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The emergence timing of a plant, i.e., the time at which the plant is first visible from

the surface of the soil, is an important phenotypic event and is an indicator of the

successful establishment and growth of a plant. The paper introduces a novel

deep-learning basedmodel called EmergeNet with a customized loss function that

adapts to plant growth for coleoptile (a rigid plant tissue that encloses the first

leaves of a seedling) emergence timing detection. It can also track its growth from

a time-lapse sequence of images with cluttered backgrounds and extreme

variations in illumination. EmergeNet is a novel ensemble segmentation model

that integrates three different but promising networks, namely, SEResNet,

InceptionV3, and VGG19, in the encoder part of its base model, which is the

UNet model. EmergeNet can correctly detect the coleoptile at its first emergence

when it is tiny and therefore barely visible on the soil surface. The performance of

EmergeNet is evaluated using a benchmark dataset called the University of

Nebraska-Lincoln Maize Emergence Dataset (UNL-MED). It contains top-view

time-lapse images of maize coleoptiles starting before the occurrence of their

emergence and continuing until they are about one inch tall. EmergeNet detects

the emergence timing with 100% accuracy compared with human-annotated

ground-truth. Furthermore, it significantly outperforms UNet by generating very

high-quality segmented masks of the coleoptiles in both natural light and dark

environmental conditions.

KEYWORDS

event-based plant phenotyping, deep-learning, ensemble segmentation, emergence time
detection, benchmark dataset
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1 Introduction

Image-based plant phenotyping has the potential to transform the

field of agriculture through the automated measurements of

phenotypic expressions, i.e., observable biophysical traits of a plant

as a result of complex interactions between genetics and

environmental conditions. Accurate computation of meaningful

phenotypes contributes to the study of high yield of better-quality

crops with minimum resources (Das Choudhury et al., 2018). A

plant’s phenome is defined as its observable characteristics or traits

and is determined by the complex interaction between genotype and

the environment. Plant phenotyping analysis has been an active

research field for some time that adds to the understanding of yield

and resource acquisition, and therefore, accelerates breedingcycles,

improves our understanding of plant responses to environmental

stresses, and contributes to global food security under changing

climate. Image-based plant phenotypes can be broadly classified

into three categories: structural, physiological, and event-based (Das

Choudhury et al., 2019). The structural phenotypes characterize a

plant’s morphology, whereas physiological phenotypes refer to the

physiological processes that regulate plant growth and metabolism

(Das Choudhury and Samal, 2020).

The timing detection of important events in a plant’s life cycle, for

example, the emergence of coleoptile (i.e., protective sheath covering

the emerging shoot) and new leaves, flowering, and fruiting, from

time-lapse sequences has recently drawn significant research

attention. Such phenotypes are called event-based phenotypes and

provide crucial information in understanding the plant’s vigor, which

varies with the interaction between genotype and environment. While

interest in event-based phenotyping forleaves, flowers, and fruits has

increased substantially in recent times (Wang et al., 2019; Bashyam

et al., 2021), detecting the emergence and monitoring of the growth of

the coleoptile based on computer vision and artificial intelligence

techniques is a budding research field with vast opportunities for

exploration. Emergence is a significant phenotype that not only helps

determine the dormancy of seeds for different genotypes in different

environmental conditions but also various aspects of early plant

growth stages.

Unlike the visual tracking of rigid bodies, for instance, vehicles and

pedestrians, the emergence timing detection of living organs and tracking

their growth over time requires a different problem formulation with an

entirely new set of challenges. Firstly, the state-of-the-art rigid body object

detection and tracking methods deal with objects of considerably larger

size that do not change in shape and appearance during the period of

consideration. In contrast, our problem is to detect the coleoptile at

emergence, when it is tiny in appearance, and track its dynamics as leaves

emerge and grow into a seedling. The growth monitoring of size and

shape is obtained as a by-product of an ensemble segmentation technique

that segments the coleoptile with high accuracy. Secondly, the

background (soil) in typical emergence detection in high-throughput

plant phenotyping systems is significantly more complex than the state-

of-the-art visual tracking applications. The soil substrate is multicolored

due to the presence of perlite and vermiculite which makes the

background cluttered, rendering the detection of a tiny coleoptile

extremely challenging. Finally, the images are captured for a longer

time than visual tracking, typically days, in a greenhouse with natural
Frontiers in Plant Science 02
and artificial lighting conditions resulting in significant

illumination variations.

