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Wheat is one of the most widely consumed grains in the world and improving its

yield, especially under severe climate conditions, is of great importance to world

food security. Phenotyping methods can evaluate plants according to their

different traits, such as yield and growth characteristics. Assessing the vertical

stand structure of plants can provide valuable information about plant

productivity and processes, mainly if this trait can be tracked throughout the

plant’s growth. Light Detection And Ranging (LiDAR) is a method capable of

gathering three-dimensional data from wheat field trials and is potentially

suitable for providing non-destructive, high-throughput estimations of the

vertical stand structure of plants. The current study considers LiDAR and

focuses on investigating the effects of sub-sampling plot data and data

collection parameters on the canopy vertical profile (CVP). The CVP is a

normalized, ground-referenced histogram of LiDAR point cloud data

representing a plot or other spatial domain. The effects of sub-sampling of

plot data, the angular field of view (FOV) of the LiDAR and LiDAR scan line

orientation on the CVP were investigated. Analysis of spatial sub-sampling effects

on CVP showed that at least 144000 random points (600 scan lines) or an area

equivalent to three plants along the row were adequate to characterize the

overall CVP of the aggregate plot. A comparison of CVPs obtained from LiDAR

data for different FOV showed that CVPs varied with the angular range of the

LiDAR data, with narrow ranges having a larger proportion of returns in the upper

canopy and a lower proportion of returns in the lower part of the canopy. These

findings will be necessary to establish minimum plot and sample sizes

and compare data from studies where scan direction or field of view differ.

These advancements will aid in making comparisons and inform best practices

for using close-range LiDAR in phenotypic studies in crop breeding and

physiology research.
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1 Introduction

With an increasing global population, providing enough food to

satisfy needs is a big challenge. Plant breeding has effectively

increased agricultural productivity over the past century (Evenson

and Golin, 2003). Connecting genotypes with their phenotypes and

selecting high-yield and stress-tolerant plants can help crop

breeders keep pace with population growth (Rahaman et al., 2015).

High-quality phenotypic data are vital to plant breeders’ decision-

making process to realize genetic improvements (Chapman et al.,

2014; Bai et al., 2016). Phenotyping methods are able to evaluate

plants according to their different traits, such as physiology, yield,

development, and tolerance to environmental stresses (Li et al., 2014;

Rahaman et al., 2015). Some morphological traits that are often used

to evaluate plant growth and characterize the canopy structure

include canopy biomass (Hansen and Schjoerring, 2003; Ehlert

et al., 2009), height (Zhang and Grift, 2012; Bendig, 2015), and leaf

area index (LAI) (Baret et al., 2010; Béland et al., 2011; Béland et al.,

2014; Verger et al., 2014; Zhao et al., 2015). Studies have shown that

these morphological traits have a strong relationship with plant

genotype, cultivars, growth rate and yield (Sharma and Ritchie,

2015; Friedli et al., 2016; Sun et al., 2018).

Biomass measurement is a good indicator of crop growth and

growth rate, leaf area, organ size and partitioning and

morphological characteristics. These data can be used to calculate

radiation use efficiency and metabolite analysis (Pask et al., 2012).

Biomass production can be reduced dramatically by stresses,

resulting in a reduced ability of the crop to intercept solar

radiation and a decrease in the photosynthesis rate and/or

radiation use efficiency. Identifying genotypes that are able to

maintain their biomass production during stress conditions is an

essential key to finding the better-adapted lines (Pask et al., 2012).

Plant height has been used as a proxy for plant biomass (Madec

et al., 2017) and can be a trait for phenotyping. Studies showed

stress conditions affect the stem height that defines plant height

(Ota et al., 2015; Tilly et al., 2015). Some individual traits, such as

plant height and stem solidness, both have a beneficial relationship

with plant yield and harvest index. (Pask et al., 2012). Blonquist

et al. (2009) used height as one of the model’s inputs to evaluate the

water stress condition in plants. These traits are good for breeders to

screen large plant populations (Pask et al., 2012).

Traditional methods to measure such phenotypic traits are

focused on single time points and therefore do not consider the

developmental dynamics of these traits. The limited sampling possible

for human evaluators is insufficient to capture the variation within

plots (Guan et al., 2018). Using modern technologies to develop high-

throughput phenotyping methods is a way to overcome traditional

manual methods’ temporal and sampling limitations.

