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Bio-priming with salt tolerant
endophytes improved crop
tolerance to salt stress via
modulating photosystem II
and antioxidant activities in a
sub-optimal environment
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Yamna Rao1, Hafiza Hamna Ansari1, Danish Wajid1,
Komal Nida1 and Xiangying Wei3*

1Department of Botany, Stress Physiology Phenomic Centre, University of Karachi, Karachi, Pakistan,
2Mid-Florida Research and Education Center, Environmental Horticulture Department, Institute of
Food and Agricultural Science, University of Florida, Apopka, FL, United States, 3Institute of
Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
Abiotic stress is one of the major constraints which restrain plant growth and

productivity by disrupting physiological processes and stifling defensemechanisms.

Hence, the present work aimed to evaluate the sustainability of bio-priming salt

tolerant endophytes for improving plant salt tolerance. Paecilomyces lilacinus

KUCC-244 and Trichoderma hamatum Th-16 were obtained and cultured on

PDA medium containing different concentrations of NaCl. The highest salt (500

mM) tolerant fungal colonies were selected and purified. Paecilomyces at 61.3 × 10-

6 conidia/ml and Trichoderma at about 64.9 × 10-3 conidia/ml of colony forming

unit (CFU) were used for priming wheat and mung bean seeds. Twenty- days-old

primed and unprimed seedlings of wheat and mung bean were subjected to NaCl

treatments at 100 and 200 mM. Results indicate that both endophytes sustain salt

resistance in crops, however T. hamatum significantly increased the growth (141 to

209%) and chlorophyll content (81 to 189%), over unprimed control under extreme

salinity. Moreover, the reduced levels (22 to 58%) of oxidative stress markers (H2O2

and MDA) corresponded with the increased antioxidant enzymes like superoxide

dismutase (SOD) and catalase (CAT) activities (141 and 110%). Photochemical

attributes like quantum yield (FV/FM) (14 to 32%) and performance index (PI) (73 to

94%) were also enhanced in bio-primed plants in comparison to control under

stress. In addition, the energy loss (DIO/RC) was considerably less (31 to 46%),

corresponding with lower damage at PS II level in primed plants. Also, the increase

in I and P steps of OJIP curve in T. hamatum and P. lilacinus primed plants showed

the availability of more active reaction centers (RC) at PS II under salt stress in

comparison to unprimed control plants. Infrared thermographic images also
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showed that bio-primed plants were resistant to salt stress. Hence, it is concluded

that the use of bio-priming with salt tolerant endophytes specifically T. hamatum

can be an effective approach tomitigate the salt stress cosnequences and develop a

potential salt resistance in crop plants.
KEYWORDS

Chlorophyll ‘a’ fluorescence, bacterial priming, wheat, mung bean, ionic stress,
response
Introduction

The twin goals of ensuring global agricultural productivity and

its execution in a sustainable manner are challenged due to the

increased incidence of ecological catastrophes (Ebert and Engels,

2020). As a result, our agriculture system is frequently subjected to

both biotic and abiotic stress. In the last few decades, a number of

studies have been reported the effect of abiotic and biotic stressors

on crops (Chinnusamy et al., 2005; Kwon et al., 2009; Fizza et al.,

2021; Ansari et al., 2022), highlighting the alternate means of

controlling the negative impacts of such stressors and sustain

plant growth in a sub-optimal environment. Moreover, out of

many environmental fluctuations, soil salinization has become a

fundamental enigma as it has been encountered in all climates. The

assault of this salinity stress, which is mainly caused by sodium ions,

can be observed in the germination, growth, development, and

reproduction of the crop (Mahmood et al., 2021). Hence, soils are

rendered hypersaline due to the prevalence of NaCl by natural or

anthropogenic means, which decreases crop production by more

than 20% (Porcel et al., 2012). In response to salt stress, plants show

plasticity in terms of periodic adjustment like osmolyte synthesis

due to physiological modifications in their defensive metabolism

(Nephali et al., 2021). However, the strategies to adapt salt tolerance

in crops have become insufficient to overcome extreme salinity

(Augé et al., 2014). Thus, to mitigate the salt stress and sustain the

modern agriculture system, various biotechnological approaches

have been employed to ensure crop productivity.

Among such approaches, bio-priming has been considered an

innovative and sustainable method for alleviating plant salt stress.

Seed bio-priming is a strategy of seed treatment (seed priming) for

regulating plant growth, managing stress, and improving seed

germination (Sarkar et al., 2021). Moreover, seed priming alone

(osmo-priming, matrix priming) or in combination with a low

dosage of biocontrol agents have been reported to increase the

germination rate, uniformity and sustainability of plant growth and

development under sub-optimal environment (Johnson and

Puthur, 2021). However, Seed priming via conventional and

specifically chemical means impaired the soil ecosystem, which

creates fluctuations in the food chain. Therefore, seed bio-priming

with plant growth-promoting microbes (PGPM) that are naturally

colonized around the root zone of the plants has a great potential to
02
increase the plant’s performance in a suboptimal environment

(Dimkpa et al., 2009).

