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Biofuels hold particular promise as these can replace fossil fuels. Algae, in

particular, are envisioned as a sustainable source of third-generation biofuels.

Algae also produce several low volume high-value products, which enhance

their prospects of use in a biorefinery. Bio-electrochemical systems such as

microbial fuel cell (MFC) can be used for algae cultivation and bioelectricity

production. MFCs find appl icat ions in wastewater treatment, CO2

sequestration, heavy metal removal and bio-remediation. Oxidation of

electron donor by microbial catalysts in the anodic chamber gives electrons

(reducing the anode), CO2, and electrical energy. The electron acceptor at the

cathode can be oxygen/NO3
-/NO2

-/metal ions. However, the need for a

continuous supply of terminal electron acceptor in the cathode can be

eliminated by growing algae in the cathodic chamber, as they produce

enough oxygen through photosynthesis. On the other hand, conventional

algae cultivation systems require periodic oxygen quenching, which involves

further energy consumption and adds cost to the process. Therefore, the

integration of algae cultivation and MFC technology can eliminate the need

of oxygen quenching and external aeration in the MFC system and thus make

the overall process sustainable and a net energy producer. In addition to this,

the CO2 gas produced in the anodic chamber can promote the algal growth in

the cathodic chamber. Hence, the energy and cost invested for CO2

transportation in an open pond system can be saved. In this context, the

present review outlines the bottlenecks of first- and second-generation

biofuels along with the conventional algae cultivation systems such as open

ponds and photobioreactors. Furthermore, it discusses about the process

sustainability and efficiency of integrating algae cultivation with MFC

technology in detail.
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1 Introduction

Biofuels hold tremendous promise in providing energy security

for the future. These are renewable, environment friendly, usable in

existing engines, blendable with diesel, and available in liquid, gas,

and solid form. Biofuels have been explored extensively during the

last few decades (Chowdhury and Loganathan, 2019). Based on the

original raw material for biofuel production, biofuels are categorized

as first, second, and third generation. The first generation (1G)

biofuels involve the use of food-based biomass feedstock like

sugarcane, potato, corn, beet, sunflower, rapeseed and so forth. The

use of 1G biofuels trigger the food versus fuel debate and is often

limited by the availability of agricultural land. The direct use of food

crops is highly unsustainable, particularly in highly populated

developing countries. The 2G biofuels are derived from inedible

portions of the plant and non-food items such as ligno-cellulosic

wastes, waste cooking oil and carbon rich industry waste.

(Chowdhury and Loganathan, 2019). The production of 2G biofuels

is limited by the need to pretreat biomass, remove inhibitors, develop

an enzymatic cocktail for hydrolysis, and develop an efficient

fermenting strain.

The bottlenecks associated with the 1G and 2G biofuels switched

researcher’s focus towards the evolution of 3G biofuels (Brennan and

Owende, 2010). The third-generation biofuels are obtained from

microalgae biomass. This generation of biofuels circumvents some

of the problems associated with 1G and 2G biofuels and is relatively

sustainable (Nigam and Singh, 2011). Algae is a source of several

other high-value low-volume products that enable their use in a

biorefinery (Chisti, 2007). The 3G biofuels hold several advantages

over 1G and 2G biofuels, such as shorter harvesting cycle, higher

growth rate, and higher oil production rate (Schenk et al., 2008).

Algae cultivation does not depend on agricultural land eliminating the

food versus fuel issue (Scott et al., 2010). Estimates show that a bio-oil

productivity of 10000 L/hectare/year of bio-oil can be obtained from

microalgae (Alam et al., 2015).

