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Assessing farmland suitability for
agricultural machinery in land
consolidation schemes in hilly
terrain in China: A machine
learning approach

Heng Yang1, Wenqiu Ma1*, Tongxin Liu1 and Wenqing Li2

1College of Engineering, China Agricultural University, Beijing, China, 2Key Laboratory of Land
Consolidation and Rehabilitation, Land Consolidation and Rehabilitation Center, Ministry of Natural
Resources, Beijing, China
Identifying available farmland suitable for agricultural machinery is the most

promising way of optimizing agricultural production and increasing agricultural

mechanization. Farmland consolidation suitable for agricultural machinery (FCAM)

is implemented as an effective tool for increasing sustainable production and

mechanized agriculture. By using themachine learning approach, this study assesses

the suitability of farmland for agricultural machinery in land consolidation schemes

based on four parameters, i.e., natural resource endowment, accessibility of

agricultural machinery, socioeconomic level, and ecological limitations. And based

on “suitability”and “potential improvement in farmlandproductivity”,weclassifiedland

into fourzones: thepriority consolidation zone, themoderateconsolidationzone, the

comprehensive consolidation zone, and the reserve consolidation zone. The results

showed thatmostof the farmland (76.41%)was either basically ormoderately suitable

for FCAM. Although slopewas often an indicator that landwas suitable for agricultural

machinery, other factors, suchas the inferior accessibilityof tractor roads, continuous

depopulation, and ecological fragility, contributed greatly to reducing the overall

suitability of land for FCAM.Moreover, it was estimated that the potential productivity

of farmland would be increased by 720.8 kg/ha if FCAM were implemented. Four

zones constituted a useful basis for determining the implementation sequence and

differentiating strategies for FCAM schemes. Consequently, this zoning has been an

effective solution for implementing FCAM schemes. However, the successful

implementation of FCAM schemes, and the achievement a modern and sustainable

agriculture system, will require some additional strategies, such as strengthening

farmland ecosystem protection and promoting R&D into agricultural machinery

suitable for hilly terrain, as well as more financial support.

KEYWORDS

farmland consolidation suitable for agricultural machinery, suitability assessment,
potential of farmland productivity, machine learning approach (MLA), zoning, hilly terrain
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1 Introduction

Since the 20th century, continuing population growth,

accompanied by rapid urbanization and industrialization has

intensified the need to increase food production on farmland (Wang

et al., 2021). Agricultural machinery has become an increasingly

important tool to ensure a sufficient global supply of food. Identifying

the available farmland suitable for agricultural machinery is believed to

an effective sustainable development method, because mechanized

agriculture is a strategy that is fundamental to efforts to alleviate

poverty and food security by greatly increasing grain productivity.

Farmland consolidation suitable for agricultural machinery (FCAM) is

an effective tool for increasing sustainable production through the

implementation of mechanized agriculture (Zhong et al., 2020).

FCAM is derived from farmland consolidation, the aim of which,

based on principles modern of agriculture, is to increase the

productivity and profitability of farmland that is small and

fragmented parcels of farmland for various reasons (Nilsson, 2019;

Basista and Balawejder, 2020; Uyan et al., 2020; Duan et al., 2021;

Beyer et al., 2022). The aim of FCAM is to identify the most suitable

places for the operation of agricultural machinery (Collins et al., 2001;

Duan et al., 2021; Janus and Ertunç, 2021; Beyer et al., 2022). In many

countries (e.g., Japan and South Korea), FCAM is used as a land

management tool to eliminate the adverse effects of land

fragmentation and to improve and promote agricultural

mechanization (Callesen et al., 2022; Washizu and Nakano, 2022).

The rules and regulations for FCAM projects vary from country to

country (Janus and Ertunç, 2022). However, in every country that

implements FCAM, it is essential to assess the suitability of farmland

plots in the project area (Jiang et al., 2017; Giri et al., 2019; Dias et al.,

2021; Jiang et al., 2022).

The identification of farmland suitable for agricultural machinery

in land consolidation schemes is critical for improving agricultural

production as well as optimizing land use. Recently, this process has

also attracted the attention of the scientific community. Some scholars

have stated that assessments of farmland suitability in land

consolidation schemes can be characterized as a decision problem

involving several factors that quantify the relative importance of the

criteria to be considered in the study (Morales and de Vries, 2021).

There are many examples of assessments of farmland suitability

(Akpoti et al., 2019; Mazahreh et al., 2019; Pilevar et al., 2020), and

a variety of variables, including the physical attributes of the land, soil

properties, agricultural infrastructure (e.g., irrigation and drainage),

and socioeconomic factors, have been incorporated into the suitability

assessment process (Vasu et al., 2018). In addition, some scholars

have used analytical methods to determine if a piece of farmland is

suitable for agricultural machinery (Mazahreh et al., 2019; Al-Taani

et al., 2021). The methods include qualitative description, spatial

analysis, and other modern techniques. For instance, there is a rich

body of literature describing farmland suitability using analytic

hierarchical processes (AHPs), dynamic system models, and other

multicriteria analysis (MCA) (Seyedmohammadi et al., 2019; Pilevar

et al., 2020; Morales and de Vries, 2021). Advancements in spatial

analysis methods have led scholars to prefer the use of remote sensing

(RS) and geographic information systems (GIS) to assess the

suitability of farmland (AbdelRahman et al., 2016; Fu et al., 2019;

Habibie et al., 2019; Kumar et al., 2021), which in turn has led to the
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inclusion of an extensive range of variables in the process of analyzing

suitability. Recently, the application of artificial intelligence (AI) has

received a great deal of attention in land use management and has

brought about revolutionary changes in assessing farmland suitability

(Nguyen et al., 2020; Xu et al., 2021). In this sense, assessing the

suitability of FCAM has become a multidimensional and

multidisciplinary process that integrates numerous aspects in which

different criteria are weighted.

In China, agricultural production in hilly terrain is a critical issue

because, although farmland accounts for over 30% of such areas, and

50% of residents in these areas are engaged in agricultural labor, the

level of agricultural mechanization is below 50%, which is far below

the national level (72.03% in 2021). Existing studies have confirmed

that this considerable gap in agricultural mechanization can be

attributed to inferior farmland conditions (e.g., scattered plots,

steep slopes, and low-quality soil), which render farmland

unsuitable for mechanized agriculture. Therefore, implementing

FCAM (which entails such processes as enlarging plots, land

leveling, soil improvement, and ecological protection) in hilly

terrain is indispensable to promoting mechanized agriculture (Yin

et al., 2022). Moreover, the use of land suitability analysis in FCAM

can contribute to the sustainable development of rural marginal areas

(Zhang et al., 2019a) by indicating the most suitable farmland plots,

which has both economic and ecological benefits, increasing crop

yield and improving soil properties, contributing to a long-term

purpose—achieving modern agriculture and food security (Wessels

et al., 2003; Fan et al., 2018).