In addition, it is currently being recognized that the application

of endophytes offers a great potential to reduce the abiotic and

biotic stress in plants. Lately, the application of endophytes to

reduce the hypersaline stress in plants has also been reported

(Sandhya et al., 2009; Yao et al., 2010; Verma et al., 2021). Several

studies suggested that the endophytes sustained growth by

increasing the uptake of nutrients such as zinc, phosphorus,

boron and copper and making other nutrients available to plants

in a saline-sodic soil (Sarma et al., 2015; Liu et al., 2017).

Paecilomyces lilacinus and Trichoderma hamatum are endophytic

saprophyte fungus that can be found in different soil types and have

the ability to grow in a broad range of soil pH having sodium ions.

P. lilacinus is effectively used to control nematode growth as it has the

ability to penetrate and destroy the embryo. Similarly, T. hamatum is

a beneficial endophytic plant symbiont, compared to P. lilacinus

which is widely used to control fungal diseases in crop plants (Afzal

et al., 2013). Some reports indicate that that Trichoderma enhanced

the tolerance to abiotic stress in plants (Shoresh et al., 2010; Estrada

et al., 2013). However, the role of P. lilacinus in plants to enhance

stress tolerance against abiotic stress has not been reported so far.

Hence, the present study aimed to probe the application of P. lilacinus

and T. hamatum as an effective bio-priming agent in crop plants

against hypersaline environment.

Plant photosynthesis coupled with defense mechanisms are the

prime physiological modulations that indicate the health status of

the crops. The thorough analysis of the photosynthetic apparatus

via non-destructive approach like chlorophyll fluorescence can

mimic the real time changes in perturbation and light harvesting

efficiency of the photosynthetic membrane. Furthermore, light

harvesting complexes and reaction centers of PS II are not only

true source of energy production but also plays a crucial role to

stress tolerance under abiotic stresses. Therefore, the present study

evaluated the sustainable role of isolated endophytes through seed-

priming on photo-physiology, light harvesting efficiency, energy

fluxes, and subsequent antioxidant system in two important crops,

under a suboptimal environment. Also knowing that the energy

exploitation in the photosynthetic apparatus of bio-primed plants

during salt stress tolerance has not been documented so far.

Likewise the application of T. hamatum and P. lilacinus as a
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bio-priming agent to enhance salt tolerance in plants is yet to be

studied In essence, the current research was designed to scrutinize

the energy distribution inside the photosynthetic membrane by

non-destructive means to explicate the energy source for the

induction of salt tolerance in plants due to bio-stimulating

natural colonizers i.e., T. hamatum and P. lilacinus.
Materials and methods

Seed source and selection

Seeds of Wheat (Triticum aestivum) and Mung bean (Vigna

radiata) were collected from the Stress Physiology Phenomic

Centre, Department of Botany, University of Karachi, and surface

sterilized into 10% NaClO (sodium hypochlorite) for 3 min to

remove the surface fungus and dust. Seeds were then thoroughly

washed with distilled water to remove NaClO traces.
Collection and purification of beneficial
endophytic fungi

The plant-beneficial fungal endophytic fungi P. lilacinus and T.

hamatum were obtained from Karachi University Culture

Collection (KUCC) and purified on PDA (Potato Dextrose Agar)

with several replicates. Saline medium of PDA was prepared to

examine the salt tolerance of P. lilacinus and T. hamatum, having

several concentrations of NaCl (100, 200, 300, 400, and 500 mM) in

its composition. These sets were kept at room temperature 30-34 ±

2°C for 7 days to select salt-tolerant endophytic strains and later it

was used for further study (Figure 1). The Colony-forming unit

(CFU) was maintained at 61.3 × 10-6 Conidia/ml of Paecilomyces
Frontiers in Plant Science 03
and about 64.9 × 10-3 Conidia/ml of Trichoderma colony forming

units (CFU) per milliliter for liquid as:

Cfu=ml =
No :   of   colonies  � dilution   factor
The   volume   of   the   culture   plate
Inoculation of fungal endophytes by seed
priming technique

The endophytic fungi P. lilacinus and T. hamatum were

inoculated in plants by seed bio-priming technique as described

by Saeid et al. (2018). Seeds of Wheat and Mung bean were selected

for the inoculation of endophytes. The fungal suspension was

prepared from pure PDA cultures by adding 10 ml of sterile

distilled water into fungal plates. Plates were slightly scratched by

a wire loop and fungal suspension was poured into a beaker (the

process was repeated twice). The final volume was made up to

100 ml with sterile distilled water to make the stock. From the

fungal spore stock, 25 ml was taken and made up the volume up to

100 ml with sterile distilled water to prepare 25% fungal suspension.

Later, the surface sterilized and dried seeds of both crops were

treated by soaking in the spore suspensions prepared for different

time intervals (5, 10, and 15 min). The seeds were dried under a

sterile air stream in laminar air flow for 2 h (Singh et al., 2013).
Experimental design and stress application

The experiment was conducted at the Stress Physiology

Phenomic Center, Department of Botany, University of Karachi,

Pakistan. Under natural environmental conditions, the experiments

were organized in a completely randomized design to analyze
FIGURE 1

Endophytes culture on high saline medium to use in plant. Highest salt tolerance endophytes culture was used in further study.
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endophytic symbiosis with the crop plant. Two sets of experiments

were conducted, 1) Seeds without inoculation of P. lilacinus and T.

hamatum and 2) Seeds with inoculation of P. lilacinus and T.