One technology that can provide 3D canopy data for estimating

plant traits is LiDAR. LiDAR uses the phase shift between an

emitted signal and the reflected return signal (or signals) to

estimate the distance between the instrument (zero point) and a

target. While the application of LiDAR for estimation of height and

above-ground biomass has been well-established in forestry (Lucas

et al., 2008; Eitel et al., 2013; Kankare et al., 2013; Greaves et al.,
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2015), the use of this technology in field crops is much less mature.

Recent studies established the LiDAR scanning approach to

estimate the number of spikes and crop density (Saeys et al.,

2009). In most studies, LiDAR data are often presented in the

form of a meshed, 3D reconstruction of the scanned surface. They

have focused on extracting and estimating a variety of canopy

information such as height, canopy biomass, leaf area, leaf shape,

leaf inclination angle, leaf area index (LAI) and leaf area density

(LAD) from these data (Ehlert et al., 2010; Gebbers et al., 2011; Tilly

et al., 2014; Jimenez-Berni et al., 2018; Qiu et al., 2019; Su et al.,

2019; Walter et al., 2019; Maesano et al., 2020).

However, some work has represented plot data using relatively

simple histograms, representing the canopy vertical profile (CVP)

(Jimenez-Berni et al., 2018; Furbank et al., 2019). To determine the

histogram of the vertical height of points with respect to the ground,

the distance between the ground and the LiDAR sensor must first be

determined. One approach is to consider the peak of the histogram

(i.e., mode) as the ground elevation for a given plot, assuming that

some ground is visible through the canopy or at the plot edge

(Jimenez-Berni et al., 2018). Evaluating the CVP of crop plots is a

promising approach for providing information about plant

processes and development, especially if these traits can be

tracked throughout the growing season. In this study, LiDAR data

from a canopy were height corrected, combined across an area of

interest (plot), and presented as a CVP plot of height versus a

normalized number of returns. One of the main questions here is

how CVP or LiDAR histogram data can be affected by instrumental

adjustments and data acquisition approach.

The main objective of this study was to evaluate factors that

could impact the consistency of LiDAR data for creating repeatable

CVPs for wheat. The particular objectives were completed as

described below.
1) Find the minimum sample size to consistently capture the

CVP characteristics of a wheat genotype per plot.

2) Ascertain the effect of the angular FOV of LiDAR on the

resulting CVP, and

3) Determine the impact of scan line orientation with respect

to the row direction.
2 Methodology

This study was conducted in two parts. Part one was a field

experiment (2019) to investigate the spatial sampling and FOV

effects on LiDAR data. Part two was a container experiment (2020)

to investigate the repeatability and effect of direction of travel on

LiDAR data.
2.1 Area of study

This study was carried out in Saskatoon, Saskatchewan. Data

were collected in separate experiments in 2019 and 2020. The 2019
frontiersin.org
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experiment included four wheat varieties (Stettler, Superb, AC

Sadash and Acadia) planted on May 24, 2019, in well-watered

and drought treatment blocks with three replicate plots of each

variety (24 plots total). Due to rainfall patterns, these treatments

were not substantially different. The plots were 2.5 m long and 1 m

wide, and each plot contained five rows of wheat plants with a row

spacing of 0.2 m.

The 2020 experiment consisted of a single replicate of two wheat

varieties (Stettler and Superb) planted in three rows on July 26,

2020, under two irrigation treatments (well-watered and drought).

These varieties were planted at the same time in 45-litre containers

56 cm long × 41 cm wide × 33 cm deep.
2.2 Data acquisition

In the 2019 experiment, the LiDAR scanner was mounted in the

instrument payload on a two-wheeled cart consisting of a

lightweight extruded aluminium frame that was pushed by an

operator, manually (Figures 1A, C, E). In this experiment, the

distance between the LiDAR scanner and the ground was

inconsistent during data acquisition due to instabilities in the

two-wheeled cart used. The 2019 experimental plots were

organized in field layouts of columns and rows. Each data

acquisition experiment included six scanning passes in the
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planting direction. Data were acquired in a single direction of

travel. In this experiment, LiDAR scanning was conducted on 53

and 83 days after planting (DAP) when wheat varieties were at

anthesis -Zadoks growth scale 61 [ZGS 61 (Zadoks et al., 1974)]-

and ripening -ZGS 91-, respectively.

In the 2020 experiment, the instrument payload was mounted

on the University of Saskatchewan Field Phenotyping System

(UFPS) which is a portable cart consisting of a lightweight

extruded aluminium frame with four wheels that was better able

to maintain a consistent distance above the plants (Figures 1B, D,

F). In this experiment, UFPS was pushed manually by the operator.