In presenting analyses, however, studies have been criticized for

lacking a deep understanding of FCAM schemes because these

assessments of farmland suitability and farmland consolidation focus

merely on the physical attributes of farmland. Detailed analyses of

farmland suitability for agricultural machinery are still rare. More

systematic assessments reflecting the characteristics of agricultural

machinery as well as farmland ecological limitations are needed to

better understand the suitability and implications of FCAM schemes. In

addition, although there is evidence of the methods involved in the

qualitative description, spatial analysis, and other modern techniques, it

is necessary to develop a precise and scientifically proven method for

weighting the suitability criteria that is compatible with FCAM.

This study aims to assess the suitability of farmland for

agricultural machinery in land consolidation schemes using the

most appropriate method—the machine learning approach. It also

attempts to estimate the potential of farmland productivity after

the implementation of FCAM schemes. The remainder of this

paper is structured as follows: section 2 details the source of the

sample data and provides a descriptive analysis of machine

learning approaches; section 3 presents the results of the study;

in section 4 we discuss the implications of the study; and, finally, in

section 5 we draw conclusions.
2 Materials and methods

2.1 Study area

Tieling City (41°59′N–43°29′N, 123°27′E–125°06′E) is located in

northern Liaoning Province, northeastern China. It comprises two
frontiersin.org
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districts, five counties, 89 towns, and 1,290 villages. In 2021, the city

occupied an area of approximately 1.3 million ha and had a

population of 2.827 million. The altitude of the city ranges from

50 m to 878 m above sea level (Figure 1). This indicates that the

topography of the area ranges from lowland plain city to highly

rugged and elevated hilly terrains. Because of the nature of these

elevated and hilly areas, the morphology of the study area is quite

complex: the edges of the eastern and northern parts of the city are

characterized by steep slopes, whereas, toward the center and the

south, the morphology is characterized by quite gentle slopes,

although there are still some steep slopes along the river courses

and on hilly terrain. Hilly terrain accounts for 40% of the total area.

It is well known that economy of Tieling City is based on

agricultural production. The major crops grown are corn and rice,

and its cropping system is growing only one crop on the same field in

a year. Influenced by a temperate continental monsoon climate, the

annual average temperature and rainfall are 7.9°C and 600 mm,

respectively. The city’s climate, as well as the available soil types of

black, meadow, and rice soil, make it an ideal place for agriculture.

Inn 2019, farmland area was 699.2 thousand ha, accounting for 53.8%

of the city’s total land area. However, because of the long-term pursuit

of “high-yield but low-input” crops in Tieling City’s agricultural

production, land degradation has become an urgent problem,

together with the complex and irregular topography of its hilly

terrain. Consequently, it is necessary to implement FCAM schemes

to improve Tieling City’s agricultural productivity.
2.2 Data

In this study, suitable lands for surface irrigation were identified

using GIS and RS combined with a machine learning approach. To

achieve this, the datasets are listed as follows.
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2.2.1 Land use data
Land use data were obtained from satellite image classification.

For this study, Landsat 8 satellite images were used for

classification. The land use data were classified into 25

categories, which were subsequently grouped into six classes:

cropland, woodland, grassland, water body, built-up area, and

unused land. From these data, we extracted data relating to

farmland, agricultural roads, rivers, settlements, etc. The data

were used to analyze the shape index of a plot, farmland area,

accessibility of roads, irrigation rate, distance from agricultural

machinery service cooperation, and distance from roads using

ArcGIS 10.6 (Esri, Redlands, CA, USA).
2.2.2 Digital elevation model
Elevation data with 30 m spatial resolution came from the SRTM1

V3.0 dataset (https://earthdata.nasa.gov/). These data were used to

depict topographic features, including slope and altitude, by using

slope analysis and aspect analysis in ArcGIS 10.6.
2.2.3 Normalized difference vegetation index
The vegetation coverage of farmland was calculated using the

normalized vegetation index (NDVI). The NDVI dataset was

obtained from Landsat 8 satellite images. The dataset was provided

by the National Ecosystem Science Data Center, National Science &

Technology Infrastructure of China (http://www.nesdc.org.cn).

2.2.4 Soil data
Soil data were used to assess the suitability of ecological

limitations for the FCAM, which included soil pH, soil organic

carbon, and soil microorganisms. A soil dataset with 250 m spatial

resolution was provided by The World Soil Information Service

(WoSIS, https://soilgrids.org/).
FIGURE 1

Study area.
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2.2.5 Potential of farmland productivity
These data were provided by the Resource and Environment

Science and Data Center (https://www.resdc.cn/). These data were

estimated by Xu et al. (2010) to obtain the potential of farmland

productivity by considering various factors. We use these data to

estimate the potential of farmland productivity after the

implementation of FCAM.
2.3 Methods

2.3.1 Indicator system for assessing the suitability
of FCAM

This research assessed the suitability of FCAM by establishing an

indicator system. Based on the literature and indicator selection rules,

i.e., integration, independence, diversity, and feasibility (Zhang et
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al.,2018; Pasǎkarnis et al., 2021), we selected 15 indicators from four

dimensions, i.e., natural resource endowment, accessibility of

agricultural machinery, socioeconomic level, and ecological

limitations (see Table 1).

2.3.1.1 Natural resource endowment

The natural resource endowment dimension comprised three

indicators: slope, elevation, and soil thickness. Slope and altitude

were selected to illustrate the influence of topography on FCAM, as

these have been found to be factors that are important in determining

suitability for FCAM. Slope is particularly important in determining

suitability for FCAM because it is associated with farmland use

patterns (Yao et al., 2021). In particular, a slope greater than 25° is

considered unsuitable for agricultural production, because along with

the increasing elevation come changes in precipitation and

temperature, which limit agricultural development (Zhao and
TABLE 1 Description of the indicators assessing the suitability of FCAM.

Dimensions Indicators Formula Explanation Direction

Natural resource
endowment
(0.19)

Slope (N1)
(0.11)

N1=o
N
i=1

Si
N=

Si = Slope of the farmland plot i
N = Total number of farmland plots

–

Elevation (N2)
(0.04)

N2=o
N
i=1

Ei
N=

Ei = Elevation of the farmland plot i
N = Total number of farmland plots

–

Soil thickness (N3)
(0.03)

N3=o
N
i=1

Hi
N=

Hi = Soil thickness of the farmland plot i
N = Total number of farmland plots

–

Accessibility of
agricultural machinery
(0.42)

Shape index of farmland (A1)
(0.08)

A1=Pi
4
ffiffiffiffi
Ai

p
. Pi = Perimeter of the farmland plot i

Ai= Area of the farmland plot i
+

Aggregation index of farmland (A2)
(0.04) A2 = ½1 +o

N

i=1

Pi ln (Pi)
2 lnN= � � 100

Pi = Perimeter of the farmland plot i
N = Total number of farmland plots

+

Connectivity of farmland (A3)
(0.08)

A3=o
N
i=1

Ai
N=

Ai = Area of farmland plot i
N = Total number of farmland plots

+

Surface barriers (A4)
(0.09)

A4=Ps
At

� PS = Perimeter of the surface barriers
At = Total area of farmland

+

Accessibility of tractor roads (A5)
(0.1)

A5=Ar
At

� Ar = Area of roads used by agricultural machinery
At = Total area of farmland

+

Distance to agricultural machinery
service cooperation (A6)
(0.02)

A6=o
N
i=1

Di
N=

Di = distance of farmland plot i to agricultural
machinery service cooperation
N = Total number of farmland plots