The central contribution of this paper is to introduce a novel

ensemble segmentation model tailored to the detection and growth

monitoring of living organs in cluttered backgrounds and

illumination variations for applications in event-based plant

phenotyping. EmergeNet, characterized by its custom-designed loss

function, uses a novel weighted ensemble learning technique to

minimize the variance of the predicted masks and the

generalization error for emergence timing detection. A benchmark

dataset is indispensable for the development of the algorithm and

performance comparison. Therefore, we have developed a publicly

available benchmark dataset called the University of Nebraska-

Lincoln Maize Emergence Dataset (UNL-MED) consisting of time-

lapse image sequences of maize coleopti les under the

aforementioned conditions.
2 Related works

Multiple object tracking is challenging, yet it is of fundamental

importance for many real-life practical applications (Xing et al.,

2011). The survey paper by (Dhaka et al., 2021) provided

comparisons of various convolutional neural networks and

optimization techniques that are applied to predict plant diseases

from leaf images. A comprehensive survey of multiple object tracking

methods based on deep-learning is provided by (Xu et al., 2019). The

method in (Xing et al., 2011) uses a progressive observation model

followed by a dual-mode two-way Bayesian inference-based tracking

strategy to track multiple highly interactive players with an abrupt

view and pose variations in different sports videos, e.g., football,

basketball, as well as hockey. A. Yilmaz et al (Yilmaz et al., 2006)

showed that a plethora of research had been done in the field of object

detection and tracking using various methods, including deep-

learning algorithms. The method by (Aggarwal and Cai, 1999) gave

an overview of the tasks involved in the motion analysis of a human

body. (Dollár et al., 2009) worked on pedestrian detection, a key

problem in computer vision, and proposed improved evaluation

metrics. Computer vision based vehicle detection and tracking play

an important role in the intelligent transport system (Min et al.,

2018). The method in (Min et al., 2018) presents an improved ViBe

for accurate detection of vehicles and uses two classifiers, i.e., support

vector machine and convolutional neural network, to track vehicles in

the presence of occlusions.

However, the use of deep neural networks for event-based plant

phenotyping is in the early stage of research. The MangoYOLO

algorithm (Wang et al., 2019) uses the YOLO object detector for

detecting, tracking, and counting mangoes from a time-lapse video

sequence. The method uses the Hungarian algorithm to correlate fruits

between neighboring frames and a Kalman filter to predict the position

of fruits in the following frames. Amethod for plant emergence detection

and growth monitoring of the coleoptile based on adaptive hierarchical

segmentation and optical flow using spatio-temporal image sequence

analysis is presented in (Agarwal, 2017). A notable study in this domain

includes the detection of budding and bifurcation events from 4D point

clouds using a forward-backward analysis framework (Li et al., 2013). For
frontiersin.org
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a large-scale phenotypic experiment, the seeds are usually sown in

smaller pots until germination and then transplanted to bigger pots

based on a visual inspection of the germination date, size, and health of

the seedlings. The method by (Scharr et al., 2020) developed an image-

based automated germination detection system based on transfer-

learning deep neural networks equipped with a visual support system

for inspecting and transplanting seedlings. Deep-learning based

ensemble segmentation technique has been recently introduced in

medical image processing in ratio-based sampling for the arteries and

veins in abdominal CT scans (Golla et al., 2020), skin lesion diagnosis

using dermoscopic images (Arulmurugan et al., 2021), and portrait

segmentation for application in surveillance systems (Kim et al., 2021).

To the best of our knowledge, there is no previous research that

accurately detects the emergence timing of seedlings from a cluttered

soil background and tracks its growth over a time-lapse sequence

under extreme variations in illuminations using deep-learning based

ensemble segmentation with custom loss functions. This paper

proposes a novel algorithm that not only detects the emergence of

the coleoptile under all the aforementioned challenging conditions

but also successfully tracks its growth by creating an overlay mask on

the image sequence even under extremely low light conditions at

night. The proposed model, EmergeNet, uses deep-learning

algorithms to create a novel segmentation model which can predict

segmentation masks with high accuracy. We also release a benchmark

dataset with ground-truth called UNL-MED, consisting of 3832 high-

definition time-lapse image sequences of the maize coleoptiles.
3 Materials and methods

3.1 Dataset description

Benchmark datasets are critical in developing new algorithms and

performing uniform comparisons among state-of-the-art algorithms.

Hence, we created a benchmark dataset called the UNL-MED. It is

organized into two folders, namely, ‘Dataset’ and ‘Training’. The

‘Dataset’ folder contains all of the 3832 raw high-definition images of

resolution 5184 × 3456. The ‘Training’ folder contains two subfolders,

namely, ‘images’, which has randomly selected 130 images for

training, and ‘masks’, which contains 130 corresponding masks but

downsampled to a resolution of 256 × 256. The images are captured at

an interval of two minutes under various external conditions,

including varying illumination, cluttered background, warm and

cool tone, starting from before the emergence occurred until the

coleoptile is about 1 inch high to facilitate its growth monitoring.