Algae are classified into two major categories based on their

external morphology, i.e. microalgae and macroalgae. Brown and red

algae along with green seaweed are prominent examples of

macroalgae, whereas microalgae include Chlorella, Spirulina and

other green algae (Demirbas, 2010). The microalgae are superior to

macroalgae in terms of oil content, microscopic cell size, and higher

growth rate. Algae biomass can be converted to bioethanol, biodiesel,

biomethane, biohydrogen, biochar and some value added pigments or

other value added products (Kumar et al., 2020).
1.1 Biodiesel

Biodiesel is mainly derived from the intracellular lipids of

oleaginous microalgae. Algal lipids consist of triglycerides (TAG)

along with mono and diglycerides and free fatty acids. Stearic acid,

palmitic acid, and oleic acid are the predominant fatty acids types in

the algal lipids (Tripathi et al., 2015). Algae biomass displays a

variable amount of lipid content depending on the strain type and

cultivation condition. For example, the lipid content of Chlorella

vulgaris varies from 11% to 43% (Mitra et al., 2012). Enamala et al.
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(2018) reviewed several studies and found that the lipid content varies

from 2.4% to 62% of dry algal cell weight (Enamala et al., 2018).

Algal lipids are converted to biodiesel through a catalytic

transesterification reaction between triacylglycerols and methanol.

The transesterification process results in fatty acid methyl ester

(FAME) and glycerol (Kumar et al., 2020). The purified FAMEs are

known as biodiesel. The lipid composition, such as the percentage of

saturated fatty acids, affects the fuel properties. The algal oil contains

more unsaturated fatty acids than saturated ones, which improves

cold flow and make it a suitable feedstock (Demirbas ̧, 2009; Tripathi
et al., 2015). However, it also triggers the production of

hydroperoxide and insoluble substances which collectively lead to

choking of the filter (Kumar and Thakur, 2018).
1.2 Biomethane

Algae biomass or leftover algal biomass after lipid extraction

(Lipid extracted algae) produces biogas when subjected to anaerobic

digestion. This biogas is composed of CH4 (50-70%) and CO2 (30-

50%) (Kumar et al., 2020). The algal biomass can generate 0.024 –0.6

L CH4/g VS (volatile solid) or 0.2 –0.4 m3 CH4/kg biomass. The

biogas yields vary from one species to another and depend on process

conditions (Milledge et al., 2019; Rabii et al., 2019). The factors

affecting biogas production include algae cell wall composition,

process temperature, C/N ratio, biomass loading rate and reactor

configuration (Sialve et al., 2009; McKennedy and Sherlock, 2015;

Barbot et al., 2016). The biogas production process when integrated

with other bioenergy processes adds value and makes it sustainable

(Cesaro and Belgiorno, 2015).
1.3 Biochar

Biochar is produced through hydrothermal carbonization (HTC)

of dry biomass (Gollakota et al., 2018). Algae based biochar has a high

cation exchange capacity, lesser carbon proportion, and lesser surface

area than lignocellulosic biomass based biochar (Michalak et al.,

2019). Algae based biochar has higher yield compared to other

feedstocks and the yield ranges from 8.1% to 64.2% of dry biomass

(Yu et al., 2017; Michalak et al., 2019). The high ash content blocks

micropores resulting in a low active surface area (Leng et al., 2021).

Algae biochar also possesses several functional groups making it

suitable for the remediation of inorganic and organic contaminants

from wastewater (Kumar et al., 2020).
1.4 Bioethanol

Algal biomass can ferment to bioethanol under anaerobic

conditions. The process is mediated by yeast, bacteria and/or fungi

(Minh and Hanh, 2012; Robak and Balcerek, 2018). The algae

biomass contains several polymers like mannitol and agar (Kostas

et al., 2016; Offei et al., 2018). Brown algae are rich in carbohydrates

such as alginate, mannitol, laminarin, glucose, fucoidan, and cellulose

(Ale and Meyer, 2013). Similarly, red algae have a diverse range of
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hydrolysable polymers, which can be converted to ethanol (Behera

et al., 2015).
1.5 Other value-added products

Intact algae biomass or algae products find applications in

industries such as food, pharmaceutical, healthcare and cosmetics.