–

Socioeconomic level
(0.26)

Proportion of GDP in agricultural
sector (S1)
(0.09)

S1=GDPa
GDPt

� Ga = GDP in agricultural sector
Gt= Total GDP

+

Proportion of labor in agricultural
sector (S2)
(0.09)

S2=Pa
Pt

� Pa = The population engaged in agricultural sector
Pt = Total working-age population

+

Household income (S3)
(0.08)

S3=INg
n=

ING = Gross income from the household-life
expenditures
N = Total number of households

+

Ecological limitations
(0.14)

Soil organic matter (E1)
(0.06)

E1=o
N
i=1

Oi
N=

Oi = Soil organic matter content of the farmland
plot i
N = Total number of farmland plots

+

Soil pH (E2)
(0.02)

E2=o
N
i=1

pHi
N=

pHi = Soil pH value of the farmland plot i
N = Total number of farmland plots

+

Vegetation coverage (E3)
(0.06)

E3=o
N
i=1

NDVIi
N=

NDVIi = NDVI of the farmland plot i
N = Total number of farmland plots

–

fr
GDP, gross domestic product.
Weights are shown below the indicators.
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Zhang, 2022; Zhu et al., 2022). In addition, soil thickness was used to

indicate soil fertility; however, as noted by Gardi et al. (2016),

excessive soil thickness makes land unsuitable for agricultural

machinery operation.
2.3.1.2 Accessibility of agricultural machinery

We selected six indicators to demonstrate the accessibility of

agricultural machinery. Existing studies have indicated that the

physical attributes of farmland plots, as well as the convenience of

agricultural machinery operation, greatly affect the accessibility of

agricultural machinery (Akıncı et al., 2013; Liu et al., 2021; Liao et al.,

2022). Therefore, the effects of shape index of farmland, aggregation

index of farmland, connectivity of farmland, and surface barriers

demonstrate the influence of land morphology on the suitability for

FCAM. Inmost cases, the continuity and integrity of plots facilitates land

consolidation. (Jiang et al., 2017; Li and Chen, 2020). In addition, we

selected two indicators (i.e., accessibility of tractor roads and distance to

agricultural machinery service cooperation) to demonstrate the

convenience of operation. Notably, the distance to agricultural

machinery service cooperation indicated the possibility of obtaining

agricultural machinery services (Du et al., 2018).
2.3.1.3 Socioeconomic level

Industry and population are two critical influencing factors for

socioeconomic development (Mitter et al., 2020; Callesen et al., 2022).

A high level of socioeconomic development can facilitate the

implementation of FCAM (Jiang et al., 2015; Mugiyo et al., 2021).

Therefore, we selected three indicators, i.e., proportion of GDP in the

agricultural sector, proportion of labor in the agricultural sector, and

household income, to show the socioeconomic level.

2.3.1.4 Ecological limitations

In presenting analyses, the ecological effects of FCAM have been

discussed by several scholars (Abubakari et al., 2016; Huang et al.,

2022; Lu et al., 2022). On the one hand, FCAM can affect aspects of

soil quality (such as soil organic matter and soil pH) and even result in

land degradation (Keller et al., 2019; Wu et al., 2019; Paul et al., 2020;
Frontiers in Plant Science 05
Zhang et al., 2022). More impracticable, impracticable FCAM

schemes, such as building terraces, can reduce vegetation coverage

and cause ecological fragility (Zhang et al., 2019b). All things

considered, there are ecological limitations for FCAM, and we

selected three indicators to illustrate these limitations.

2.3.2 Weighting analysis based on the machine
learning approach

As shown in Figure 2, one of the machine learning models—

random forest (RF)—was selected to calculate the weight of indicators

for assessing the suitability of FCAM in view of its successful

applications in earlier studies (Ren et al., 2020). RF, as an effective

prediction tool, has been widely used in research in various disciplines

(Yamaç et al., 2020). RF is an ensemble learning algorithm based on a

tree-based decision-making process (Taghizadeh-Mehrjardi et al.,

2020; Lin et al., 2022). It is a supervised learning method that

combines all tree-based results into the most appropriate model for

the application (Zhang et al., 2021). RF mainly includes classification

and regression techniques (Xu et al., 2019). This study mainly used RF

classification technology. RF classification is a combined classification

model composed of many decision tree classification models, and the

parameter set is an identically distributed random vector (Belgiu and

Drăgut,̧ 2016). Under the given independent variable, each decision

tree classification model has one vote to select the optimal

classification result. First, bootstrap sampling is used to extract n

samples from the sample set as a training set. Second, n decision tree

models are established for n samples to obtain n classification results.

Finally, the RF calculated by training is used to predict the test

samples and vote on each record to determine its final classification in

accordance with the n classification results (Hayes et al., 2014). The

trees are created by drawing a subset of training samples through

replacement (Hengl et al., 2018). Approximately two-thirds of the

samples are used to train the trees, with the remaining one-third used

to test trees to estimate how well the resulting RF model performs

(Aburas et al., 2019; Sekulić et al., 2020). The RF model conducts

several random samplings; hence, it has a high tolerance for outliers

and noise and is not prone to overfitting, and therefore possesses a

high prediction accuracy (Nguyen et al., 2021).
FIGURE 2

Methods for the assessment of the suitability of FCAM. FCAM, farmland consolidation suitable for agricultural machinery.
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There are a multitude of features in a dataset (Aburas et al., 2019).

Selecting the features that have the most significant impact on the

results, to reduce the number of features in building a model, is

something that is of interest to us (Akpoti et al., 2022). In RF, the

weight of features is calculated based on the Gini index. RF adopts

impurity as the best division to measure the classification tree, and

impurity is calculated by the index method (Su et al., 2021). Suppose

that set T contains k classes of records. The Gini index is calculated by

Eq. (1):

Gini(T) = 1 −o
k

j=1
p2j (1)

where pj indicates the frequency of occurrence of T in category j.

If the set T is divided into m parts Ti (i = 1, 2,…, m), then, to

calculate the Gini index, the reduction in the Gini index of the

variable xi used to split at each split node is calculated. The Gini index

for this segmentation is calculated as shown in Eq. (2):

Ginisplit(T) =o
m

i=1
Gini(Ti)Ni=(N) (2)

where m indicates the number of child nodes, Ni is the number of

samples at descendent nodes Ti, and N is the number of samples at

parent node T.

Generally, the value of the mean Gini index decrease for each

variable over all trees in the forest is frequently used as an estimate

regarding the importance of variables. Thus, the weight of features is

calculated as shown in Eq. (3):

wi =
Dj

o
n

j=1
Dj

(3)

where wj is the weight, Dj is the value of the mean Gini index

decrease, and n is the number of indicators.

We investigated the pilot of the FCAMprocess in Gujiao City, Shanxi

Province, whichwas completed in 2018. Therefore, we tookGujiaoCity as

a sample area to obtain the weight of each indicator.We usedArcGIS 10.6

to extract 50 farmland attribute data points with a high degree of

mechanization in the sample area and marked them as 1. Then, we

extracted 50 farmland attribute data points with a low degree of

mechanization in the sample area and marked them as 0. We combined

the two types of data into a dataset containing 11 indicator attributes and

one category attribute. The RF package in R software was used to calculate

the weight of each indicator, and the results are shown in Table 1.