hamatum. Ten treated seeds were sown per pot having 1 Kg of soil

and allowed to germinate. The composition of the soil is 80.5% sand

particles, 7.1% silt and 8.1% clay, 4.10% organic carbon, 0.83% total

nitrogen, pH 7.6, and electrical conductivity was 1.7 dS.m-1. Wheat

and Mung bean were allowed to grow at an average day-night

temperature of 33 ± 4°C to 22 ± 3°C. Twenty days old inoculated

and un-inoculated seedlings were treated with different salt

concentrations by gradual increment method to reach 100 and

200 mM NaCl. In this regard, 50 mM for 200 mM and 25 mM for

100 mM was given on alternate days. The moisture level was

maintained by adding up water as stated by Umar and Siddiqui

(2018). The whole setup of the experiment was repeated with four

replicates of treatments and controls. The plants were exposed to

saline treatments for 7 days and later plants were harvested.
Relative water content

For the calculation of Relative water content (RWC) Barrs and

Weatherley (1962) method was applied with some modifications.

Randomly selected leaves of each control and treated samples of an

area of 4 × 2 cm2 of wheat and 1.2 cm2 ofMung bean were excised from

the mid-veins and the edge section and fresh weight (FW) was

recorded. Later, leaves were kept in Petri plates of 90 mm diameter

for12 h, which contain distilled water. Afterward, the leaves samples

were taken off the Petri plate and turgid weight (TW) were recorded.

For themeasurement of the dry weight (DW), leaves samples were oven

dried at 80°C for 48 hours. RWC was calculated by using the formula:

RWC =
FW − DW
TW − DW

 �100
Stomatal conductance and chlorophyll
content index

For the observation of stomatal conductance, young randomly

selected leaves of Wheat and Mung bean from each treated and

control intact plant was used between 9:00 A.M. and 11:00 A.M. For

this investigation, Decagon Leaf Porometer (Model SC-1) was used,

and data were recorded from the middle and lower part of the leaf

surface. The stomatal conductance of leaf was expressed as mmole

m-2s-1. Similarly, the chlorophyll content index (CCI) of young leaves

of each treated and control intact plant leaf was recorded between

9:00 A.M. and 11:00 A.M. Chlorophyll Content Meter CCM-200;

Opti-Sciences Inc., Hudson, NH, USA was used. The average values

of ten leaves of each replicate were used to show in bar graphs.
Photochemical traits of photosystem II

For the photochemical traits of Photosystem II assessment,

chlorophyll fluorescence was recorded by using as Opti-Sciences
Frontiers in Plant Science 04
Fluorometer (Model OS-30 p+; Hudson, USA). For the analysis, the

youngest and fully expended leaves were selected between 9:00 A.M.

and 11:00 A.M. From intact plants, leaves were clipped for 60 min

for dark-adapted measurement from each treatment and control

plant. Light-adapted quantum yield was recorded under a normal

day-light environment. Performance index (PIABS), Original (FO),

and maximum (FM), the dark-adapted quantum yield of PS II

photochemistry was calculated by the ratio of variable to maximum

fluorescence (FV/FM), photochemical quenching (qP), and JIP test

data was used to calculate as described by Strasser et al., 2010;

Stirbet and Govindjee, 2011 (Supplementary Table 1).
IR thermal images

FLIR-E5 (FLIR Systems, USA) was used before harvesting. IR

thermal sensor observed the infra-red thermography from each

Wheat and Mung bean treated and control plant. Before the

measurement, the system was optimized for 60-90 min, and later

on, images were taken. A computerized report was generated using

FLIR Software 2.10 after transferring the images into the computer.
H2O2 content

Total hydrogen peroxide (H2O2) content was estimated

according to the method described by Velikova et al. (2000).

Freshly harvested leaf samples were homogenized in 3 ml of 0.1%

(w/v) trichloroacetic acid (TCA) in an ice bath. Afterward,

homogenate was centrifuged at 12000 rpm for 15 min. Later on,

0.5 mL of 10 mM phosphate buffer (pH 7.0) and 1 ml of 1 M

potassium iodide (KI) were mixed with 0.5 ml of supernatant.

Optical density of the supernatant was taken at 390 nm. H2O2

content was estimated with reference to a standard curve and

expressed in mmole g-1 FW.

H2O2  Content = Ve  �R  � D : F
Vs

 � W  

Where,

Ve = Volume used for the estimation, R = Reading from

the standard curve, D.F = Dilution factor, Vs = Volume of extract,

W =Weight of leaf sample.
Malondialdehyde content

Lipid peroxidation in the leaf tissues was observed by Dhindsa

et al. (1981), the amount of malondialdehyde (MDA) produced by

the reaction of Thio-barbituric acid (TBA). Freshly harvested leaves

samples of 0.25 g were homogenized with 0.1% trichloroacetic acid

(TCA) in a pestle and mortar and centrifuged at 10,000 rpm for

5 min. 1mL supernatant was added into 4 ml of 20% TCA

containing 0.5% TBA. The mixture was heated for 30 min in a

water bath at 95 °C and allowed to cool. Absorbance was recorded at

532 and 600 nm. MDA-TBA extinction co-efficient was recorded at

532 nm.
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Conc:   of MDA   ( μM) =
(A532 − A600)