Algal species such as Spirulina and Chlorella serve as a food

supplement and source of protein (Kumar et al., 2020). Algae

produce pigments like carotenoids, phycocyanin and chlorophyll

(Barkia et al., 2019). Carotenoids such as zeaxanthin, a-carotene, b-
carotene, and lutein are antioxidants and have anticancer properties

(Dickinson et al., 2017; Matos, 2017). The polyunsaturated fatty acids

(PUFA) derived from algae serve as food supplements (Lee, 2013). In

addition to this, some unconventional value-added products such as

ubiquinone coenzyme Q10, ubiquinol, cannabinoids, anandamids,

hoshinolactum, dolastatins, endotoxins and several therapeutic

substances can be obtained from algae (Abu-ghosh et al., 2021;

Hans et al., 2021; Mondal et al., 2020).
2 Oleaginous algae

Algae are classified in nine groups, namely cyanobacteria

(Cyanophyceae), diatoms (Bacillariophyceae), brown algae

(Phaeophyceae), yellow-green algae (Xanthophyceae), red algae

(Rhodophyceae), green algae (Chlorophyceae), golden algae

(Chrysophyceae) , “picoplankton” (Prasinophyceae and

Eustigmatophyceae) and dinoflagellates (Dinophyceae) (Neto et al.,

2019). Microalgae such as Chlorella, Spirulina, Haematococcus and

Dunaliella are grown commercially with a production level of several

100 tons annually (Neto et al., 2019). These algae are a rich source of

protein, carbohydrate, and lipid (Table 1). However, the chemical

constitution of a microalgae cell can differ according to the species,

strain and cultivation conditions (Lim et al., 2021). For example, it is

reported that microalgae species such as Trachydiscus and

Nanochloropsis are unable to produce carbohydrates (Hildebrand

et al., 2013). Similarly, Dunaliella tertiolecta ATCC 30929 can
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produce lipids up to 74% (w/w) (Takagi et al., 2006), while

Chlorella vulgaris CCAP 211/11B majorly produces carbohydrates

(55% w/w) (Illman et al., 2000). The selection of a suitable strain for

maximizing the biofuel production is crucial for the downstream

processes (Debnath et al., 2021; Lim et al., 2021).

The presence of saturated and unsaturated fatty acids and their

amounts also affect their suitability for employing them as engine oil.

In a study, 7 freshwater microalgae species were compared by the

presence of fatty acids. It was discovered that the C16:2, C16:3 and C20:5,

C16:4 and C18:4, and C18:4 and C22:6 are only produced in

Nannochloropsis sp., Ankistrodesmus sp., and Isochrysis sp.,

respectively (Thomas et al., 1984). Studies have confirmed that

microalgal lipids are high in energy rich fatty acids and suitable for

biofuel production (Steen et al., 2010). Furthermore, researchers

around the globe have succeeded in developing strategies to

improve lipid productivity from microalgae spp. In this context,

growing microalgae in stress conditions such as nitrogen limitation

has been shown very effective for some species (Levasseur et al., 2020).

Recently, the development of genetic engineering tools and omics

technologies have significantly improved lipid productivities in many

strains (Muñoz et al., 2021).
3 Modes of algae cultivation

3.1 Open cultivation systems

3.1.1 Open unagitated ponds
Unagitated and shallow open ponds require little effort for algae

cultivation on a large scale. Natural water bodies having 50 cm

depth are ideal for this kind of cultivation. The disadvantages

associated with such systems include frequent contamination,

slower diffusion of nutrients, and the formation of algal bloom

(Chew et al., 2018).

3.1.2 Circular ponds
Circular ponds are similar to unagitated open ponds except that

they are equipped with a stirring unit. The mixing in circular ponds is

enabled by a rotating shaft which moves in axial direction in order to
TABLE 1 Biochemical composition of different microalgae species.