To improve the accuracy of this model, we performed a

robustness analysis by using K-fold cross-validation. The training

set is split into k smaller sets. The following procedure is followed for

each of the k “folds”:
Fron
• Amodel is trained using k − 1 (9) of the folds as training data.

• The resulting model is validated on the remaining part of the

data (i.e., it is used as a test set to compute a performance

measure such as accuracy).
The performance measure reported by k-fold cross-validation is

then the average of the values computed in the loop.
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We used k = 10 in this study, and 70% of the data were utilized for

training purposes and 30% of the data were used for testing. This

process was repeated 10 times. Before selecting and testing new sets

for the new loop, all instances in the training and testing set are

randomized over the entire dataset. At the end of the 10-fold process,

the average of all performance measure is calculated.

2.3.3 Estimation model of the improvement
potential of farmland productivity

The estimation model of the improvement potential of farmland

productivity in this study was based on of the farmland productivity

potential dataset of China. This dataset is based on the farmland

distribution of China, soil and DEM data, and adopts the Global

Agro-Ecological Zones (GAEZ) model to estimate the acquired

farmland production potential in China by comprehensively

considering various factors such as light, temperature, water, CO2

concentration, pests and diseases, agricultural climate restrictions,

soil, and topography. In addition, the calculation of the improvement

potential of farmland productivity has also considered the change in

the area of farmland (Gónzalez et al., 2007) and the suitability of

FCAM in the GAEZ model, as shown in Eqs. (4)–(6):

P = P2010 · (1 + RF) · (1 + CFCAM) (4)

RF =
CA2019 − CA2010

CA2010
(5)

CFCAM =
SFCAM
100

(6)

where P denotes the potential productivity of farmland after the

FCAM, P2010 denotes the potential productivity of farmland in 2010

using the GAEZ model, RF denotes the changing rate of farmland area

between 2010 and 2019, and CA2019 denotes the farmland area in

2019. CA2010 denotes the farmland area in 2010, CFCAM is the

coefficient of FCAM suitability, and SFCAM is the value of suitability

of FCAM (0 ≤ SFCAM ≤ 100).
3 Results and analysis

3.1 Analyzing the spatial pattern of farmland

In 2019, the total farmland area in Tieling City was 699.22

thousand ha, accounting for 53.80% of the city’s total area.

Spatially, as shown in Figure 3A, we found that the area and

density of farmland in the region were consistent with the “high

west and low east” terrain: the area of farmland was 604.13 thousand

ha in the plain areas, accounting for 86.40%. Most of the farmland was

distributed in Changtu County and the whole area of Diaobingshan

District, Kaiyuan County, and western Tieling County, where wide

areas of plains, as well as the farmland with favorable natural

conditions, were conducive to the development of agriculture and

increasing large-scale farming. The area of farmland in the hilly and

mountainous terrain was 95.09 thousand ha, accounting for 13.60% of

the area of the city. It was mainly distributed in Xifeng County and

Qinghe District, Tieling County, and eastern Kaiyuan County. The
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complex terrain in these regions was not conducive to

agricultural production.

In accordance with international FCAM standards, FCAM

schemes target slopes from 6° to 25° because farmland plots with

steep slopes are not are not conducive to agricultural machinery

working on farmland. However, considering the superior natural

conditions of the farmland plots with slopes below 6°, all of these

elements are suitable for mechanized operation. There is no need to

implement FCAM schemes. In the case of farmland with slopes

greater than 25°, the cost of FCAM is excessively high, resulting in

a dilemma related to cost versus benefit. More importantly, the

mechanized agriculture paradigm is unsuitable in these areas

because the ecological conditions and soil quality of farmland

restrict machinery operation.

This information has been used to obtain the area for potential

implementation of FCAM in the region, as shown in Table 2 and

Figure 3B. Land in Tieling City that would benefit from FCAM

schemes amounts to 288.47 thousand ha, accounting for 40.59% of

the total farmland. It involves 458 villages, most of which are

distributed in eastern Tieling City. Table 2 shows that that there is

an inverse relation between farmland distribution and slope: farmland

area decreases sharply with increasing slope. Most of the farmland
Frontiers in Plant Science 07
was distributed in the slope range of 6°–10°. Its area was 130.2

thousand ha, accounting for 45.15% of the farmland area to be

consolidated and including 264 villages, most of which are in

western Tieling County and northwestern Kaiyuan County.
3.2 Assessing the suitability for FCAM

Farmland suitability for FCAM was assessed based on natural

resource endowment, accessibility of agricultural machinery,

socioeconomic level, and ecological limitations as factors with each

factor weighted in accordance with its importance. The weighting

approach applied in this study is machine learning. The 10-fold cross-

validation confirms the robustness of the model. From the data in

Table 3, that the average accuracy for the weighting approach can be

calculated 0.929. The validation shows that the model developed is

entirely accurate. Based on the normalization, the weight of each

parameter is given in Table 1.

The suitability was assessed first considering each parameter

separately and then taking into account their relative weights.

Furthermore, the suitability of FCAM was classified into four

classes (i.e., high suitability, moderate suitability, basic suitability,
TABLE 2 Category of farmland based on slope.

Slope range (°) Area (thousand ha) Percentage (%) Number of villages Explanation

0–6 406.21 58.09 820 No need for FCAM

6–10 130.19 18.62 264

Need for FCAM10–15 111.03 15.88 126

15–25 47.25 6.75 68

> 25 4.55 0.66% 12 Unsuitable for FCAM
FCAM, farmland consolidation suitable for agricultural machinery.
A B

FIGURE 3

(A) Spatial pattern of total farmland and (B) area of FCAM. FCAM, farmland consolidation suitable for agricultural machinery.
TABLE 3 Result of 10-fold cross-validation of the weighting approach.

Fold 1 2 3 4 5 6 7 8 9 10

Accuracy 0.892 0.986 0.978 0.913 0.904 0.871 0.933 0.955 0.920 0.936
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and marginal suitability) to reflect degrees of suitability. In this study,

farmland with a slope of more than 25° was considered unsuitable for

FCAM. The results of the suitability of FCAM with respect to the four

parameters considered can be found in Table 4 and Figure 4.
3.2.1 Suitability of farmland based on natural
resource endowment

According to this classification, approximately 72.48% of the

farmland could be categorized as either moderately or highly suitable

for FCAM. The reason for this could be that the farmland was mainly

distributed in wide valleys, where the superior natural resource

endowment (plain terrain, large-scale plots, and favorable soil quality)

makes the land suitable which facilitated the implementation of FCAM.

As the main food production area in Liaoning Province, Tieling City has

not only the water and heat conditions needed for crop growth, but also

fertile, arable land and irrigated terrain. As a result, suitability based on

natural resource endowment was relatively high.