Figure 1 is used to demonstrate an example of extreme contrast of

illumination of the images used in the experiment based on histogram

analysis. Figure 1A shows one of the brightest images and its

histogram, whereas Figure 1B shows one of the darkest images and

its corresponding histogram. Figure 1C shows the darkest image after

histogram equalization and its histogram. Each image contains nine

pots sowed with maize seeds of different genotypes. A visible light

camera fitted with a tripod was placed directly above the nursery to

capture high-definition top-view images of all nine pots every two

minutes. The dataset can be freely downloaded from https://

plantvision.unl.edu/dataset.
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3.2 Dataset pre-processing

One of the most challenging and tedious tasks in image

segmentation using deep-learning is the generation of ground-truth.

In our case, it is in the form of binary masks corresponding to the

plants in the images. For a custom dataset like the one used in this

work, it is imperative that the masks are generated accurately, and

therefore, it needs to be done manually. Utmost care has been taken

while generating these masks as these serve as monitoring

information during the semantic segmentation training to provide

feedback to the neural network. In our experiment, we made use of

the open-source manual annotation software developed by Visual

Geometry Group (VGG) (Dutta et al., 2016). The flowchart of the

data pre-processing is shown in Figure 2.

From this figure, we can see that each image is first hand-

annotated, and then the corresponding data is exported in ‘JSON’

format for further processing. For each image, one or more masks are

created from the exported data, and then they are superimposed to

create the binary mask of the image. The images, along with their

corresponding masks, are then fed into EmergeNet for training.
3.3 Proposed method: EmergeNet

In this section, we discuss the proposed model and its constituent

parts in detail. Figure 3 represents the block diagram of the

proposed method.

The first step is to generate masks from raw input images and pre-

process them for training and evaluation. The images and their

corresponding pixel labels are partitioned for training and testing.

The training dataset is augmented to reduce overfitting and then fed

to the model, EmergeNet, for training while the test dataset is used for

evaluating the performance of the model. It can then be used to

predict the emergence time of an image sequence. EmergeNet is a

custom-made ensemble segmentation model that uses a weighted

combination of loss functions and is specifically designed to detect

tiny coleoptiles at the time of their first emergence from the soil under

challenging conditions. It can also be used for growth monitoring of

the plant over a time-lapse image sequence. EmergeNet consists of

three underlying backbone architectures. The following subsections

discuss these three standard backbone models, the EmergeNet Loss

function, and the ensembling technique.

3.3.1 The backbone architectures
EmergeNet is built by ensembling three pre-trained networks,

each based on the UNet architecture but with modified backbone

models. It uses a custom-made loss function as well. The three

backbone models used are SEResNet, InceptionV3, and VGG19.

3.3.1.1 The UNet architecture

The UNet architecture, which is an extension of an encoder-

decoder convolutional network, is known for its precise

segmentations using fewer training images. Therefore, it is only

logical to make optimum utilization of the UNet architecture for

the task of fine-grain semantic segmentation. The basic intuition
frontiersin.org
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FIGURE 2

Illustration of mask generation process for UNL-MED.
A

B

C

FIGURE 1

(A) An example of the brightest image from UNL-MED and its corresponding histogram; (B) an example of the darkest image from UNL-MED (the pots
are marked in green circles) and its corresponding histogram; and (C) the darkest image after histogram equalization and its corresponding histogram.
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behind UNet is to encode the image, passing it through a

convolutional neural network as it gets downsampled, and then

decode it back, or upsample it to obtain the segmentation mask.

However, it is experimentally found that using a pre-trained model as

its encoder and decoder, rather than using the standard UNet

architecture, the performance of the model improves significantly

(Lagree et al., 2021).

3.3.1.2 UNet with SEResNet backbone

A novel architectural unit called the squeeze-and-excitation (SE)

block has been introduced in (Hu et al., 2018). It adaptively

recalibrates channel-wise feature responses by explicitly modeling

interdependencies between channels at almost no computational cost.

This is achieved by mapping the input to the feature maps for any

given transformation. A detailed description of the structure of SE

block and its operational characteristics are provided in (Hu et al.,

2018). As an example, adding SE blocks to ResNet50 results in almost

the same accuracy as ResNet101, but at a much lower

computational complexity.

3.3.1.3 UNet with InceptionV3 backbone

The Inception architecture, unlike conventional convolutional

networks, is a very complex, heavily engineered, deep neural network

that uses filters of multiple sizes operating at the same level, rather than

stacked convolutional layers. It enhances the utilization of available

computational resources as well as improves performance significantly.

The main idea of the Inception architecture is to find out how an

optimal local sparse structure in a convolutional vision network can be

approximated and covered by readily available dense components.