155
Antioxidant enzymes activity

Leaf sample of 500 mg in liquid nitrogen (5°C) was

homogenized with 10 ml of abstraction buffer (Tris-HCl pH 6.8,

10 ml DDT, 0.1 mM EDTA, 50 mg PVP) for enzymatic antioxidant

evaluation. The mixture was centrifuged at 15,000 rpm for 10

mins to estimate total protein by the method described by

Bradford (1976). The antioxidant enzymes i.e., Superoxide

Dismutase (EC # 1.15.1.1) and catalase (EC # 1.11.1.6) was

measured by the method of Beyer and Fridovich (1987) and

Patterson et al. (1984), respectively.
Statistical analysis

The data generated from the treated and control groups were

subjected to statistical analyses using the software SPSS Version 20

(IBM, United States). The Bonferroni Post- hoc test was applied to

differentiate significant differences among the mean values of
Frontiers in Plant Science 05
different treatments and presented as small alphabets on the bar

graphs (p< 0.05).
Results

Morphological response of plants against
different priming treatments

In the sub-optimal environment, seedling length of wheat and

mung bean plants was significantly reduced compared to control

(Figure 2). It was evident from the data that the maximum

reduction in root and shoot length was observed in wheat (13.83

and 17.4 cm) and mung bean (6.77 and 13.5 cm) plants when

exposed to 200 mM salt stress. However, bio-priming with T.

hamatum and P. lilacinus alleviates the salt stress and thus

increases the seedling length of wheat from 26 to 149% and mung

bean from 5 to 216% (Supplementary Table 2). It was observed that

bio-priming agents results in a more profound increase in the root

length as compared to the shoot length. However, general trend

shows that the increase in priming duration such as 5, 10, and 15

minutes had a positive impact on the shoot length in both plants

compared to root length. Unlike, the percentage of root length with
FIGURE 2

Effects of bio- priming with fungal endophytes on Root Length (RL), Shoot Length (SL) and Root/Shoot ratio of wheat and mung bean grown under
saline environment Note: The symbols on the horizontal axis represents: Control: Seeds without priming, Pl = Seed priming with Paecilomyces
lilacinus, Th = Seed priming with Trichoderma hamatum 5, 10, 15 = duration of bio-priming in minute, 0, 100 & 200 mM NaCl concentration. On
bars, vertical lines represent ± Mean Standard Error (S.E) and similar alphabets represents non-significant difference between the the means of
treatment at p<0.05.
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respect to time duration was slightly increased in bio-primed

treated wheat (20 to149%) and substantially increased in mung

bean plants (66 to 285%) under 200 mM salt stress (Figure 2,

Supplementary Table 2). Among all the treatments, the highest

root-to-shoot ratio was observed in mung bean plants when it was

primed with T. hamatum (141 to 209%) salt stress, followed by P.

lilacinus (57 to 157%) under 200 mM salt stress. However, the root

to shoot ratio was comparatively much lower in wheat plants

compared to mung bean (Figure 2).
Chlorophyll content index and
stomatal conductance

Salt stress substantially reduced the chlorophyll content index

(CCI) and stomatal conductance of the unprimed plants in

comparison to the primed. Bio-priming with T. hamatum

significantly increased CCI over control in wheat plants with an

increase in priming duration, which was about 141 to 285% under

100 mM and 81 to 189% in 200 mM salinity (Figure 3,

Supplementary Table 2). Moreover, P. lilacinus priming had a

substantially negative effect on wheat plants at 100 mM salt

stress, displaying a decline in CCI percentage over control (-43,

-42 and -44%) but substantially increased the CCI content of wheat

plants over control under 200 mM salt stress (44, 83, and 362%). P.

lilacinus expressed more profound effect on the mung bean plants

compared to wheat, had significantly increased the CCI at both 100

and 200 mM salt stress (47 - 170%and 35 - 61%).

Two types of the consequential stimulated regime by priming

agents in wheat and mung bean plants regarding stomatal

conductance were observed under extreme salinity (200 mM).

Stomatal conductance was significantly decreased in wheat plants
Frontiers in Plant Science 06
over the control when primed with T. hamatum, (-47, -32, and

-16%) and with P. lilacinus (-28, -17, and -14%). In contrast, in

mung bean plants, both priming agents substantially increased the

stomatal conductance over the control (9, -8, 3, 159, 65 and -6%)

with some exceptions under 200 mM salt stress respectively

(Figure 3, Supplementary Table 2).
Oxidative damage markers

Elevated level of H2O2 and MDA in un-primed plants indicates

that salt stress relatively increased the oxidative stress. Bio-priming

alleviates the stress in wheat and mung bean plants as the oxidative

damage was relatively lower than in control plants. Under 100 mM

salt stress, H2O2 was relatively lower in wheat plants primed with T.

hamatum (-15, 23, and -22%) and P. lilacinus (-52, -21, and -12%)

with some exceptions. (Figure 4, Supplementary Table 2).