3.2.2 Suitability of farmland based on accessibility
of agricultural machinery

As shown in Figure 4B, over 53.31% of farmland was categorized

as having moderate suitability for FCAM. In addition, the suitability

for accessibility of agricultural machinery in the whole region

decreased from the southern to the northern areas. The farmland

plots in the northern areas were deemed inferior because of their

physical attributes, being scattered and typically irregular, in shape,

and the poor accessibility of track roads. This could be the reason for

only 9.92% of farmland showing high suitable for FCAM. Most plots

are adjacent to downtown areas, a location considered economically

superior because it affords greater and easier access to agricultural

machinery services. In addition, the contiguity and integrity of plots

in these areas were beneficial to agricultural machinery operation.

3.2.3 Suitability of farmland based on
socioeconomic level

In addition to the above assessment suitability criteria,

socioeconomic level is also a significant determinant of the suitability

of farmland for agricultural machinery operation. Demonstration of the

considerable benefits that could accrue to the agricultural sector from

FCAM could increase farmers’ willingness to participate in the

improvement of farmland productivity. Table 4 shows that more than

77.60% of farmland fell in the basic and moderate suitability categories.

The main reason is that the continuous exodus of people from rural

areas has resulted in a shortage of laborers engaged in agricultural

production, and it would therefore be a considerable challenge to

achieve mechanized or large-scale farming.
3.2.4 Suitability of farmland based on
ecological limitations

Based on the suitability classification criteria, the assessment of the

suitability of farmland based on ecological limitations indicated that

approximately 37.18% (107.25 thousand ha) of farmland was

categorized as moderately suitable and 55.53% (160.19 thousand ha)

of farmland was categorized as basically or marginally suitable for the

FCAM. Although this parameter is a good indicator of ecological

suitability, under FCAM schemes, since abundant forestry has resulted
Frontiers in Plant Science frontiersin.o08
in
T
A
B
LE

4
A
re
a
an

d
p
e
rc
e
n
ta
g
e
fo
r
cl
as
s
o
f
su

it
ab

ili
ty

o
f
FC

A
M
.

C
la
ss
es

N
at
ur
al

re
so
ur
ce

en
do

w
m
en

t
A
cc
es
si
bi
lit
y
of

ag
ric
ul
tu
ra
lm

ac
hi
ne

ry
So

ci
oe

co
no

m
ic
le
ve
l

Ec
ol
og

ic
al

lim
ita

tio
ns

C
om

pr
eh

en
si
ve

su
ita

bi
lit
y

A
re
a

(t
ho

us
an

d
ha

)

Pe
rc
en

ta
ge

(%
)

N
um

be
ro

f
vi
lla
ge

s

A
re
a

(t
ho

us
an

d
ha

)

Pe
rc
en

ta
ge

(%
)

N
um

be
ro

f
vi
lla
ge

s

A
re
a

(t
ho

us
an

d
ha

)

Pe
rc
en

ta
ge

(%
)

N
um

be
ro

f
vi
lla
ge

s

A
re
a

(t
ho

us
an

d
ha

)

Pe
rc
en

ta
ge

(%
)

N
um

be
ro

f
vi
lla
ge

s

A
re
a

(t
ho

us
an

d
ha

)

Pe
rc
en

ta
ge

(%
)

N
um

be
ro

f
vi
lla
ge

s

H
ig
h

su
it
ab
ili
ty

(7
5–
10
0)

11
2.
74

39
.0
8

18
4

28
.6
1

9.
92

44
48
.4
5

16
.8
0

82
21
.0
3

7.
29

29
46
.4
4

16
.1
0

72

M
od

er
at
e

su
it
ab
ili
ty

(5
0–
75
)

96
.3
5

33
.4
0

13
3

15
3.
79

53
.3
1

24
7

93
.5
2

32
.4
1

13
5

10
7.
25

37
.1
8

17
7

12
4.
93

43
.3
1

19
4

B
as
ic

su
it
ab
ili
ty

(2
5–
50
)

66
.0
3

22
.8
9

93
83
.2
7

28
.8
7

13
4

13
0.
36

45
.1
9

19
5

12
8.
91

44
.6
9

19
6

95
.4
9

33
.1
0

14
3

M
ar
gi
na
l

su
it
ab
ili
ty

(0
–
25
)

13
.3
5

4.
63

48
22
.8
0

7.
9

33
16
.1
4

5.
60

46
31
.2
8

10
.8
4

56
21
.6
1

7.
49

49

FC
A
M
,f
ar
m
la
nd

co
ns
ol
id
at
io
n
su
it
ab
le
fo
r
ag
ri
cu
ltu

ra
l
m
ac
hi
ne
ry
.

rg

https://doi.org/10.3389/fpls.2023.1084886
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Yang et al. 10.3389/fpls.2023.1084886
high vegetation coverage, farmland consolidation is hardly suitable for

agricultural machinery operations. In addition, the severe water loss and

erosion caused by steep slopes adds to the ecological limitations. All

things considered, suitability is generally categorized as moderate level.

3.2.5 Suitability of farmland for
agricultural machinery

The suitability was assessed first with respect to each parameter

considered separately, and then the overall suitability of the FCAM was

computed by overlaying a given level of importance or weight. Based on
Frontiers in Plant Science 09
the suitability classification criteria, we classified the comprehensive

suitability as high, moderate, basic, or marginal (see Figure 4E).

It was found that more than 76.41% of the farmland in the

schemes fell into the basic and moderate suitability categories for

agricultural machinery. Although the indicators of natural resource

endowment, especially slope, are suitable for agricultural machinery,

under FCAM schemes, fewer farm tracks and inferior accessibility of

roads were regarded as limiting the functionality of agricultural

machinery. Additionally, scarce farmland plots, as well as poor

vegetation coverage, have reduced the suitability of FCAM and even
FIGURE 4

Suitability class of FCAM. FCAM, farmland consolidation suitable for agricultural machinery.
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caused ecological degradation. As shown in Table 4, 16.10% of

farmland fell into the high suitability category. It was mainly

distributed in Xifeng County and Kaiyuan County. The large-scale,

regular plots abundant in these areas are considered to facilitate

machinery operation. Moreover, a large number of laborers engaged

in agricultural production (as is found in these areas) is linked to

increased socioeconomic development (Makate et al., 2019). Thus, it

has the potential to reduce the difficulties of implementation and high

costs associated with FCAM. The area of farmland with marginal

suitability was 21.61 thousand ha, which accounted for 7.49% of the

total farmland area. The undulating terrain, and fragmentation of

plots caused by steep slopes characterizing this area, have limited

agricultural production. More importantly, considering the fragile

ecological environment, what is likely to happen in these areas is soil

erosion and a decline in farmland fertility. As a consequence, the

inferior terrain and ecological environment makes it difficult to

implement FCAM.
3.3 Estimation of the improvement potential
of farmland productivity

According to the estimation model mentioned in section 2.3.3,

farmland productivity in Tieling City ranges from 0 to 1,2203.6 kg/ha,

with an average of 3,779.6 kg/ha. If FCAMwere implemented in the study

area, the average productivity of farmland would increase to 4,267.24 kg/

ha, and the potential farmland productivity improvement could reach

720.8 kg/ha. Figure 5 shows the estimated results for the improvement

potential of farmland productivity through FCAM. We found that there

were some negative values for the improvement potential of farmland

productivity. The main reason for this is that the conversion of farmland

to built-up land from 2009 to 2019 has resulted in a significantly decreased

farmland area. The improvement in farmland productivity brought by

about by FCAM cannot compensate for the reduction in productivity

associated with the declining farmland area. Consequently, areas with

negative farmland growth were considered unsuitable for FCAM.