InceptionV3 makes several improvements over earlier versions by

including the following features: (a) Label smoothing, which is a

regularization technique designed to tackle the problem of overfitting

as well as overconfidence in deep neural networks; (b) Factorizing

convolution to reduce the number of connections/parameters without

decreasing the network efficiency; and (c) Auxiliary classifier which is

used as a regularizer. InceptionV3, with its 42-layer-deep network, is

computationally cheaper and much more efficient than other deep

neural networks (Szegedy et al., 2016).
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3.3.1.4 UNet with VGG19 backbone

The VGG model (Simonyan and Zisserman, 2015) derives

inspiration from its predecessor, AlexNet, and is a much-improved

version that uses deep convolutional neural layers to achieve better

accuracy. VGG19 is the successor to the VGG16 model with 19 layers.

VGG19 achieves better accuracy (Shu, 2019) than the VGG16 model

as it can extract features better with its deep convoluted network.

VGG19 has 16 convolutional layers with 3 FC layers and 5 pooling

layers. Here, 2 of the 3 FC layers consist of 4096 channels each. The

final FC layer originally had 1000 channels, followed by a

SoftMax layer.

We have used the previously discussed three models as the

backbone for EmergeNet, replacing the encoder part of the UNet

with one of the models at a time. Owing to the symmetric structure of

the UNet model, in the decoder or the expansion path, we

programmatically upscale the corresponding model in a symmetric

fashion to get the final output. For example, if we use VGG19 as the

backbone, we are replacing the encoder part of the UNet with the

VGG architecture, and in the expansion path, we are using the same

VGG architecture to programmatically upscale it. These backbone

models were previously trained on the significantly large well-known

dataset called ‘ImageNet’, which consists of 3.2 million images (Deng

et al., 2009). Thus, using these pre-trained weights allows us to benefit

from transfer learning for improved accuracy and speed.
3.3.2 EmergeNet loss function
Instead of the traditional ‘binary cross-entropy’ loss (the negative

average of the log of corrected predicted probabilities), EmergeNet

uses a weighted sum of the two loss functions which are relevant to

the task of segmentation. They are the Dice coefficient loss and focal

loss. The motivation for using these two loss functions instead of

cross-entropy loss is that these functions address some of the

limitations of traditional cross-entropy loss. The statistical

distributions of labels play a big role in training accuracy when

using cross-entropy loss. The training becomes more difficult as the

label distributions become more unbalanced. This is because cross-

entropy loss is calculated as the average of per-pixel loss without

knowing whether its adjacent pixels are boundaries or not. The Dice
FIGURE 3

Flowchart of the proposed method.
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coefficient loss and the focal loss, discussed in detail, address these

disadvantages and therefore boost the performance of the model.

The Dice coefficient is a statistic used to gauge the similarity of

two samples and was independently developed by Thorvald Sørensen

and Lee Raymond Dice (Sørensen–Dice coefficient, 1948). It was

brought to the computer vision community by (Milletari et al., 2016)

for 3D medical image segmentation. The Dice loss is computed by

D =
2*∑

N
i pi*gi

∑N
i p

2
i +∑

N
i g

2
i

(1)

where, pi and gi represent pairs of corresponding pixel values of

prediction and ground-truth, respectively. The values of pi and gi are

either 0 or 1 in boundary detection scenarios, therefore the

denominator becomes the sum of the total boundary pixels of both

prediction and ground-truth and the numerator becomes the sum of

correctly predicted boundary pixels because the sum increments only

when pi and gi match (both of value 1). Figure 4A shows the Venn

diagram for the Dice loss.

The Dice similarity coefficient (DSC) is a measure of the overlap

between two sets (see Figure 4A). In the task of boundary detection,

the ground-truth boundary pixels and predicted boundary pixels

can be viewed as two sets. By leveraging Dice loss, the two sets are

trained to overlap gradually as training progresses. The

denominator considers the total number of boundary pixels at a

global scale, while the numerator considers the overlap between the

two sets at a local scale. Therefore, DSC considers the loss

information both locally and globally, making it a very effective

loss metric for segmentation.

Focal loss, developed by (Lin et al., 2017), is a modified version of

the Cross-Entropy (CE) loss. In the focal loss, the loss for correctly

classified labels is scaled down so that the network focuses more on

incorrect and low-confidence labels. In the task of segmenting a tiny

foreground that relies on pixel-wise classification, a huge class

imbalance occurs due to the presence of a considerably large

background. Easily classified negatives comprise the majority of the

loss and dominate the gradient. The focal loss is designed to address

this issue by modifying the CE loss equation. The CE loss for binary

classification is given as:

CE(p, y) =
− log  (p), if y = 1

− log  (1 − p), otherwise

(
(2)
Frontiers in Plant Science 06
where y∈±1 specifies the ground-truth class and p∈[0,1] is the
model’s estimated probability for the class with label y=1 .