Moreover, the MDA content among the primed plants was

considerably lower in both wheat and mung bean plants in

comparison to the control plants. It was evident from the data

that MDA content was considerably decreased with the priming of

T. hamatum (-47, -39, and 58%) than with P. lilacinus (-29, -32, and

4.98%) in wheat plants under high salinity (200 mM).
Photochemical attributes

Salt stress results in a significant decrease in the performance

index (PI) and an increase in the dissipation per reaction center

(DIO/RC) in wheat and mung bean plants, which was later

overcome by bio-priming. Results showed that under 200 mM

salt stress, the highest PI was observed in mung bean plants primed
FIGURE 3

Effects of bio-priming on chlorophyll content index (CCI) and stomatal conductance (gs) of wheat and mung bean plants grown under saline
environment. The symbols on the horizontal axis represents: Control: Seeds without priming, Pl = Seed priming with Paecilomyces lilacinus, Th=

Seed priming with Trichoderma hamatum 5, 10, 15 = duration of bio-priming in minute, 0, 100 &200 mM NaCl concentration. On bars, vertical lines
represent ± Mean Standard Error (S.E) and similar alphabets represents non-significant difference between the means of treatment at p<0.05.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1082480
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Irshad et al. 10.3389/fpls.2023.1082480
with T. hamatum (94%) followed by P. lilacinus (73%) over the

control (unprimed plants). Likewise, a similar trend was observed

regarding the maximum quantum yield of PS II (FV/FM) in mung

bean plants (32 and 26%) in comparison to the un-primed stress

plants. In wheat plants, priming of P. lilacinus caused the highest PI

and FV/FM (455 and 18%), followed by T. hamatum (357 and 14%)

under 200 mM salt stress. However, one way to assess the plant’s

performance is to observe the release of absorbed energy, which

indicates the performance of the plant under stress conditions. In

the present study, we found that dissipation per reaction center

(DIO/RC) was significantly decreased due to the priming in both

wheat (-31, -42, and -35%) and mung bean (-39, -42, and -46%)

under the extreme salinity level (200 mM) (Figure 5,

Supplementary Table 2).

The OJIP induction curve analysis showed the effect of salt

stress as the increase in salinity level (from 0, 100, and 200 mM)

caused the decline in the fluorescence intensity (OJIP curve) of the

un-primed wheat plants. Highest peaks of the induction transients

were observed among the bio-primed plants under both non-stress

and stress conditions (T. hamatum and P. lilacinus), while the

lowest curve was displayed by the unprimed 200 mM stress plants.

However, one striking pattern was observed among the OJIP curve

of plants primed with T. hamatum (10 min priming duration) in

wheat and mung bean plants. In wheat plants under control

(unstressed) conditions, the aforementioned treated plants

showed the lowest induction curve, which was moderately

increased under 100 mM salt stress and led to the highest peak of

all under 200 mM salt stress. In contrast, a complete revert pattern

was observed in mung bean plants. T. hamatum (10 mins) primed

plants had the highest induction curve values in the control

environment, which then decreased to moderate values and then
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further decreased to a lower curve in the high salinity (200 mM)

environment (Figure 6). Moreover, in mung bean plants, the lowest

curves were still attributed to the un-primed plants, showing the

stress retardation in the photosynthetic machinery of the mung

bean plants. The highest curves were exhibited by the plants primed

with P. lilacinus under 200 mM stress.
Antioxidant enzymes

Antioxidant enzymes including super oxide dismutase (SOD)

and catalase (CAT) activities were measured at different NaCl

concentrations with and without endophytes i.e. P. lilacinus and

T. hamatum application. In comparison to the control condition,

SOD and CAT activities were stimulated by the degree of salinity

stress at 100 mM (44 to 141%) and 200 mM (27 to 110%) in both

varieties. However, among the two varieties, the increment of SOD

and CAT in wheat was greater in comparison to mung beans.

Moreover, among the priming treatments, T. haamatum (15 min)

prompted the highest SOD (141, 151, 74 and 110%) and CAT (141,

71, 62 and 62%) activity under increasing salt stress over the

control, in which the least antioxidant activity was observed.

Besides, among different treatments of P. lilacinus the highest

increment in SOD (44 to 72%) and CAT (40 to 101%) activities

was attributed to the 15 min of priming in both varieties. (Figure 7).
Discussion

Due to the changing climate and the increasing assault of abiotic

stress, agricultural productivity is heavily curtailed. In the present
FIGURE 4

Effects of bio-priming with fungal endophytes on hydrogen peroxide (H2O2) and Malondialdehyde (MDA) contents of wheat and mung bean grown
under saline environment. The symbols on the horizontal axis represents: Control: Seeds without priming, Pl = Seed priming with Paecilomyces
lilacinus, Th = Seed priming with Trichoderma hamatum 5, 10, 15 = duration of bio-priming in minute, 0, 100 & 200 mM NaCl concentration. On
bars, vertical lines represent ± Mean Standard Error (S.E) and similar alphabets represents non-significant difference between the means of treatment
at p<0.05.
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FIGURE 5

Effects of bio-priming with fungal endophytes on OJIP transient curve of wheat and mung bean grown under saline environment. The symbols on
the horizontal axis represents: Control: Seeds without priming, Pl = Seed priming with Paecilomyces lilacinus, Th= Seed priming with Trichoderma
hamatum 5, 10, 15 = duration of bio-priming in minute, 0, 100 & 200 mM NaCl concentration.
FIGURE 6

Effects of bio-priming with fungal endophytes on Catalase Specific Activity (CAT) and Superoxide Dismutase Specific Activity (SOD) contents of
wheat and mung bean grown under saline environment. The symbols on the horizontal axis represents: Control: Seeds without priming, Pl = Seed
priming with Paecilomyces lilacinus, Th= Seed priming with Trichoderma hamatum 5, 10, 15 = duration of bio-priming in minute, 0, 100 & 200 mM
NaCl concentration. On bars, vertical lines represent ± Mean Standard Error (S.E) and similar alphabets represents non-significant difference between
the means of treatment at p<0.05.
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study two sodium-tolerant biological priming agents, namely T.