We then used the Nature Breaks method to classify the

improvement potential of farmland productivity according to grades,

ranked from low to high (I–IV), describing the spatial patterns of the

improvement potential of farmland productivity (Figure 5). This result

indicated that the improvement potential decreased from the
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northeastern to the southwestern areas of land. The percentage of

farmland area in grades I (0–1,330), II (1,330–2,254.06), III (2,254.06–

3,665.03), and IV (3,665.03–5,716.09) was 30.58%, 34.48%, 27.43%, and

7.51%, respectively; most villages were in the moderate grades (I and II).

It was found that the improvement potential of farmland

productivity mainly fell into grade II. The area of farmland classed as

grade II was 99.46 thousand ha, accounting for 34.48% of the total

farmland area. The original farmland productivity was relatively low

because of the shortage of soil organic matter the use of traditional

irrigation methods, which rely on the availability of surface water. To

cope with this, the implementation of FCAM schemes could enhance

farmland productivity by expanding the available farmland area,

improving the soil quality, and constructing water conservancy

facilities for agricultural production. Nevertheless, the shortage of

labor, brought about by the majority of the economically active

population being engaged in non-agricultural activities for both

subsistence and commercial purposes, has to a certain extent

constrained the potential improvement in farmland productivity.

The area of farmland in the low-grade group (I) was 88.21 thousand

ha. Most of the farmland was distributed in the mountainous terrain,

where the large area of abandoned farmland and inferior physical

geography (e.g., steep slopes, barren soil, and low grain yields) and

economic location ultimately reduced the potential to increase farmland

productivity. The farmland area in the high-grade (IV) group was 21.66

thousand ha. Most of the farmland was distributed at the intersection of

the eastern plains and the western hilly terrain. On the one hand, the

advantages of physical geography and economic location (that is, naturally

fertile and productive soils as well as abundant water resources in semi-

hilly areas adjacent to the plain) were conducive to improved farmland

productivity through FCAM. On the other hand, the local government

strictly controlled the built-up land occupying farmland and attached

great importance to farmland protection, which was beneficial to

protecting cultivation and sustainable land development; therefore, the

improvement of farmland productivity has been a natural process.
3.4 Zoning of FCAM schemes

According to the above results, we find that the “suitability” and

“improvement potential of farmland productivity” are both critical

issues to consider when implementing FCAM schemes. Therefore,
FIGURE 5

Grades of improvement potential of farmland productivity after FCAM. FCAM, farmland consolidation suitable for agricultural machinery.
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this study took these issues into account when categorizing the farmland

used in the FCAM schemes. As shown in Figure 6, farmland can be

categorized into four zones, i.e., the priority consolidation zone, the

moderate consolidation zone, the comprehensive consolidation zone,

and the reserve consolidation zone. Farmland with a relatively high class

in both the suitability and improvement potential of farmland

productivity should be considered for the priority consolidation

zones. There was 80.13 thousand ha of farmland in this zone,

accounting for 27.78% of the total farmland area. Most of this

farmland is in Kaiyuan County, Xifeng County, and Tieling County,

where the slope of farmland is relatively low and regular, and where

there is the potential to consolidate farmland plots to achieve large-scale

farming. The moderate consolidation zone comprised 102.61 thousand

ha of farmland, accounting for 35.57% of the total farmland area. This

region had higher farmland suitability and lower improvement

potential productivity. Farmland productivity could be improved

significantly because of the lower cost of implementing FCAM. Only

16.67 thousand ha (5.588%) of farmland can be categorized as a

comprehensive consolidation zone; the main characteristics of this

farmland were low suitability and high improvement potential. Despite

the high cost of FCAM, it can bring considerable benefits to farmland

productivity. In farmland with low suitability and improvement

potential, FCAM cannot provide significant benefits, and these areas

can be categorized as reserve consolidation zones. Farmland in this

zone accounted for 30.87% of thetotal farmland area
4 Discussion

4.1 A zoning-based solution for the
implementation of FCAM schemes

According to the above considerations and results, zoning based

on the “suitability for agricultural machinery” and “improvement
Frontiers in Plant Science 11
potential of farmland productivity” has been an effective solution for

implementing FCAM schemes. During the implementation process of

FCAM schemes, one of the most important steps is implementation

sequence. As illustrated in Figure 7, the implementation sequence of

FCAM schemes should be consistent with these four zones (i.e., the

priority consolidation zone, the moderate consolidation zone, the

comprehensive consolidation zone, and the reserve consolidation

zone). Moreover, differentiated policies and strategies should be

proposed for each zone.

Given the gentle slope, transferring the slope into flat areas is the

major measure of success of FCAM in the priority consolidation zone.

In addition, considering the irregular and small-size plots, together

with the complicated working path for agricultural machinery, the

farmland in this zone should be arranged into large-scale and

contiguous plots by combining scattered plots and reshaping plots.

More importantly, as the farmland in this area has the potential to

achieve large-scale farming, it is necessary to introduce some large

and medium agricultural machinery and equipment to improve

agricultural production efficiency. Although irregular plots and land

degradation are considered to undermine the suitability of the FCAM

in moderate consolidation zones, the effects of this can be alleviated

by the adoption of alternative measures alternative measures, such as

land leveling and improving soil fertility. In other words, we can

return the straw to the field, as well as arrange reasonable fertilization

to increase farmland yield and its suitability for machinery operation.

At the same time, straw returning machinery and precision fertilizer

application machinery can be introduced to guarantee soil quality.

Considering the restriction of the high slope of farmland in the

comprehensive consolidation zone, the main measure in this area

should focus on turning the slope into the terrace. In addition, the

careful attention when planning the layout and design of field roads is

necessary to ensure their accessibility. As farmland in this zone is

mainly distributed in hilly and mountainous terrain, it is unsuitable

for large and medium machinery operations. Therefore, small
FIGURE 6

Zoning of FCAM schemes. FCAM, farmland consolidation suitable for agricultural machinery.
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agricultural machinery may be a feasible alternative to sustain

agricultural production. In terms of the reserve consolidation zone,

there are severe ecological problems such as soil erosion and land

degradation compared with other areas. It would be better, therefore,

for land in this zone to be used as areserve resource in the

implementation of FCAM.
4.2 The need for alternative strategies for
achieving FCAM schemes

Recently, the ecological effects of FCAM have received a great deal

of attention (Huang et al., 2022), especially in hilly and mountainous

areas. In fact, FCAM has positive effects on the farmland ecosystem

(Zang et al., 2021). Despite this, it is necessary to strengthen farmland

ecosystem protection after the implementation of FCAM. For
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example, the conservation of water and soil, and improving

vegetation coverage by using bioengineering have been essential

tasks in some areas during the process of turning slopes into

terraces. In addition, soil conservation tillage helps to reduce

ecological disturbance caused by agricultural machinery, for

example in its increasing of soil quality. It is clear that FCAM

schemes not only increase agricultural productivity but also

generate ecological benefits, which could in turn lead to the

achievement of sustainable agricultural production (see Figure 8).