(Lin et al., 2017) proposed to reshape the loss function to down-

weigh easy examples and therefore focus more on training on hard

negatives. Mathematically, they proposed to add a modulating factor

(1−pt)
g to the CE loss, with tunable focusing parameter g≥0 . Focal

Loss is therefore defined as:

FL(pt) = −(1 − pt)
g log  (pt) (3)

where pt is given by the equation:

pt =
p, if y = 1

1 − p, otherwise

(
(4)

The focal loss is visualized for several values of g∈[0,5]
in Figure 4B.

From Figure 4B, we note the following properties of the focal loss:
• When an example is misclassified and pt is small, the

modulating factor is near 1 and the loss is unaffected.

• As pt!1 , the factor goes to 0 and the loss for well-classified

examples is down-weighted.

• The focusing parameter g , smoothly adjusts the rate at which

easy examples are down-weighted.
The EmergeNet Loss function, losse , is calculated by the weighted

sum of Dice coefficient loss, i.e., lossd (defined in Eq 1), and focal loss,

i.e., lossf (defined in Eq 3) as follows:

losse = lossd + a � lossf (5)

where a is the tuning factor. For our experiment, it has been

experimentally found that the optimal value of a is 1.

3.3.3 Performance-based weighted
ensemble learning

Ensemble learning is a process by which multiple models are

strategically generated and combined to solve a particular

computational intelligence problem for improved performance. An

ensemble model is typically constructed in two steps. First, a number

of base learners are built either in parallel or in a sequence. Then, the

base learners are combined using popular techniques like majority

voting or weighted averaging. There are three main reasons
A B

FIGURE 4

(A) Dice coefficient (set view); and (B) focal loss for g∈[0,5].
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(Dietterich, 1997) why the generalization ability of an ensemble is

usually much stronger than that of a single learner:
Fron
• The training data might not provide sufficient information for

choosing a single best learner. For example, many base

learners could perform equally well on the training dataset.

Therefore, combining these learners might be a better choice.

• The search processes of the learning algorithms might be

imperfect. For example, it might be difficult to achieve a

unique best hypothesis, even if one exists, since the algorithms

result in a sub-par hypothesis. This can be mitigated by the

use of ensemble learning.

• The hypothesis space being searched for might not contain

the true target function, while ensembles can give some good

approximation.
Instead of using state-of-the-art ensembling techniques like

bagging or boosting, EmergeNet introduces a novel weighted

ensembling technique that aims to calculate the weights of the

individual models based on their performances. These weights are

then used to reward or penalize the models. Let IoUi be the

Intersection over Union (IoU) score of the ith model. We define a

penalizing factor pi as:

pi =
(100 − IoUi)

2

o(100 − IoUi)
2 (6)
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The optimal weight, wi is then calculated as:

wi =
1
p2i

o 1
p2i

(7)

Finally, the ensembled weighted IoU of the EmergeNet (IoUw ) is

computed as follows:

IoUw =oIoUi · wi (8)

Figure 5 shows a compact view of the proposed EmergeNet

architecture.
3.4 Evaluation metrics

The performance of our proposed EmergeNet model has been

evaluated using three evaluation metrics, namely, F1-Score, Matthews

Correlation Coefficient (MCC) (Matthews, 1975), and Intersection

over Union (IoU) whereas the emergence time detection is evaluated

using our proposed Emergence Time Accuracy (ETA). Accuracy (or

Pixel Accuracy) is not a reliable metric for the task of segmenting tiny

objects because this metric is strongly biased by classes that take a

large portion of the image. Therefore, we have not used accuracy as a

performance metric in this study. It is worth noting that a True

Positive (TP) is an outcome where the model correctly predicts the

positive class. Similarly, a True Negative (TN) is an outcome where

the model correctly predicts the negative class. A False Positive (FP) is
FIGURE 5

The proposed EmergeNet architecture.
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an outcome where the model incorrectly predicts the positive class

and a False Negative (FN) is an outcome where the model incorrectly

predicts the negative class. These metrics are defined as follows:
Fron
• F1-Score is the Harmonic Mean between precision and recall.