hamatum and P. lilacinus, with three priming durations (5, 10, and

15 min) were used. Later seeds were allowed to germinate and grow

in a salt-stress environment. It was observed that the root and shoot

length of both wheat and mung bean plants declined with the

elevating salt stress. It is evident from the literature that salt stress

inhibited plant growth in a sub-optimal environment (Dey et al.,

2004; Azooz et al., 2013; Fizza et al., 2021; Ansari et al., 2022). The

decrease in plant growth is attributed to nutrient imbalance,

osmotic, and ionic stress (Iqbal and Ashraf, 2013; Rasool et al.,

2013; Alqarawi et al., 2014). In the present study, it was observed

that the priming with T. hamatum and P. lilacinus increased the

root and shoot length of both wheat and mung bean plants in a sub-

optimal environment (Figure 2). The highest and most significant

amelioration was observed in mung bean plants by virtue of

Trichoderma priming. Our findings are in accordance with those

of Mastouri et al. (2010) and Rawat et al. (2013), who found that

Trichoderma isolates mitigate the negative effects of salt stress in

several plants. It was reported that Trichoderma is symbiotically
Frontiers in Plant Science 09
associated with plants and thus enhances plant growth due to

hormonal modulation or molecules closely related to GA3 (Iqbal

and Ashraf, 2013; Rawat et al., 2013). Thus, Trichoderma

association also elongates roots, which aids plants in absorbing

nutrients and water from the soil and improves their ability to

withstand salt stress (Arora et al., 1992). Likewise, some

Paecilomyces spp. has also enhanced plant growth via growth-

regulating metabolites like IAA and GA that could work to

ameliorate the stress (Bashri and Prasad, 2016; Liu et al., 2019).

Our results, with respect to the decrease in chlorophyll content

index (CCI) under salt stress are supported by the findings of

Ahmad et al. (2016) for Cicer arietinum, and Alqarawi et al. (2014)

for Ephedra alata. The decrease in pigment content is attributed to

several factors, including the detrimental effects of salt stress on

chloroplast (Zörb et al., 2009), increased activity of chlorophyllase

and the consequent reduction in chlorophyll synthesis (Sultana

et al., 1999), and instability of the pigment protein complex (Levitt,

1980). The outcomes also demonstrated the potential of T.

hamatum and P. lilacinus in curtailing the detrimental effects of
FIGURE 7

Effects of bio-priming on maximum quantum yield of PSII (FV/FM), activity of water splitting complex on donor site of PSII (FV/FO), performance
index (PI), quantum yield of energy dissipation (FO/FM), electron transport rate through PSII (FM/FO), approximated initial slope of fluorescence
transient (MO), absorption per reaction centre (ABS/RC), trapping per reaction centre (TRO/RC), electron transport per reaction centre (ETO/RC) and
dissipation per reaction centre (DIO/RC) of wheat and Mung bean grown under saline environment. The values of the parameters are expressed as
percentage increase or decrease over the control (considered as 100). The symbols on the horizontal axis represents: Control: Seeds without
priming, Pl = Seed priming with Paecilomyces lilacinus, Th= Seed priming with Trichoderma hamatum 5, 10, 15 = duration of bio-priming in minute,
0, 100 & 200 mM NaCl concentration. On bars, vertical lines represent ± Mean Standard Error (S.E) and similar alphabets represents non-significant
difference between the means of treatment at p<0.05.
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NaCl on the CCI and induced a significant rise in chlorophyll

content in both salt-treated plants and control plants (Figure 1). P.

lilacinus has also been reported to increase the chlorophyll content

in carrot plants (Nesha and Siddiqui, 2017). Moreover,

Trichoderma spp. has also been linked to improvements in the

pigment system and the reduction of harmful effects of NaCl,

according to Rawat et al. (2011) and Zhang et al. (2013).

Compared to control, plants that are primed with T. hamatum

showed improvement in photosynthetic pigments could be

attributed by the synthesis of phytohormones such auxin,

gibberellins, and cytokinins (Martı ́nez-Medina et al., 2014;

Resende et al., 2014).

Salt stress reduced the stomatal conductance of wheat and

mung bean plants which is one of the most common responses of

plants to prevent excessive water loss and controls the passage of

carbon and water between plants and the atmosphere (Brodribb

and McAdam, 2011). However, the priming of T. hamatum

significantly increased the stomatal conductance over control (un-

primed) under extreme salt stress (Figure 1). While in wheat plants,

stomatal closure was observed to reduce transpiration and conserve

water during salt stress. This closure is regulated through the ABA

level as well as extensive signal transduction of guard cells induced

by T. hamatum (Efetova et al., 2007; Joshi-Saha et al., 2011).

Therefore, two different behavior of T. hamatum priming was

observed under high salt stress. In wheat plants, it fosters higher

stomatal conductance which could be a strategy to fix more CO2

due to a fast growth strategy before the onset of salt stress

consequences compared to mung bean plants.