There is no denying that FCAM aims to achieve co-adaptation

between machinery and land. That is, R&D on agricultural machinery

suitable for irregular farmland, especially in hilly and mountainous

areas, should be promoted as a consequence. In particular, the

government should increase policy support and technical assistance

to accelerate the innovation of suitable agricultural machinery in hilly

and mountain areas. Although FCAM in some provinces (such as
FIGURE 8

Alternative strategies for FCAM schemes. FCAM, farmland consolidation suitable for agricultural machinery.
FIGURE 7

A zoning-based implementing mechanism of FCAM schemes. FCAM, farmland consolidation suitable for agricultural machinery.
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Shanxi, Chongqing, and Sichuan) of China has been implemented for

some time, there is no national standard for it. For instance, the

project of “turning steep slope into terrace” did not take spatial

differentiation into account, i.e., the rainfall gap is significant between

the northern and southern areas of land. The terrace in the south

should have been transformed into a positive slope terrace to facilitate

drainage due to the high rainfall, while in the north, the terrace should

have been transformed into a reverse slope terrace to reverse the water

due to the low rainfall. Therefore, both national and local standards

for FCAM need to be formulated in combination with many

factors, including geographical conditions, socioeconomic level,

crop structure, agronomic system, and agricultural machinery

and equipment system, with many factors as they occur in

different scenarios.

As FCAM was initiated by farmers, rather than by the

government, inadequate financial support from the government has

had a significant impact on the enthusiasm of farmers (Zhou and Cao,

2020). Given that the actual cost of FCAM (30 thousand yuan/ha) far

exceeds the current subsidy for FCAM (22.5 thousand yuan/ha), the

cost gap has forced many [farmers] to abandon FCAM. To address

this and ensure the continued implementation of FCAM, the

provision of more realistic subsidies should be considered by the

government. According to the findings, FCAM would increase

farmland area by 10%, and local governments in hilly and

mountainous terrain should allow farmers to trade the excess

farmland area as the source of funds for FCAM (Guan et al., 2022).

In addition, governments should encourage more farmers to

participate in FCAM, as this could lead to the formation of an

effective and sustainable financial support system for farmers.
4.3 Contribution to research, limitations,
and future work

As it is important for the government to guarantee an adequate

food supply, FCAM schemes may be a feasible means of facilitating

mechanized agriculture and could even improve agricultural

productivity. This study represents a first attempt to gain a deeper

understanding of the suitability and implications of FCAM schemes,

which are likely to play a significant role in agricultural production

in China.

We established an integrated framework to assess the suitability of

FCAM, including natural resource endowment, accessibility of

agricultural machinery, socioeconomic level, and ecological

limitations. It is distinct from existing assessment frameworks that

focus only on the physical attributes of farmland (e.g., terrain

characteristics, soil quality, and availability to agricultural

infrastructure) (Abubakari et al., 2016; Du et al., 2018; Keller et al.,

2019), and it recognizes that FCAM, as the outcome of reciprocal

relationships between farmland and agricultural machinery, is

deemed important to understand both how farmland consolidation

satisfies the multiple demands of the operation of agricultural

machinery and how ecological limitations affect FCAM (Wiggering

et al., 2006; Larsen et al., 2021). Accordingly, a systematic

methodology has been introduced to assess the suitability of FCAM

in hilly terrain by using a machine learning approach. In addition,
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compared with traditional methods that weight the indications and

criteria based on a single perspective (e.g., the experts’ evaluation,

AHP) (Bozdağ et al., 2016; Han et al., 2021; Kilic et al., 2022), this

approach has a clear advantage in that it adjusts the weights according

to dynamic changes in the environment. This can improve the

effectiveness and feasibility of the weighting, enhancing the capacity

of local decision-makers to determine the suitability of FCAM. The

selection of assessment indicators based on ecological limitations, and

the strategy obtained from the results—integrating FCAM schemes in

farmland ecosystem management—are both beneficial to strengthen

agroecology because they could increase agricultural productivity

without damaging ecological resources. More importantly, they

could be used in strategic planning to help policy-makers make

location-appropriate agricultural production choices to achieve

sustainable development. Consequently, in this study, the

framework applied, method used, and results obtained constitute

broad contributions to future research in the assessment of

FCAM schemes.

However, this study has several limitations. Given the data

constraints, we chose Tieling City in Liaoning Province as the case

study. However, Tieling City is not representative of all hilly areas in

the country; in particular, it is dissimilar to some hilly areas in

southern parts of China. More effort and further analysis should be

focused on a larger number of hilly areas. Second, the indicator

system for assessing the suitability of FCAM focused on only four

aspects, i.e., natural resource endowment, accessibility of agricultural

machinery, socioeconomic level, and ecological limitations. This

could be further improved by adopting indicators reflecting the

integrity of agricultural infrastructure. Such an exploration would

lead to a much more holistic understanding of FCAM schemes.
5 Conclusions

In this study, farmland suitability for the use of agricultural

machinery in land consolidation schemes in hilly terrain

was assessed based on four parameters, i.e., natural resource

endowment, accessibility of agricultural machinery, socioeconomic

level, and ecological limitations. The factors were assigned weights

using a machine learning approach. Based on the assessment of the

individual parameters, it is clear that the most prevalent factor

making farmland area suitable for consolidation, i.e., affecting the

largest proportion of farmland, is natural resource endowment.

Meanwhile, low socioeconomic level and ecological limitations play

a major role in reducing farmland suitability. The results of the overall

suitability for FCAM showed that most of the farmland (76.41%) fell

into the basic and moderate suitability categories. As highlighted in

section 3.2.5, although the indicators of natural resource endowment,

especially slope, could theoretically make a piece of farmland suitable

for agricultural machinery, inferior accessibility of tractor roads,

continuous depopulation, and ecological fragility rendered it

unsuitable for agricultural machinery operation, which contributed

greatly to reducing the overall suitability. Moreover, it was estimated

that farmland productivity could be increased by up to 720.8 kg/ha of

potential if FCAM were implemented, especially at the intersection of

the eastern plains and the western hilly terrain.
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Considering the importance of the “suitability” and

“improvement potential of farmland productivity” for implemen

tation of FCAM schemes, we classified land into four zones: the

priority consolidation zone, the moderate consolidation zone, the

comprehensive consolidation zone, and the reserve consolidation

zone. This zoning has been crucial to the implementation of FCAM

schemes, as the four zones constituted a useful basis for

implementation sequence and differentiated strategies for FCAM

schemes: consolidation should be prioritized in the case of farmland

with a relatively high classification for both suitability and potential

improvement of farmland productivity. Transferring the slopes into

the flatter and enlarging plots have been the major measures of the

success of FCAM in these areas, whereas our findings indicate that

FCAM schemes in moderate consolidation zones should focus on

farmland leveling and improving soil fertility. Finally, the remaining

farmland can be characterized as a reserve resource because of the

high cost required for its consolidation. Hence, in addition to

farmland consolidation, some alternative strategies, such as

strengthening farmland ecosystem protection, promoting the R&D

of agricultural machinery suitable for hilly terrain, and increasing the

financial support provided by the government, may contribute to the

feasible implementation of FCAM schemes and the achievement of

mechanized and modern agriculture.
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Janus, J., and Ertunç, E. (2022). Towards a full automation of land consolidation
projects: Fast land partitioning algorithm using the land value map. Land Use Policy 120,
106282. doi: 10.1016/j.landusepol.2022.106282