Three data acquisition passes (replicates) were conducted for each

canopy orientation (rows parallel and rows perpendicular to the

direction of travel) on September 9, 10 and 11, 2020 (45, 46 and 47

DAP, respectively) when wheat varieties were at anthesis (ZGS 61).

In both the 2019 and 2020 experiments, the operator pushed

the cart.

The LiDAR sensor used (model SICK LMS 400-1000, SICK AG,

Waldkrich, Germany) was a line scanning type. In this study, the

FOV of the LiDAR was adjusted to 60°, and the scanning rate was

360 Hz with an angular resolution of 0.1°. The LiDAR working

range was from 0.7 to 3 meters. The average speed of the cart

carrying the LiDAR sensor was 0.23 m/s, resulting in an average

interval between each scan line of 0.6 mm. The UFPS PhenoDAQ

software was used for data acquisition.
B

C D

E F

A

FIGURE 1

Data acquisition platform. Left column (A, C, E) shows the system used in 2019 experiment, right column (B, D, F) shows the 2020 system. Top row:
photographs of the systems in use. Middle row: a top view diagram of data acquisition for the year. Bottom row: Front view showing the plane of
the LiDAR scan.
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2.3 Pre-processing

Raw data from the LiDAR were stored in HDF5 format on the

payload computer. LiDAR scans contain information on range and

return intensity (remittance) with 240 data points per scan line. The

number of scan lines for each plot varied with the speed of travel

and small variances in the lengths of plots.

The processing code was written inMATLAB (MATLAB R2018a).

In the first step, raw LiDAR data were transformed from polar

coordinates into Cartesian coordinates. In this step, each point

comprises X, Y and Z coordinates, where X is the position along the

direction of travel, Y is the position across the plot width (scan line

orientation), and Z is the vertical position of each point.

The LiDAR data were collected in the LiDAR frame of reference;

part of pre-processing is to convert data to a ground frame of reference.

When the variation in the distance between the instrument and the

ground was slight, the ground elevation for a given plot was considered

the histogram mode (Jimenez-Berni et al., 2018). Subtracting the mode

from the histogram data (and multiplying by -1), the histogram is

transformed into a ground, rather than instrument, frame of reference.

This step was called height correction pre-processing, and the resulting

graph was the histogram of distances from the ground. To make this

histogram comparable between different sample size, normalization

with the number of return points were conducted, and the resulting

graph was named CVP.

When the distance between the ground and the instrument is

inconsistent, the peak at the ground distance is less distinct when data

are observed in aggregate for a plot. This issue was corrected by

applying the height correction pre-processing to small numbers of

contiguous scan lines at a time and aggregating them post-correction.

This process was called ground correction pre-processing. In this pre-

processing, it was assumed that variation of payload height with
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respect to the ground was negligible over a time of 1 second. The data

collection frequency in this study was 360 Hz which means 360 lines

were scanned with the LiDAR sensor within each second. Figure 2

shows the effect of the different numbers of contiguous scan lines for

applying height correction pre-processing on appearing ground peak

elevation on CVP data compared with uncorrected CVP data. As can

be seen in Figure 2, the raw height corrected aggregate CVP data

ground peak is broad, having been spread out by variations in

instrument height. Applying the height correction pre-processing

on every 360 contiguous scan lines and then aggregating these post-

correction resulted in a more distinct ground peak. Applying the

same process on a larger number of contiguous lines did not produce

the sharp ground peak seen in the ground correction using 360-scan

line blocks. As it takes several seconds to collect 1000 scan lines, there

may be more variation in instrument height over that more

prolonged time, resulting in a less defined peak. Negative height

values in these CVP graphs were created due to the instrument

uncertainty and the variation in the surface profile and instrument

height (Figure 2).
2.4 Impacts of LiDAR spatial sampling

The number of LiDAR data points is influenced by the size of the

plot, LiDAR scan rate, angular resolution, and travel speed. A practical

question for high-throughput phenotyping with LiDAR is how large a

sample (both in terms of data points and area) is required to

consistently capture the CVP characteristics of a larger plot. These

sampling questions were studied using LiDAR data from the 2019

field data.

