), ea is the average saturated water
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vapor pressure (kPa), ed is the actual water vapor pressure (kPa), T is

the average daily air temperature (°C), andKc is the crop coefficient of

tomato at different growth stages (0.75 at seedling stage, 1.05 at

flowering stage and 0.8 at fruiting stage).

Every morning, about one hour after sunrise time, the amount

of irrigation for the day was calculated according to Eq.(1) and then

irrigated into the tomato cultivation flowerpot at once.
2.3 Tomato image acquisition and
dataset production

2.3.1 Instrumentation
The D435i RealSense camera (Intel, USA) is a viable tool for

outdoor, close-range agricultural phenotyping tasks (Vit and Shani,

2018). The camera was therefore selected to capture RGB images,

NIR images and depth images of the tomato canopy, with

resolutions up to 1920×1080 for RGB images and 1280×720 for

depth images, and a depth measurement range of 0.2m-10m, which
FIGURE 2

Schematic diagram of taking tomato images. (1) Camera tripod. (2) RealSense camera. (3) Tomato plant. (4) Black cardboard. (5) Flowerpot. (6)
Motorized turntable.
FIGURE 1

Flow chart of tomato water status detection model.
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can be modified within the range according to actual needs. To

avoid the camera’s IR projector interfering with the NIR image, the

IR projector is turned off before the NIR image is acquired.

The test platform was Dell Precision 7920 workstation with

Intel Xeon 4110 processor, NVIDIA Quadro P4000 graphics card,

8GB of graphics memory, 64GB of computer memory, and

Windows 10 Professional Workstation Edition operating system.

The deep learning network was written in Python, Python version

was 3.7. The deep learning framework was PyTorch, version 1.7.1

accelerated with CUDA 11.0 and cuDNN8.0.5.

2.3.2 Determination of shooting position
To determine the shooting position of tomatoes, the position

where tomatoes first showed water deficit symptoms were explored.

Eight tomato plants were cultivated individually, four of which were

irrigated normally and the other four were subjected to water stress

treatment with suspension of irrigation, while all other managements

were the same. After the start of the experimental treatment, images

were taken every hour at three different positions, including the

upper, middle and lower parts of the tomato plants.

The upper leaves of the water stress treated tomato plants showed

wilting first, while the middle and lower leaves were in better condition

than the upper leaves, as shown in Figure 3. Figure 4 shows an image of

a control tomato plant for the same period, where no water stress

symptoms were observed throughout the plant. When tomato was

subjected to water stress, the upper leaves were the first to show water

stress symptoms. The images of the upper leaves of tomato plants were

selected to better detect the water status of the plants earlier. Therefore,

it was determined that the upper part of the tomato plant was the target

region for water status detection.

2.3.3 Image acquisition and dataset creation
The image acquisition test scenario is shown in Figure 5. The

RealSense camera was fixed by a camera tripod, the distance was
Frontiers in Plant Science frontiersin.org04
about 30 cm from the foremost part of the tomato and aimed at the

upper leaves of the tomato. The RealSense camera was connected to

the computer via a data cable with a Type-C interface on the

RealSense camera side and a USB 3.0 interface on the computer

side. The tomatoes were placed on a motorized turntable, which was

stopped for 3 seconds every 1/96th of a revolution, and

photographed using the RealSense camera. This was done to

obtain more images on the one hand and to ensure that images

from different angles of the tomatoes were captured on the other

hand. A piece of black cardboard was placed behind the tomato
FIGURE 3

An image of a tomato plant treated by water stress.
FIGURE 4

An image of a control tomato plant.
FIGURE 5

Experiment Scene of image acquisition. (1) Camera tripod. (2)
RealSense camera. (3) Black cardboard. (4) Tomato plant. (5) Data
cable. (6) Flowerpot. (7) Motorized turntable.
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plant to reduce the interference of the background. Before training,

10% of the image edge was cut to avoid the edge exceeding the black

background plate, adjust the size of the clipped RGB image and

near-infrared image to 640×480, adjust the size of the depth image

to 424×240, and remove image noise using Gaussian filter (Li

et al., 2019).