Jiang, Y., Tang, Y.-T., Long, H., and Deng, W. (2022). Land consolidation: A
comparative research between Europe and China. Land Use Policy 112, 105790.
doi: 10.1016/j.landusepol.2021.105790

Jiang, G., Wang, X., Yun, W., and Zhang, R. (2015). A new system will lead to an
optimal path of land consolidation spatial management in China. Land Use Policy 42, 27–
37. doi: 10.1016/j.landusepol.2014.07.005

Jiang, G., Zhang, R., Ma, W., Zhou, D., Wang, X., and He, X. (2017). Cultivated land
productivity potential improvement in land consolidation schemes in shenyang, China:
assessment and policy implications. Land Use Policy 68, 80–88. doi: 10.1016/
j.landusepol.2017.07.001

Keller, T., Sandin, M., Colombi, T., Horn, R., and Or, D. (2019). Historical increase in
agricultural machinery weights enhanced soil stress levels and adversely affected soil
functioning. Soil Till. Res. 194, 104293. doi: 10.1016/j.still.2019.104293

Kilic, O. M., Ersayin, K., Gunal, H., Khalofah, A., and Alsubeie, M. S. (2022).
Combination of fuzzy-AHP and GIS techniques in land suitability assessment for
wheat (Triticum aestivum) cultivation. Saudi. J. Biol. Sci. 29 (4), 2634–2644.
doi: 10.1016/j.sjbs.2021.12.050

Kumar, A., Pramanik, M., Chaudhary, S., and Negi, M. S. (2021). Land evaluation for
sustainable development of Himalayan agriculture using RS-GIS in conjunction with
analytic hierarchy process and frequency ratio. J. Saudi Soc. Agr. Sci. 20 (1), 1–17.
doi: 10.1016/j.jssas.2020.10.001

Larsen, A. E., Claire Powers, L., and McComb, S. (2021). Identifying and characterizing
pesticide use on 9,000 fields of organic agriculture. Nat. Commun. 12 (1), 5461.
doi: 10.1038/s41467-021-25502-w

Li, H., and Chen, Y. (2020). Assessing potential land suitable for surface irrigation using
groundwater data and multi-criteria evaluation in xinjiang inland river basin. Comput.
Electron. Agr. 168, 105079. doi: 10.1016/j.compag.2019.105079

Liao, W., Zeng, F., and Chanieabate, M. (2022). Mechanization of small-scale
agriculture in China: Lessons for enhancing smallholder access to agricultural
machinery. Sustainability 14 (13), 7964. doi: 10.3390/su14137964

Lin, L., Di, L., Zhang, C., Guo, L., Di, Y., Li, H., et al. (2022). Validation and refinement
of cropland data layer using a spatial-temporal decision tree algorithm. Sci. Data 9 (1), 1–
9. doi: 10.1038/s41597-022-01169-w

Liu, G., Zhao, L., Cheng, Y., Zhou, Y., et al. (2021). Land consolidation zoning of
northern guangdong for suitable mechanization transformation in hilly and mountainous
areas based on limiting factors. Trans. Chin. Soc Agric. Eng. 37 (12), 262–270.
doi: 10.11975/j.issn.1002-6819.2021.12.030

Lu, H., Chen, Y., Huan, H., and Duan, N. (2022). Analyzing cultivated land
protection behavior from the perspective of land fragmentation and farmland
transfer: Evidence from farmers in rural China. Front. Environ. Sci. 10. doi: 10.3389/
fenvs.2022.901097

Makate, C., Mango, N., and Makate, M. (2019). Socioeconomic status connected
imbalances in arable land size holding and utilization in smallholder farming in
Zimbabwe: Implications for a sustainable rural development. Land Use Pol. 87, 104027.
doi: 10.1016/j.landusepol.2019.104027

Mazahreh, S., Bsoul, M., and Hamoor, D. A. (2019). GIS approach for assessment of
land suitability for different land use alternatives in semi arid environment in Jordan: Case
study (Al gadeer alabyad-mafraq). Inform. Agric. Process. 6 (1), 91–108. doi: 10.1016/
j.inpa.2018.08.004

Mitter, H., Techen, A. K., Sinabell, F., Helming, K., Schmid, E., Bodirsky, B. L., et al.
(2020). Shared socio-economic pathways for European agriculture and food systems: The
eur-Agri-SSPs. Glob. Environ. Change 65, 102159. doi: 10.1016/j.gloenvcha.2020.102159
Frontiers in Plant Science 15
Morales, F., and de Vries, W. (2021). Establishment of land use suitability mapping
criteria using analytic hierarchy process (AHP) with practitioners and beneficiaries. Land
10 (3), 235. doi: 10.3390/land10030235

Mugiyo, H., Chimonyo, V. G. P., Sibanda, M., Kunz, R., Masemola, C. R., Modi, A. T.,
et al. (2021). Evaluation of land suitability methods with reference to neglected and
underutilised crop species: A scoping review. Land 10 (2), 125. doi: 10.3390/land10020125

Nguyen, H., Nguyen, T., Hoang, N., Bui, D., Vu, H., and Van, T. (2020). The
application of LSE software: A new approach for land suitability evaluation in
agriculture. Comput. Electron. Agr. 173, 105440. doi: 10.1016/j.compag.2020.105440

Nguyen, H. A. T., Sophea, T., Gheewala, S. H., Rattanakom, R., Areerob, T., and
Prueksakorn, K. (2021). Integrating remote sensing and machine learning into
environmental monitoring and assessment of land use change. Sustain. Prod. Consump.
27, 1239–1254. doi: 10.1016/j.spc.2021.02.025

Nilsson, P. (2019). The role of land use consolidation in improving crop yields among
farm households in Rwanda. J. Dev. Stud. 55 (8), 1726–1740. doi: 10.1080/
00220388.2018.1520217

Pasǎkarnis, G., Maliene, V., Dixon-Gough, R., and Malys, N. (2021). Decision support
framework to rank and prioritise the potential land areas for comprehensive land
consolidation. Land Use Policy 100, 104908. doi: 10.1016/j.landusepol.2020.104908

Paul, G. C., Saha, S., and Ghosh, K. G. (2020). Assessing the soil quality of bansloi river
basin, eastern India using soil-quality indices (SQIs) and random forest machine learning
technique. Ecol. Indic. 118, 106804. doi: 10.1016/j.ecolind.2020.106804

Pilevar, A. R., Matinfar, H. R., Sohrabi, A., and Sarmadian, F. (2020). Integrated fuzzy,
AHP and GIS techniques for land suitability assessment in semi-arid regions for wheat
and maize farming. Ecol. Indic. 110, 105887. doi: 10.1016/j.ecolind.2019.105887

Ren, X., Mi, Z., and Georgopoulos, P. G. (2020). Comparison of machine learning and
land use regression for fine scale spatiotemporal estimation of ambient air pollution:
Modeling ozone concentrations across the contiguous united states. Environ. Int. 142,
105827. doi: 10.1016/j.envint.2020.105827
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