Microalgae species Lipid (%) Protein (%) Carbohydrate (%) Reference

Scenedesmus obliquus 30-50 10-45 20-40 Debnath et al. (2021)

Chlorella sp. FC2IITG 15-54 22-40 18-46 Muthuraj et al. (2013)

Chlorella vulgaris 14-22 12-17 51-58 De Farias Silva et al. (2019)

Chlorella sorokiniana 22-24 40.5 26.8 Debnath et al. (2021)

Chlamydomonas reinhardtii 21 17 48 Hossain and Mahlia (2019)

Dunaliella tertiolecta 18-23.5 8.3-31.3 46.5-50.6 Efremenko et al. (2012)

Nostoc commune 22 20-43 34-56 Debnath et al. (2021)

Rhodomonas sp. 15 74 9 Hossain and Mahlia (2019)

Spirogyra sp. 16 55 20 Hossain and Mahlia (2019)

Spirulina platensis 4-9 46-63 8-14 De Farias Silva et al. (2019)
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create a homogenous mixing of nutrients (Ting et al., 2017). The

circular ponds are also prone to contamination.

3.1.3 Raceway ponds
Raceway ponds are extensively used for the commercial

production of algae biomass. Raceway ponds have a race track type

design and can have a single channel or multiple channels (Ting et al.,

2017). Paddle wheels in these systems ensure mixing and

homogenous suspension of algae cells.
3.2 Closed cultivation systems

3.2.1 Horizontal tube photo-bioreactor
The horizontal tube photo-bioreactor (PBR) has long horizontal

tubes arranged as panels, walls or helices (Chew et al., 2018). Mixing is

achieved through a centrifugal pump (Klinthong et al., 2015). The

reactors can run using either natural or artificial light. The limitation

is the requirement of large surface areas.

3.2.2 Vertical tube PBRs
Vertical tube PBRs, such as airlift and bubble column PBRs has an

air sparger at the bottom of the reactor enabling mixing, nutrient, and

gas exchange. The liquid flow in a bubble column reactor is triggered

by the air bubbles produced at the bottom of the vessel. The high

surface area to volume ratio of bubbles allows efficient gas exchange.

An airlift reactor contains two interconnected regions, namely, dark

and illuminated zones. Air bubbles lift the liquid from dark to light

zones, leading to homogenous mixing of nutrients and fluids between

the two zones. Vertical tube type PBRs offer homogenous mixing, low

shear stress on cells, high photosynthetic efficiency, and high algal

productivities (Chew et al., 2018).

3.2.3 Flat panel PBR
Flat panel PBRs consist of two transparent plates arranged as

rectangular box. The light source orientation ensures equal light

intensity at all positions of the reactor. The air sparger and pump

enables mixing and gas exchange (Klinthong et al., 2015). These

systems have a high surface area to volume ratio, suitable design for

scaling up, and low level of oxygen retention inside the reactor (Ting

et al., 2017).
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3.2.4 Continuous stirred tank PBR
Continuous stirred tank reactor (CSTR) is similar to conventional

CSTR bioreactors except for the presence of an external light source.

These systems offer lower productivities due to inefficient light

penetration and low surface area to volume ratio (Chew et al., 2018).
4 Integrating algae cultivation with
bio-electrochemical systems

The main focus of all the commercial industries dealing with third

generation biofuels is to optimize and develop efficient and cost-

effective approaches for maximizing the algal biomass production.

However, the existing algae cultivation strategies have several

drawbacks which need to be addressed in order to commercialize

the third-generation biofuels (Table 2). The major drawbacks

associated with open ponds are that they are prone to

contamination and evaporation losses. On the other hand, closed

algae cultivation systems are highly expensive and often require

oxygen quenching (Table 2).