The range for F1-Score is [0, 1], with 0 being the worst and 1

being the best prediction. It is governed by the equation:
F1 − Score =
2� TP

2� TP + FP + FN
(9)
• MCC is an improved metric which takes into account true

and false positives and negatives and is generally regarded as a

balanced measure that can be used even if the classes are of

very different sizes. It has a range of -1 to 1 where -1 is a

completely negative correlation between ground-truth and

predicted value whereas +1 indicates a completely positive

correlation between the ground-truth and predicted value.
MCC =
 TP� TN − FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
p (10)
• Intersection over Union (IoU) is a number from 0 to 1 that

specifies the amount of overlap between the prediction and

ground-truth.
IoU =
Area   of  Overlap
Area   of  Union

(11)

The emergence time is defined as the timestamp of the image in

which EmergeNet first detects the coleoptile(s).

Let M={a1,a2,…,an} , where ai denotes the image for a seeded

pot obtained at timestamp ti, n denotes the total number of images

in the sequence, where ti < ti+1 , ∀ 1≤i<n . The emergence time for a

pot is given by the first timestamp EmergeNet finds the coleoptile.

Thus,

EmergenceTime(M) = j : EmergeNet(j)

≠ ∅  AND   EmergeNet(i) = ∅, 1 ≤ i< j (12)

The emergence time accuracy (ETA) is determined by comparing

the time computed from the results from EmergeNet with the

ground-truth, obtained by careful manual inspection of the

image sequence.

Given an image sequence, the detection of the emergence time is

considered accurate if the time predicted based on the results of

EmergeNet (Eq 12) matches the ground-truth, i.e.,

EmergenceTime(M) = GroundTruth(M), (13)

where GroundTruth(M) is the timestamp of the emergence

determined manually.

ETA is given by the proportion of emergences accurately

identified by EmergeNet. Thus,

ETA =
Number   of   emergences   correctly   detected   by   EmergeNet � 100%

Total   number   of   emergences   in   the   image   sequences

(14)
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4 Experimental analysis

This section discusses the experimental setup, the benchmark

dataset, the evaluation metrics used to evaluate the proposed method,

and the results obtained from our experiments.
4.1 Experimental setup

The experimental analyses are performed using the Kaggle

Notebook, a cloud computational environment that provides a free

platform to run code in Python using dedicated GPUs. Kaggle

Notebooks run in a remote computational environment and each

Notebook editing session is provided with many resources. We used a

GPU Kernel with Tesla P100 16 GB VRAM as GPU, with 13 GB RAM

along with a 2-core of Intel Xeon as CPU. The training masks are

generated using the VGG annotator tool. Python is featured with a

plethora of useful packages, like, OpenCV, TensorFlow, Keras, Scikit-

learn, etc., which are used to train the model and evaluate its

performance. The number of images used for training was 260 (130

images and their corresponding masks). The execution time for

training the EmergeNet was 1.5 hours. Compared to other deep

neural networks, EmergeNet took less time to train as it benefits from

transfer learning. We trained each model until the IoU curve for each

of them reached saturation, and no further improvement

was possible.
4.2 Results

We present our results in two different parts. First, we present a

comparative study of EmergeNet and UNet in terms of performance.

We have also compared the performance of all three individual

backbone networks with EmergeNet. A more detailed analysis of

the performance of EmergeNet under dark lighting conditions is also

presented. In the second part, we analyzed the growth monitoring of

maize coleoptiles as well as their emergence timing detection.
4.2.1 Comparative study
Figure 6 shows the comparison of masks generated by UNet and

EmergeNet using a test image sequence from the UNL-MED.

Figure 6A shows the masks generated by the standard UNet model

and their corresponding ground-truth. Note that the generated masks

do not accurately match with the ground-truth. Furthermore, the

UNet model failed to detect the emergence of coleoptiles in several

cases. This is generally the case with generic models which are not

sophisticated enough. The IoU obtained by the standard UNet model

for this test sample is 69%. Figure 6B shows the masks generated by

the proposed EmergeNet model and their corresponding

ground-truth.

In contrast to the UNet model’s results, the masks generated using

EmergeNet closely correspond to the ground-truth. EmergeNet

neither incorrectly generated a mask (when there was no

emergence), nor failed to produce a mask when there was a
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coleoptile. The overall IoU of EmergeNet for this test sample is

99.40%, a significant improvement over UNet. Table 1 shows the

comparative analysis of UNet and EmergeNet in terms of the three

evaluation metrics, namely, F1-Score, MCC, and IoU, for all images of

UNL-MED. It is evident from the table that EmergeNet significantly

outperforms the UNet model.

While a confusion matrix (CM) is a powerful visualization

technique to summarize the performance of a supervised

classification task, it does not provide valuable insights into the

model’s performance for image segmentation since the data is

highly imbalanced toward the background class. The normalized

CMs for a random test image for the standard UNet and

EmergeNet are shown in Figure 7. It is evident from the figure that

the background is significantly larger than the maize coleoptile. A

more accurate representation of the classifier’s performance can be

derived by overlaying the values of the confusion matrix on the

coleoptile mask generated by the classifier. Figure 7A shows that

majority of the mask generated by the standard UNet (shown in

magenta) is incorrectly labeled as the coleoptile, i.e., false positive.