In salt stress, H2O2 can serve both as a measure of toxicity or

that damaged plant cells permanently or it may be a secondary

messenger that controls the plant’s antioxidant defense (Gechev

et al., 2006). In the current investigation, we discovered that salt

stress led to a considerable rise in H2O2 levels. However, in primed

wheat plants, the level of H2O2 was significantly lower than in

mung bean plants. Moreover, the more decrease in H2O2 level was

observed among the plants primed with T. hamatum, therefore,

we proposed that priming of T. hamatum promoted lesser

oxidative or cellular damage caused by salt stress which is in

accordance with the finding of Güler et al. (2001). Likewise, the

other damage marker, MDA content was also lower among the

wheat plants over the mung beans, hence, the priming was more

effective among the wheat plants. As suggested by earlier studies,

salt stress may have an impact on altering the composition of

membrane lipids since it caused lipid peroxidation (Samadi et al.,

2019). The decrease in MDA content suggested that T. hamatum

prevented the plant from oxidative damage in comparison to

unprimed plants. These findings strongly concur with those of

Zhang et al. (2013) who discovered lower levels of lipid

peroxidation in cucumber plants under salt stress that had been

treated with T. harzianum.

Salt stress adversely affects the photosynthetic apparatus of the

plants which can be observed through chlorophyll a fluorescence

parameter. Chl fluorescence is frequently employed as a measure of

photosystem efficiency because it offers important information

about the quantum efficiency of photochemistry and heat
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dissipation (Lichtenthaler and Burkart, 1999). Quantum yield

(FV/FM) and PS II functionality gradually decreased with the

increase in exposure time and salt concertation, which negatively

affected the membrane stability. This suggests that the PS II reaction

center deteriorated under higher stress levels (Lu and Zhang, 2000).

However, T. hamatum priming significantly enhanced the FV/FM
and PS II efficiency of stressed plants over control and P. lilacinus

priming. These outcomes are indicative of T. hamatum efficacy to

enhance salt tolerance which is linked with the improved PS II

functionality in stressed plants. The increase in energy loss (DIO/

RC) among the control plants exhibited stress damage at the PS II

level which was quite higher among the control plants while bio-

primed plants had considerably very low dissipation hence, lower

damage at PS II level.

According to the findings of Ran et al. (2021), the OJIP curve of

the present work showed a decline in I and P values with elevated salt

stress. However, the increase in I and P steps in T. hamatum and P.

lilacinus primed plants showed the availability of more active reaction

centers (RC) PS II under salt stress in comparison to control

(unprimed plants) (Kalaji et al., 2011). This indicated that bio-

primed plants were more tolerant to salt stress as their absorbed

energy was more efficiently transferred to reaction centers for

photochemistry (Tsimilli-Michael and Strasser, 2008; Stirbet and

Govindjee, 2011). The decrease in I and P phase under salt stress

control (unprimed) plants was due to a bottleneck in electron transfer

at the electron acceptor side of the PSI, the increase in cyclic electron

flow (CEF) around the PS I is revealed by the decrease in I-P phase

(Kono et al., 2014; Hamdani et al., 2015). This has been alleviated via

T. hamatum priming that mitigate the smooth electron flow between

PS II and PS I which resulted in high photosynthetic yield of the

stressed and unstressed plants (Figure 6).

According to the leaf energy flux model (Figure 8) the highest

absorption per reaction center (ABs/RC) and dissipation per

reaction center (DIO/RC) were observed among the un-primed

plants (wheat and mung bean) which was due to more inactive

reaction centers (RC) to active reaction center ratio. Hence, this

explains that the controlled plants were able to absorb more

photons, but the trapped energy was not used to reduce the

plastoquinone pool and absorbed photon was rather dissipated

in the form of energy or heat. However, bio-priming enhanced the

active to inactive RC ratio among the wheat and mung bean plants

which helped to increase the rate of QA reduction by trapped

exciton (TRO/RC) under high salt stress (200 mM). This increment

led to the enhanced electron transport (ETO/RC) which reflected

the increased activity of active RC to reoxidize the reduced QA

(Grieco et al., 2015). This combined increased in trapping and

transport of exciton displayed the stress tolerance induced by bio-

priming agent which reflected in the enhanced photosynthetic

yield (PI) and least energy dissipation (DIO/RC) of the

primed plants.

The infra-red thermographic images also evidently supported

the results. A significant color change was observed among the

leaves of primed and un-primed plants indicating a rise in leaf

temperature of the control plants under high salt stress (Figure 9).

This rise in temerature reflects the decline in water contents of the
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FIGURE 8

Effects of seed priming with fungal endophytes on infra-red thermal images of wheat and mung bean grown under saline environment. The symbols
on the horizontal axis represents: C = Seed without priming, PL5= Seed priming with Paecilomyces lilacinus for 5 mins, PL 10= Seed priming with
Paecilomyces lilacinus for 10 mins, PL 15= Seed priming with Paecilomyces lilacinus for 15 mins, TH 5= Seed priming with Trichoderma hamatum
for 5 mins, TH 10= Seed priming with Trichoderma hamatum for 10 mins, TH 15= Seed priming with Trichoderma hamatum for 15 mins. 0 (C), 100
and 200 mM represents different salinity (NaCl) levels.
FIGURE 9