In the 2019 experiment, each treatment was planted in

triplicate with a plot size of 2.5 m2. Plant growth in these plots
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FIGURE 2

The effect of the different number of contiguous scan lines for applying height correction pre-processing on ground peak elevation on CVP.
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was observed to be relatively uniform. Thus, the data were

combined for each variety yielding four aggregate plots per

treatment. Each aggregate plot was equivalent to 7.5 m2

containing roughly 375 wheat plants in five rows with

approximately 12,000×240 LiDAR points. The CVP obtained

from this aggregate plot was considered the reference CVP for

the variety. Each wheat plant in these aggregate plots occupied an

average of 0.02 m2 of space. These data were subsampled in two

ways: random points and contiguous blocks.

To find the minimum number of randomly sampled points

required to accurately estimate the CVP of an entire plot, random

subsamples were taken, and CVP’s compared to the CVP from the

entire plot. Subsamples were taken using numbers of points

ranging from 24×103 (equal to 100 scan lines) to 24×105 (equal

to 10000 scan lines) and CVPs were constructed. This was

repeated three times for each number of points. The resulting

CVPs were normalized with the number of points, and then their

standard deviations across the canopy height were investigated. In

the next step, each CVP was compared to that made by using the

entire population in terms of the root mean squared

error (RMSE).

For the spatially contiguous subsets, blocks of scan lines were

selected from the total population based on the nominal in-row

space required for between one and 12 plants along the rows. Like

the random selection case, the resulting CVPs were visually

compared to the aggregate plot CVP and used the root mean

squared error (RMSE).
Frontiers in Plant Science 05
2.5 Field of view in LiDAR and its effect
on CVP

It was hypothesized that the angular FOV of the LiDAR

influences the resulting CVP of a scanned canopy. In the 2019

experiment, each plot contained five rows of wheat scanned with the

LiDAR FOV of 60° (Figure 3). These data were used to create three

FOV scenarios: 12°, 36°, and the entire 60° FOV. These roughly

equated to scanning only the middle row of the plot, the centre three

rows, and the whole plot, respectively (Figure 3). The resulting data

were processed for each of the 24 plots, and then compared.
2.6 Repeatability and Orientation

To investigate the repeatability of the CVP of the scanned

canopy, an experiment was conducted with four containers of

wheat planted in rows. Two containers were planted with

“Superb” and the other two with “Stettler”. One container of

each variety was designated as a well-watered treatment and the

other as a water-stressed (deficiency) treatment. Plants in the

well-watered group were regularly watered in the days prior to

measurements, while the water-stressed group was allowed to dry

out. The containers were placed in a line with their rows aligned

and scanned with the LiDAR scanner. Then each container was

turned 90°, so their rows were perpendicular to the cart’s travel

direction, and they were scanned again. Rotating the containers
B

A

FIGURE 3

(A) the LiDAR images obtained from a typical plot on 15/08/2019, highlighting the scanned region covered by different angular FOV. (B) a
representation of the FOV geometry viewed perpendicularly from the scanning plane.
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90° and scanning them was repeated six times. In total, three

passes of LiDAR measurements were made for the rows aligned

with the cart’s travel direction and three passes were made for the

rows perpendicular to the cart’s travel direction. This experiment

was repeated on September 9, 10 and 11, 2020, with both

treatments being thoroughly watered following scanning on

September 9. The CVP of each container and measurement

replication was obtained from the LiDAR data and compared

to observe the repeatability of LiDAR canopy measurements and

the effect of row orientation on the CVP data.
Frontiers in Plant Science 06
3 Results and discussion

3.1 Pre-processing

After converting the LiDAR data from polar coordinates to

Cartesian coordinates, the histogram of distance from the LiDAR

sensor was provided (Figure 4). One typical result on 15/08/2019 for

one Acadia wheat plot (Figure 4A) showed that, in this plot where

payload height with respect to the ground was consistent, the ground

elevation peak could be clearly seen in the histogram of distance from
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FIGURE 4

Determination of ground elevation from LiDAR data on 15/08/2019. Histogram of distance from the LiDAR and CVP after distance correction and
height correction pre-processing were applied for a typical plot (A) (Acadia) when the distance between LiDAR and ground was consistent and (B)
(Stettler) when there was variation in payload height with respect to the ground.
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the LiDAR (Jimenez-Berni et al., 2018). Figure 4A shows that in this

typical case, the ground correction process did not affect the shape of

the histogram, but height correction pre-processing corrected the

height of points in the histogram of distance from the ground.