Only a very small portion of the mask is accurately labeled (shown in
Frontiers in Plant Science 09
cyan), denoting the true positives. Figure 7B shows the mask overlaid

by the values of the corresponding confusion matrix for EmergeNet. It

shows that a significant majority of the mask is correctly labeled

(shown in cyan), and only a few pixels, mostly along the border, are

false positives (shown in magenta). There are no false negatives or

true negatives for EmergeNet. This demonstrates the efficacy of

EmergeNet and its superiority over the standard UNet for

this application.

To further add credibility to the accuracy and robustness of the

integrated network, i.e., EmergeNet, we performed a comparative

study among the individual networks with EmergeNet. In each case,

the masks generated by EmergeNet are better than that created by the

individual networks. Figure 8 compares the masks generated by UNet

with SEResNet as its backbone, and EmergeNet. The IoU of

EmergeNet is higher by 2.21%. InceptionV3 is a very powerful

network on its own, and therefore, the UNet structure with

InceptionV3 as its backbone is expected to perform remarkably

well. Such is the case as depicted in Figure 9, however, EmergeNet

still beats the IoU score by 0.11% which is impressive considering the

fact that it becomes exponentially more difficult to improve the results

above a certain threshold value. Finally, EmergeNet beats UNet with

VGG as its backbone by 0.54% in terms of IoU metrics as shown in

Figure 10. Conclusively, it can be inferred that the integrated structure

of EmergeNet plays a significant role in bringing the best of all the

individual networks and performs better than all of them, thereby

proving its worth as a segmentation model.

To demonstrate the efficacy of EmergeNet under extremely low

light conditions, we conducted the same experimental analyses by
A

B

FIGURE 6

Illustration of segmentation performance on a test image from UNL-MED by (A) UNet and (B) EmergeNet.
TABLE 1 Results of comparison between UNet and EmergeNet on UNL-
MED under all lighting conditions in terms of F1-Score, MCC, and IoU.

F1-Score MCC IoU

UNet 0.6813 0.7040 0.7690

EmergeNet 0.9470 0.9894 0.9820
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considering the images of UNL-MED that were captured in a dark

environment only. Table 2 summarizes the results of the comparison

between the UNet and EmergeNet in dark conditions. Results show

that EmergeNet significantly outperformed the standard UNet along

all three evaluation metrics.

4.2.2 Growth monitoring
Thus, EmergeNet can efficiently monitor the growth of maize

coleoptiles even at extremely low light conditions. We defined a new

measure called the ETA to evaluate the accuracy of emergence in

Section 4.4. Figure 11 displays a sequence of images that show the

emergence and growth of coleoptiles computed by EmergeNet. It

shows that EmergeNet detected the emergence of coleoptile with

100% ETA. Furthermore, it correctly tracks the growth of the

coleoptile, as demonstrated by the increasing size of the generated

masks in the time-lapse imagery. Note that the first two subfigures,

i.e., Figures 11A, B, do not contain any masks because the emergence

has not taken place yet. Out of nine maize seeds sown in the nine pots,
Frontiers in Plant Science 10
only four of them emerged earlier, as shown by the tiny masks in

Figure 11C. Subsequently two more coleoptiles emerged, one in

Figure 11D and the other in Figure 11G. Three seeds failed to

emerge in the experiment. After their emergence, all six coleoptiles

are correctly tracked. Thus, EmergeNet accurately identifies the

emergence events and tracks the growth of the coleoptiles over time.

We conducted an experiment to demonstrate the accuracy of the

coleoptile size measured by the total number of constituent pixels of the

generatedmasks by comparing themwith the ground-truth. The result of

the comparison is shown in Figure 12. The figure shows the coleoptile size

of the generated mask (shown in blue) significantly overlaps with the

coleoptile size of the ground-truth (shown in red). Thus, EmergeNet not

only produces high-precision masks but also helps in the growth

monitoring of coleoptiles with very high accuracy. Table 3 shows the

Pearson correlation coefficient between the coleoptile size of the mask

generated by EmergeNet and the ground-truth. Pearson correlation

coefficient is a measure of the linear relationship between two variables.