Membrane pipeline model showing the proportion of specific energy fluxes in treated plants. In the membrane, ABS/RC, TRO/RC, ETO/RC, and DIO/
RC indicate absorption, maximum trapped exciting flux per active PSII, electron transport, and dissipation flux, respectively. The value of each
parameter can be seen in relative changes in the width of each arrow (see the color legend). The diagram exhibits the variation of ABS/RC, TRO/RC,
ETO/RC, and DIO/RC, for seven treatments, namely, A=200mM, B1=200mM and Paecilomyces lilacinus strain with 5 minutes time interval,
B2=200mM and Paecilomyces lilacinus strain with 10 minutes time interval, B3=200mM and Paecilomyces lilacinus strain with 15 minutes time
interval, C1=200mM and Trichoderma harzianum strain with 5 minutes time interval, C2=200mM and Trichoderma harzianum strain with 10
minutes time interval, and C3=200mM and Trichoderma harzianum strain with 15 minutes time interval. The model displays fluxes in different
shapes; the size of each shape was developed by the different values of four fluxes in each treatment.
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leaves. It was evident from the data that bio-primed plants

demosntrate lesser increase in leave temperature corresponding

with higher water content. Moreover, under the water stress, leaf

temperature somewhat mimicked the gas exchange rates and grain

output, perhaps due to other changes brought on by this stress

factor in plants, like impairments in the rates of photosynthesis

and partitioning of energy in plant leaves and canopy structures

(resulting in variations in the absorption and/or dissipation of

energy) (Casari et al., 2019). Therefore, the results were coherent

that the bio-primed plants were more tolerant to varying levels of

salt stress (0, 100, and 200 mM) in comparison to the

control plants.

Antioxidant activities are important physiological aspects

playing a key role in coping with salt stress (Guo et al., 2018).

Abiotic stress causes an increase in ROS production that must be

controlled in a homeostatic pool, yet excessive levels of ROS can

produce oxidative stress, which can damage plant physiology and

cause plant death by causing denaturation of protein structure, lipid

peroxidation, and nucleotide disruption (Demidchik, 2015). In this

context, an increase in antioxidant activity protects cells against

environmental challenges like salinity and drought. P. lilacinus &

specifically T. hamatum treated plants showed a remarkable

increase in antioxidant enzyme activities like SOD and CAT

under high salt stress (200 mM). which significantly reduce the

production of ROS like H2O2 that is potent enough to induce lipid

peroxidation in cell membrane. Hence, increasing antioxidant

activities ultimately brings down the level of MDA in treated

plants as compared to control by scavenging ROS (Figure 7).

It is concluded that bio-priming with endophytes produces

resistant in crop plants to salt stress through modulation in

physiological and photosystem II functionality which was further

supported by the infrared thermographic images of the stress and

control plants. Endophytes not only sustain better quantum

absorption and energy flow in plants but also contribute to

sustaining photosystem II performance and lower down the stress

markers production and energy loss in a sub-optimal environment.

Further our current findings suggest that the use of bio-priming

with salt tolerant and bio-stimulating natural colonizers specifically

with T. hamatum could be a suitable approach in mitigating salt

stress in wheat and mung bean plants.
Frontiers in Plant Science 12
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding authors.
Author contributions

All authors contributed to the study’s conception and design.

Material preparation, search, and collection of relevant articles and

reviews were performed by KI, ZS, JC, XW, YR, HA and DW

thoroughly checked the first draft and decisively improved the

manuscript. All authors contributed to the article and agreed the

submitted version. All authors contributed to the article and

approved the submitted version.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fpls.2023.1082480/

full#supplementary-material
References
Afzal, S. A. I. M. A., Tariq, S., Sultana, V., Ara, J., and Ehteshamul-Haque, S. (2013).
Managing the root diseases of okra with endo-root plant growth promoting
Pseudomonas and Trichoderma viride associated with healthy okra roots. Pak. J. Bot.
45, 1455–1460.

Ahmad, P., Abdel Latef, A. A., AbdAllah, E. F., Hashem, A., Sarwat, M., Anjum, N.
A., et al. (2016). Calcium and potassium supplementation enhanced growth, osmolyte
secondary metabolite production, and enzymatic antioxidant machinery in cadmium-
exposed chickpea (Cicer arietinum l.). Front. Plant Sci. 7, 513. doi: 10.3389/
fpls.2016.00513

Alqarawi, A. A., Abd Allah, E. F., and Hashem, A. (2014). Alleviation of salt-induced
adverse impact via mycorrhizal fungi in ephedra aphylla forssk. J. Plant Interact. 9,
802–810. doi: 10.1080/17429145.2014.949886

Ansari, H. H., Siddiqui, A., Wajid, D., Tabassum, S., Umar, M., and Siddiqui, Z. S.
(2022). Profiling of energy compartmentalization in photosystem II (PSII), light
harvesting complexes and specific energy fluxes of primed maize cultivar (P1429)
under salt stress environment. Plant Physiol. Biochem. 170, 296–306. doi: 10.1016/
j.plaphy.2021.12.015

Arora, R., Wisniewski, M. E., and Scorza, R. (1992). Cold acclimation in genetically
related (sibling) deciduous and evergreen peach (Prunus persica [L.] batsch) i. seasonal
changes in cold hardiness and polypeptides of bark and xylem tissues. Plant Physiol. 99,
1562–1568. doi: 10.1104/pp.99.4.1562
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