Bio-electrochemical systems such as microbial fuel cell (MFC) can

be used for algae cultivation and bioelectricity production as they offer

advantages over conventional algae cultivation systems. MFCs find

applications in wastewater treatment, CO2 sequestration, heavy metal

removal, and bio-remediation. (Zhang et al., 2011). A typical MFC

consists of an anode and cathode placed in two chambers separated by

an ion-exchange membrane. Oxidation of electron donor by

microbial catalysts in the anodic chamber gives electrons (reducing

anode), CO2, and electrical energy (Khandelwal et al., 2022; Neethu

et al., 2022). The electrons flow through the external circuit to be

captured by the terminal electron acceptor present at the cathode

(Trapero et al., 2017). The anode and cathode chamber have

differences in redox potential, which is often maintained with the

help of the ion-exchange membrane. The detailed description of

MFCs can be found in the sections below. The electron acceptor at the

cathode can be oxygen/NO3
-/NO2

-/metal ions. However, the need for

a continuous supply of terminal electron acceptor in the cathode can

be eliminated by growing algae in the cathodic chamber, as it

produces enough oxygen through photosynthesis (Khandelwal

et al., 2018). On the other hand, the conventional algae cultivation

systems require periodic oxygen quenching, which involves further
TABLE 2 Pros and cons associated with conventional algae cultivation systems (Ting et al., 2017; Chew et al., 2018).

Cultivation system Pros Cons

Open Open ponds
•Easy to build handle
•Ideal for mass production at relatively affordable price

•Evaporation losses & prone to contamination
•Requirement of large area & CO2 transportation from source to cultivation site

Closed

Tubular
•Ideal for outdoor cultivation
•Temperature can be controlled
•High biomass production

•Requirement of O2 quenching due to high DO concentration
•Shading effect
•Not suitable for scale-up processes

Flat panel
•High algal growth rate
•Comparatively lower O2 storage
•High amount of light per unit area

•Difficulty in controlling temperature
•Complexity in scale-up
•Shading effect

Continuous stir tank
•Better biomass yield due to good mixing
•Minimum shading effect

•High cost associated with scale-up processes
•Requirement of O2 quenching
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energy consumption and adds cost to the process. Therefore, the

integration of algae cultivation andMFC technology can eliminate the

need of oxygen quenching and external aeration in the MFC system

and make the overall process sustainable and net energy producer. In

addition to this, the CO2 gas produced in the anodic chamber can

promote the algal growth in the cathodic chamber. Hence, the energy

and cost invested for CO2 transportation in an open pond system can

be saved (Figure 1).
4.1 MFC principles and components

The electrigens reduce the anode by oxidizing the organic matter

present in the anodic chamber. The process of anode reduction is

thermodynamically favorable and hence spontaneous. The anodic

redox potential is dependent upon the chemical nature of organic

matter and can be calculated using the well-known Nernst equation.

On the other hand, electrons in the cathodic chamber are commonly

accepted by oxygen due to their availability and high redox potential

(+0.82 V). Still, a number of other chemical acceptors are also used

that include nitrate, manganese oxide, iron, hydrogen peroxide and

nitrite (Chaudhuri and Lovley, 2003). The schematic representation

of MFC is shown in Figure 2. The basic functional mechanisms of

MFC would be clearer by an example of reactions on the electrodes

surface, as shown below:

Anode:

CH3COO
− + 2H2  O

! 2CO2 + 7H+ + 8e− (Eanode ¼ �0:28V) (2:1)
Frontiers in Plant Science 05
Cathode:

O2 + 4e− + 4H+ ! 2H2O (Ecathode ¼ þ0:82V) (2:2)

The overall cell voltage can be described as:

Ecell = Ecathode − Eanode   ( + 1:1V) (2:3)

The ideal cell voltage that a system can generate is represented by

equation 2.3, but due to the association of several losses in real MFC,

the operating voltage is lowered. Primarily, there are 3 integral

components of a typical MFC, namely anode, cathode and proton/

cation exchange membrane.

4.1.1 Anode
The anode should have the following properties: (i) corrosion

resistance, (ii) high electrical conductivity, (iii) biocompatibility, (iv)

high surface area, (v) chemical stability and mechanical strength

(Rinaldi et al., 2008; Guo et al., 2015). Carbon based conductive

electrodes are frequently used in an anodic chamber. Classical

examples include carbon paper, carbon brushes, carbon felt,

reticulated vitreous carbon, graphite fiber brush, granular graphite,

graphite plates, and rods (Zhou et al., 2011; Hindatu et al., 2017).