Image acquisition was performed after 7 days of water

treatment. A total of 21,600 sets of images were acquired as a

data set for the experiment, and a set of images contained RGB

images, depth images, and NIR images, and the images acquired for

each moisture state were 4320 sets. As shown in Figure 6, (A) is the

RGB image, (B) is the visualized depth image, and (C) is the NIR

image. The training set accounted for 70% of the data set, the

validation set accounted for 10% of the data set, and the test set

accounted for 20% of the data set. The images in the training set and

the test set are from different tomato plants.
2.4 Construction of the water
status detection

Multimodal data fusion can be mainly divided into three main

types: early fusion, late fusion and hybrid fusion (Bayoudh et al.,

2021; Joshi et al., 2021; Zhang Y. et al., 2021). Early fusion involves

the fusion of the features extracted from the data collected by the

sensors and then the detection model is used for classification,

which is also known as feature fusion. Late fusion refers to

processing the data of each modality individually, training them

independently, and then calculating the result according to the

weight of each network calculation. It is also called decision layer

fusion, which will ignore the relevant features between modalities

and have a large information loss (Choi and Lee, 2019). Some

studies have shown that early fusion is superior than late fusion.

Hybrid fusion combines early fusion and late fusion, while different

data have different dimensions and scales, making fusion

more difficult.

In this study, early fusion was used and CNNs was applied to

extract data features. The extracted image features were then fused

and classified by a classifier to construct a deep learning network for

tomato water status detection. Image features were extracted using

VGG-16 and ResNet-50, and the main reasons for using these two

CNNs were: VGG-16 and ResNet-50 had good performances in

multiple datasets (Gao et al., 2019). It had been widely used in

recent years and had also achieved great performance. To perform
Frontiers in Plant Science 05
feature fusion, the fully connected layers of VGG-16 and ResNet-50

were used for fusion, VGG-16 and ResNet-50 with the fully

connected layer with the output of detection results removed

were used. the features in the fully connected layer were rich in

semantic features, and these semantic features had a significant role

in image classification (Gao et al., 2019). The feature size shape

extracted by VGG-16 was 1×1×4096 and the feature size extracted

by ResNet-50 was 1×1×2048. The extracted features were stitched

together using data that had gone through the pooling layer. The

constructed deep learning network was trained and the optimal

combination was selected according to the detection effect. The

structure of the constructed deep learning network for water status

detection is shown in Figure 7.
3 Results

3.1 Experimental evaluation indicators

To be able to evaluate the detection performance of each

combination network and then select the optimal combination,

recognition accuracy was used as an evaluation index in this study.

Accuracy recognition is the most intuitive way to understand the

performance of the detection network and is an extremely

important evaluation index, which can be calculated by Eq.(2).

Accuracy =
Pc
PALL

� 100% (2)

where Pc is the number of correctly classified and PALL is the

number of total samples.
3.2 Single-modal deep learning network

The VGG-16 and ResNet-50 networks were trained using RGB

images , depth images and NIR images , respect ive ly .

Hyperparameter settings: initial learning rate were set to 0.001,

and mini-batch size was set to 32. Cross-entropy loss function was

used to represent the loss function and Adam optimizer was

adopted as the optimizer. To ensure the effect of feature

extraction and speed up the training of the network, the weights

of the main part of the feature extraction network of the network

model were first frozen and trained using the official model pre-

training weights. After 50 iterations, they were unfrozen and the
B CA

FIGURE 6

Acquired images. (A) RGB image. (B) Depth image. (C) NIR image.
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training was ended with 30 more iterations. The accuracy of RGB

images and NIR images on VGG-16 and ResNet-50 on the

corresponding test sets are shown in Table 1. Figure 8 shows the

detection results of the tomato water status detection model

constructed using one kind of image.

It can be seen from Table 1 that among the two models, the

training using ResNet-50 had a higher accuracy, the major reason

was that the ResNet-50 network had more layers compared to the

VGG-16 network and used residual blocks without gradient

disappearance or gradient explosion. In the same deep learning

network, the NIR images had the highest accuracy in detecting the

water status of tomatoes and the depth images had the lowest. The

NIR images were more sensitive to water changes in the crops (Peng

et al., 2005); the RGB images were mainly based on tomato plant

texture and color, so the leaf texture and color would only change

significantly when the crop experienced severe water shortage. In

comparison with the NIR images and RGB images, the depth

images contained more complex information but the CNNs was

slightly less effective in extracting features from the depth images, so

the accuracy of the model was lower compared to the results

obtained by using RGB images and NIR images. The RGB images

of tomato leaves were first segmented by using Mask R-CNN for

instance segmentation, and then separately classified using VGG-16

with an accuracy of 89.09%, which was slightly lower than that of

this paper(2020). It might be illustrated by that the overfitting

occurred in Qihui Zhao’s study (Zhao et al., 2012), while the
Frontiers in Plant Science 06
amount of data in this paper was relatively large and no