It has a value between -1 to 1, with a value of -1 denoting a total negative
A

B

FIGURE 7

(A) Juxtaposition of confusion matrix (left) and its corresponding overlay mask from standard UNet (right). (B) Juxtaposition of confusion matrix (left) and
its corresponding overlay mask from the EmergeNet (right).
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A

B

FIGURE 8

Illustration of segmentation performance on a test image from UNL-MED by (A) SEResNet and (B) EmergeNet.
A

B

FIGURE 9

Illustration of segmentation performance on a test image from UNL-MED by (A) InceptionV3 and (B) EmergeNet.
Frontiers in Plant Science frontiersin.org11

https://doi.org/10.3389/fpls.2023.1084778
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Das et al. 10.3389/fpls.2023.1084778
linear correlation, 0 being no correlation, and + 1 denoting a total positive

correlation. The table shows a high positive correlation between the

ground-truth mask and the generated mask in terms of coleoptile size.
5 Discussion

The timing of germination is a paramount physiological factor for

seed quality determination that encompasses a set of broad concerns,

including vigor, dormancy mechanisms, pests, pathogens, genetic

integrity, cost of establishment, field maintenance to prevent

contamination with weeds or unwanted seed, and isolation

distances to prevent cross-pollination Stiller et al. (2010). Thus,

research attention for automated emergence timing determination

based on computer vision and artificial intelligence techniques to

replace tedious manual human labor is more crucial than ever. In this

paper, we proposed an ensemble deep-learning based segmentation

model based on the UNet architecture for coleoptile emergence time

detection. The proposed EmergeNet outperforms the UNet by a
Frontiers in Plant Science 12
significant margin as demonstrated by the experimental analyses in

Section 4.2. The success of EmergeNet is attributed to successful base

backbone architectures, customized loss function, and a novel

penalizing factor in the ensemble technique. The accuracy of any

image-based phenotypes depends on the accuracy of the underlying

segmentation model Das Choudhury (2020). Thus, the ensemble

segmentation model introduced in this paper has the potential to

be extended to other automated phenotyping applications.

The proposed EmergeNet model significantly outperforms the

widely used UNet architecture. The IoU metric for mask generation

for EmergeNet is 99.4%; in comparison, the standard UNet has an

IoU of 69% (see Table 1). By combining the three UNet architectures

with powerful backbones, along with the proposed custom loss

function and a novel ensemble technique, EmergeNet reduces the

number of false positives (see Figure 7B). One of the key contributions

of this model is its success in extremely low light, as evident from

Table 2. Overall, EmergeNet is able to detect the emergence timing of

the maize coleoptile with 100% accuracy. Furthermore, EmergeNet

can accurately monitor the growth of the coleoptiles over time, as

demonstrated by a very high correlation (0.999) between the

generated masks and the ground-truth.

6 Conclusion

The timing of important events in a plant’s life, for instance,

germination, the emergence of a new leaf, flowering, fruiting, and

onset of senescence, is crucial in the understanding of the overall
A

B

FIGURE 10

Illustration of segmentation performance on a test image from UNL-MED by (A) VGG19 and (B) EmergeNet.
TABLE 2 Results of comparison between UNet and EmergeNet on UNL-
MED only under dark environmental conditions in terms of F1-Score, MCC,
and IoU.

F1-Score MCC IoU

UNet 0.6065 0.6000 0.7774

EmergeNet 0.9709 0.9709 0.9735
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plant’s vigor, which is likely to vary with the interaction between

genotype and environment, and are referred to as event-based

phenotypes. This paper introduces a novel deep-learning model called

EmergeNet to detect the timing of the emergence of amaize seedling and

track its growth over a time-lapse video sequence. EmergeNet is based on

an ensemble model that integrates SEResNet18, InceptionV3, and

VGG19, such that it overcomes the challenge of detecting a tiny

living object and tracks its changes in shape and appearance in the

presence of cluttered soil background and extreme variation of

illuminations. Furthermore, the paper introduces a benchmark dataset
A B D

E F G

I

H

J K L

C

FIGURE 11

(A–L) Illustration of emergence timing detection and growth monitoring of a maize coleoptile in a time-lapse test image sequence of UNL-MED.
TABLE 3 Pearson correlation table between ground-truth and generated
mask.

Ground-truth Generated mask

Ground-truth 1.000000 0.999412

Generated mask 0.999412 1.000000
FIGURE 12

Coleoptile size measured by the total number of constituent pixels of
the ground-truth (shown in blue) and the generated mask (shown in
red) as a function of time.
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called UNL-MED. Experimental evaluation on UNL-MED shows the

capability of EmergeNet to detect the timing of emergence with 100%

accuracy as compared with human-perceived ground-truth. It is also

experimentally demonstrated that EmergeNet significantly outperforms

its base model UNet in the task of segmentation. EmergeNet

incorporates three pre-trained networks including all their weights,

and hence, it requires high-end computing power for efficient training.

Additionally, EmergeNet is trained on only one type of plant constrained

by a set of external environmental conditions. Future work will consider

the detection of multiple coleoptiles with or without the presence of

weeds in the same pot.
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