In contrast, results on the same date but for a typical Stettler

wheat plot lacked a distinct ground peak, indicating an

inconsistent distance between the LiDAR and the ground

(Figure 4B). In this case, the ground correction process’s effect

can be observed in Figure 4B. In general, results showed that after

this pre-processing, the ground elevation peak was significant and

sharp on the histogram of distance from the ground (Figure 4B).

Overall, after doing ground correction pre-processing, height

correction pre-processing was conducted, and CVP for the plots

was determined.
3.2 Impacts of LiDAR spatial sampling

A comparison of CVP graphs obtained from different numbers

of random points showed a lot of variation around the ground peak

area. Figure 5 is one case that shows the standard variation of the

normalized number of points for an average of 10 CVPs obtained

from 192000-point random samples (equal to 800 scanlines). The

most considerable standard deviations in the CVP graphs were

related to the ground peak, and its neighborhood (-10 to +10 cm)

shows the variations of obtained CVPs around the ground peak are

much larger than those across the canopy height. This might

happen due to the uneven ground surface or the existence of

dead leaves or litter on the ground surface. Including or

excluding data from the ground peak region on the overall RMSE

when comparing a subsampled CVP to a reference may be critical to

evaluating subsampling performance. This was assessed as part of

the determination of minimum subsample size.
Frontiers in Plant Science 07
Figure 6 shows the calculated RMSEs between each CVP graph

and the reference CVP made using the entire population. With the

majority of subsample variance occurring in the region of the

ground peak, this analysis was conducted both including and

excluding the ground-peak region ( ± 10cm). A stronger

relationship between RMSE and the number of random

subsample points was found for CVP’s with the ground peak

excluded (R2 = 0.95) than with these data included (R2 = 0.87). In

addition, Figure 6 shows that most outlier points disappeared by

removing the ground peak neighborhood points from the RMSE

calculation process. Figure 6 illustrates the RMSE decreased with a

power relationship with an increasing number of random points in

the subsample. The incremental improvement in CVP

representation with increasing subsample size decreases rapidly.

Comparisons of selected subsample CVPs with the whole-plot

reference are shown in Figure 7.

As seen in Figure 6, RMSE related to the 144000 random points

(equal to 600 scan lines) is near the shoulder in the curve, and below

this amount of random points, RMSE increased rapidly. Figure 7

shows that the CVP obtained from 144000 random points was very

similar to that obtained from the whole plot area. In contrast, the

CVP obtained from 48000 random points (equal to 200 scan lines)

had lots of variation and could not follow the reference CVP. For

this reason, 144000 random points were selected as the minimum

random subsample points to capture the CVP characteristics of a

larger plot.

Similarly, Figure 8 shows that with increasing the number of

plants per row scanned by the LiDAR scanner, RMSE also

decreased with a power relationship. Reducing the number of

plants below three, RMSE changed dramatically from 0.0015 to

0.003, suggesting three plants as the minimum sample extent for

predicting changes in the CVP of the whole population scanned

by LiDAR. In addition, Figure 9 shows that the CVP of scanned
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The average of 10 CVPs obtained from 800×240 random points and the standard deviation of these CPV graphs- in different canopy heights.
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data with three plants per row could follow the shape of the CVP

provided by the whole plot data. The average number of

normalized points on each height for the area with the entire

population, three-plant length section and one plant length

section was 0.006. It was concluded that the area containing

three or more plants per row was adequate to characterize the

overall CVP of the aggregate plots.
Frontiers in Plant Science 08
3.3 The effect of LiDAR field of view
on CVP

A comparison of the CVPs for three FOVs of 12, 36 and 60°

showed changes in the shapes of CVPs with FOV (Figure 10). It was

observed that responses varied with the angular range of the LiDAR

data, with narrow ranges having a more significant proportion of
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FIGURE 6

The relationship between the number of random points used and RMSE compared to using the whole area points, including and excluding the
ground-peak region.
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The CVP obtained from LiDAR data provided with 48000, 144000 and whole plot data.
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returns in the upper canopy and a lower proportion of returns in the

lower part of the canopy.

This difference in normalized CVPs with the number of points at

different FOV might be due to the direction of LiDAR’s rays hitting

the canopy. As shown in Figure 3, at the narrow 12° FOV, the LiDAR

was more-or-less directly over the middle row of the plot, so the

middle 12° of the scan primarily sees the top of the row. In this case,

the upper parts of the canopy block the path of the rays and prevent

them from penetrating the lower parts of the canopy. Therefore, the

proportion of points related to the upper levels of the canopy is

greater at this FOV and lower in the bottom half of the canopy

(Figures 10A, B). With a wider 60° FOV, the inter-row space helps

make a gap in the canopy allowing off-nadir rays to penetrate deeper
Frontiers in Plant Science 10
into the canopy (Figure 3). This results in more information being

collected from the sides of the plants compared to a narrower FOV.