overfitting occurred.
3.3 Multimodal deep learning network

The initial learning rate of the tomato water status detection

network was set to 0.001 and the mini-batch size was set to 32. To

ensure the effectiveness of the model in extracting features and

speed up the training, the training was first conducted using the

official pre-trained weights, and the weight parameters of its

backbone feature extraction part were frozen, and after 50

iterations, the weight parameters of the backbone feature

extraction part were unfrozen to continue the training, and the

training was stopped after 30 iterations. When the training was

completed, the accuracy of each model was obtained by

experimenting with the test set.

The combined 20 tomato water status detection networks

were trained, and the trained weights were tested on the test set

after the training was completed, the accuracy of each detection

network is shown in Table 2 and the detection results are shown

in Figure 9. Among the deep learning models built using two

types of images, the highest accuracy was achieved by the

combination of RGB images and NIR images extracted by

ResNet-50, and the highest accuracy was achieved by the

detection network built using three types of images extracted by
FIGURE 7

Diagram of the deep learning network structure of detection of crop water status.
TABLE 1 Accuracy of detection model of tomato water status based on single-modal deep learning.

Model name

RGB images Depth images NIR images

Correct number of
classifications Accuracy Correct number of

classifications Accuracy Correct number of classifications Accuracy

VGG-16 5876 90.68% 5765 88.97% 5904 91.11%

ResNet-50 5967 92.08% 5868 90.56% 6032 93.09%
fr
The total number of samples in the test set is 6480.
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B C

D E F

A

FIGURE 8

Detection results of single-modal deep learning model. (A) VGG-16(RGB images). (B) VGG-16(Depth images). (C) VGG-16(NIR images). (D) ResNet-
50 (RGB images). (E) ResNet-50 (Depth images). (F) ResNet-50 (NIR images). Classes 1, 2, 3, 4 and 5 represent severely irrigated deficit, slightly
irrigated deficit, moderately irrigated, slightly over-irrigated, and severely over-irrigated of tomato water status, respectively.
TABLE 2 Accuracy of detection model of tomato water status based on multimodal deep learning.

RGB images Depth images NIR images Correct number of classifications Accuracy

VGG-16 VGG-16 – 6032 93.09%

VGG-16 ResNet-50 – 6048 93.33%

VGG-16 – VGG-16 6125 94.52%

VGG-16 – ResNet-50 6172 95.25%

ResNet-50 VGG-16 – 6060 93.52%

ResNet-50 ResNet-50 – 6080 93.83%

ResNet-50 – VGG-16 6223 96.03%

ResNet-50 – ResNet-50 6279 96.90%

– VGG-16 VGG-16 6090 93.98%

– VGG-16 ResNet-50 6142 94.78%

– ResNet-50 VGG-16 6111 94.31%

– ResNet-50 ResNet-50 6161 95.08%

VGG-16 VGG-16 VGG-16 6420 99.07%

VGG-16 VGG-16 ResNet-50 6408 98.89%

VGG-16 ResNet-50 VGG-16 6413 98.97%

VGG-16 ResNet-50 ResNet-50 6417 99.03%

ResNet-50 VGG-16 VGG-16 6428 99.18%

ResNet-50 VGG-16 ResNet-50 6424 99.14%

ResNet-50 ResNet-50 VGG-16 6423 99.12%

ResNet-50 ResNet-50 ResNet-50 6412 98.95%
F
rontiers in Plant Science
 07
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The total number of samples in the test set was 6480, and the “- “in the table indicates that the image was not used.
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ResNet-50 for RGB images and VGG-16 for depth and

NIR images.

Results given in Tables 1 and 2 disclosed that the tomato water

status detection model using three kinds of images constituted the
Frontiers in Plant Science 08
highest accuracy. The depth of each model using the three images

had a large difference, but the difference in accuracy was not very

large. This phenomenon may be resulted from that a high accuracy

could be achieved by using a shallow depth VGG-16 to classify the
B C D

E F G H

I J K L

M N O P

Q R S T

A

FIGURE 9

Detection results of multimodal deep learning models. (A) VGG16(RGB images) and VGG16(Depth images). (B) VGG16(RGB images) and ResNet50
(Depth images). (C) VGG16(RGB images) and VGG16((NIR images). (D) VGG16(RGB images) and ResNet50((NIR images). (E) ResNet50(RGB images)
and VGG16(Depth images). (F) ResNet50(RGB images) and ResNet50(Depth images). (G) ResNet50(RGB images) and VGG16((NIR images).
(H) ResNet50(RGB images) and ResNet50((NIR images). (I) VGG16(Depth images) and VGG16((NIR images). (J) VGG16(Depth images) and ResNet50
((NIR images). (K) ResNet50(Depth images) and VGG16((NIR images). (L) ResNet50(Depth images) and ResNet50((NIR images). (M) VGG16(RGB
images), VGG16((NIR images) and VGG16((NIR images). (N) VGG16(RGB images), ResNet50((NIR images) and ResNet50((NIR images). (O) VGG16(RGB
images), VGG16((NIR images) and VGG16((NIR images). (P) VGG16(RGB images), ResNet50((NIR images) and ResNet50((NIR images). (Q) ResNet50
(RGB images), VGG16((NIR images) and VGG16((NIR images). (R) ResNet50(RGB images), ResNet50((NIR images) and ResNet50((NIR images). (S)
ResNet50(RGB images), VGG16((NIR images) and VGG16((NIR images). (T) ResNet50(RGB images), ResNet50((NIR images) and ResNet50((NIR
images). Classes 1, 2, 3, 4 and 5 represent severely irrigated deficit, slightly irrigated deficit, moderately irrigated, slightly over-irrigated, and severely
over-irrigated of tomato water status, respectively.
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features extracted from the three images after fusion, and even if a

deeper depth ResNet-50 network was used, the accuracy would not

be further improved.
4 Discussions

In this work, three kinds of image features were fused for deep

learning, and the accuracy of the tomato water detection models

built by the multimodal deep learning network was significantly

improved compared to the single-modal deep learning network.

The accuracy of the deep learning model built with two images

was about 5% higher than that of the single-modal model, and the

accuracy of the deep learning model built with three images was

about 5% higher than that of the deep learning model built with two

kinds of images. A single RGB image, NIR image or depth image has

its own limitations in characterizing plant water status information.

For example, RGB images are mainly applied to extract color and

texture information, but are easily affected by light and background;

NIR images are sensitive to moisture changes but are susceptible to

the influence of the environment; and the depth images are used to

extract morphological information but are more complex. The use

of multiple images can reflect the water status of the plant at more

levels, so the accuracy of water status detection can be improved.

The accuracy of training with ResNet-50 was higher than that of

training with VGG-16 under the same combination of images. The

confusion matrix shown in Figures 8, 9 indicated that the single-

modal water detection network produced the most errors in

classifying two categories of severely irrigated deficit and slightly

irrigated deficit and two categories of slightly over-irrigated and

severely over-irrigated, which mainly attributed to the insignificant

differences in crop color and morphology, so the detection accuracy

of RGB images and depth images was lower. The fusion of three

image features obtained by Gené-Mola et al. (2019) adapted a Faster

R-CNN including five channels of images of color, depth and signal

intensity for the recognition of apples and improved the composite

metric over the Faster R-CNN containing only color, which also

supported the above mentioned views.
5 Conclusions

This study introduced and compared single- modal and

multimodal deep learning network to detect the water status of

tomatoes. by fusing RGB, NIR and depth images. The experimental

results showed that the accuracy of tomato water status detection

based on single-mode deep learning ranged from 88.97% to 93.09%,

while the accuracy of tomato water status detection based on

multimode deep learning ranged from 93.09% to 99.18%. The

multimodal deep learning significantly outperformed the single-

modal deep learning. The optimal multimodal deep learning

network combination for tomato water status detection was
Frontiers in Plant Science 09
determined to use ResNet-50 to extract features from RGB

images and VGG-16 to extract features from depth images and

NIR images.
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