This increases the proportion of the CVP area lower in the canopy

(Figures 10A, B). The 36° FOV acted more like a narrow FOV, and

the proportion of points related to the upper levels of the canopy was

greater at this FOV and lower in the bottom half of the canopy

(Figures 10A, B).
3.4 Repeatability results

Figure 11 shows the variation in CVPs obtained by LiDAR from

well-watered Superb wheat grown in a container and scanned with
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the direction of travel parallel to the rows (Figure 11A) and

direction of travel perpendicular to the rows (Figure 11B). Both

directions of travel (parallel to and perpendicular to the rows)

showed a similar amount of CVP variation. Similar results were

observed in CVPs obtained from other containers on September 9,

10 and 11, 2020.

Figure 12A shows the comparison of three scans, obtained

from travelling parallel to the rows (parallel 1, 2 and 3), and

Figure 12B shows the comparison of orthogonal scans, one with a

travel direction parallel to the rows (parallel 1) and the other two

with travel direction perpendicular to the rows (perpendicular 1

and 2). Results showed that CVPs obtained from parallel

directions of travel (Figure 12A) and perpendicular directions

of travel, were followed each other in peaks and height. Similar

results were observed in other containers on consecutive days

(September 9, 10 and 11). These results showed the repeatability
Frontiers in Plant Science 11
of LiDAR data in two perpendicular directions of travel for the

same containers.

Figures 13A, B show the repeatability of CVPs on consecutive

days (September 9, 10 and 11) again for the well-watered Superb

container by plotting CVP pairs against each other. Comparing the

same travel direction (with respect to the rows), the linear

regression slope coefficients were near one, and the intercepts

were near zero (Figure 13A). However, comparing orthogonal

travel directions (parallel 1 and perpendicular 1) in Figure 13B,

scanned data showed much greater variation with a lower linear

regression coefficient than the same directions. Similar results were

observed for the other three containers on September 9, 10 and 11.

Walter et al. (2019) conducted an experiment to investigate the

repeatability of LiDARmeasurements. Their results showed that the

repeatability of LiDAR measurements was higher in the same

directions of travel than in opposite directions of travel.
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4 Conclusion

In this study a ground-based LiDAR system was used to collect

data from wheat plots, from which histograms of height vs

normalized number of points were constructed and referred to as

the canopy vertical profile (CVP). Height correction pre-processing

and normalization with a number of return points were two main

steps to convert histogram data to CVP and make them ready and

comparable for the subsequent analysis. However, when the

distance between the ground and the instrument was inconsistent,

applying ground correction pre-processing to small numbers of

contiguous lines (360) at a time and aggregating them post-

correction was a solution to convert the LiDAR data from an

unsteady sensor to the ground frame of reference.
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This study showed that the CVP of a scanned, uniform plot

could be represented by a subset of at least 144000 random points

(600 scan lines). In addition, analysis of the impact of LiDAR spatial

sampling showed that areas containing at least three plants per row

are needed to consistently capture the CVP characteristics of wheat

genotype per plot.

Investigating the impact of LiDAR FOV \ on CVP graphs

showed differences between narrow and wide fields of view. The

narrow 12° FOV of the scan rays primarily sees the top of the

canopy in a row directly below, preferentially returning top-of-

canopy points. In wider FOVs, the off-nadir rays can penetrate

deeper into the canopy profile and provide more information from

the lower parts of the canopy due to the inter-row space and the

gaps that happened in the canopy. This observation confirms that
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LiDAR FOV influenced the CVP graph and should be considered

during data acquisition and comparing results from different

instruments or scan settings.

Multiple measurements of CVP of the same canopy were shown

to be repeatable when collected from the parallel or perpendicular

travel directions with respect to the rows. These advancements may

help plant breeders to compare data from studies where scan

direction, FOV, or sample sizes differ. This combination of findings

demonstrates the ability of LiDAR to provide repeatable information

about the vertical profile of wheat plants in field conditions. In future

studies, the ability of CVP as a phenotypic trait can be investigated by

comparing the relationship between the CVPs obtained from

different plant genotypes with other plant traits.
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