4.1.2 Cathode
The MFC cathode can be biotic or abiotic. Carbon based

electrodes are the most preferred choice as a cathode as well. The

abiotic electrodes generally have chemical/metal catalysts for acceptor

reduction. Biotic electrodes, on the other hand, have algae/bacteria

which aid both in acceptor reduction and production. Platinum based

electrodes find applications in chemical fuel cells for high efficiency
FIGURE 1

Illustration showing the comparison between conventional algae cultivation systems and microbial fuel cell based algae cultivation. PBR,
Photobioreactor and MFC, Microbial fuel cell.
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oxygen reduction at the cathode (Liu et al., 2004). Pt based electrodes

are not suitable for biotic cathodes because of several reasons. Pt is

poisoned by phosphates, nitrates, and chlorides often used in the

microbial growth medium. Pt is costly and also toxic to

microorganisms (Khandelwal et al., 2021). Non-platinum based

catalysts like carbon nanotube, conductive polyaniline, metal oxide

(lead oxide- PbO2, manganese (IV) dioxide), metals (cobalt and iron)

serve well in biotic cathodes (He et al., 2017).

4.1.3 Membrane/Separator
In order to maintain chemical equilibrium in the cell, usually, a

membrane or separator is placed between the anode and cathode

which ensures the protons and/or cations transport from the anodic

to the cathodic chamber. Table 3 summarizes the membranes or

separators employed in MFCs. The most commonly used membrane

in conventional MFCs is Nafion 117. It is resistant to biofouling, has

high ionic conductivity, and is impermeable to oxygen and organic

acids (Logan and Regan, 2006). Its employability is limited by its

high cost. In addition to this, researchers have used glass fibers, J-

cloth, earthenware, nylon fibers, ceramics, and biodegradable

shopping bags as alternative membrane separators (Santoro

et al., 2017).
4.2 Photosynthetic or algae assisted MFCs

As mentioned earlier, algae assisted MFCs hold significant

promise in making MFC technology sustainable. Algae-assisted

MFCs can be powered by low-cost algae biomass; can produce

algae biomass which serves the dual purpose of carbon capture, and

oxygen generation. Oxygen is the most preferred electron acceptor in

MFCs as it supports high potential differences. Algae cultivation at the

cathode provides the system with a continuous supply of oxygen

(during the light period) and helps circumvent the installation of
Frontiers in Plant Science
 06
mechanical aerators. Algae biomass also serves as feedstock for

biodiesel generation and several other products. Wang et al.

reported a power density of 5.6 W/m3 in a Chlorella based MFC

(Wang et al., 2010). A culture of cyanobacteria, Anabaena, at the

cathode sparged with a CO2-air mixture gave a power density of 57.8

mW/m2 (Pandit et al., 2012). In a study, a power density of 2.48W/m3

and a Coulombic efficiency (CE) of 9.4% were attained using

immobilized algae systems (Zhou et al., 2012). Photosynthetic

microbial fuel cell (PMFC), algae assisted microbial fuel cell

(AMFC) or microbial carbon capture cell (MCCs) also serve as a

modified photo bioreactor equipped with an inherent oxygen

quenching mechanism and carbon dioxide supply. The process of

algae cultivation at the cathode also complements the effective carbon

removal at the anode. Microalgae biomass is rich in hydrolysable

carbohydrates, fats, and proteins and can serve as an electron donor

substrate at the anode (Cui et al., 2014).

An algae assisted MFC can take different configurations

depending on the intended application, i.e., algal production, power

generation and wastewater treatment. Various kinds of algae-based

MFC configurations are shown in Figure 3. The configuration varies

from triple chamber to single chamber. A single chamber algae

assisted MFC involves bacterial and algae cultivation in the same

chamber. The CO2 produced by bacteria is effectively sequestered by

the microalgae present in the same chamber. The carbon capture is

efficient and the system is easily maintainable. In a two chambered

system, algae and bacterial consortia are separated by a proton

exchange membrane (PEM). These systems are used for algae

cultivation for bioenergy or other applications. A separate photo-

bioreactor is sometimes coupled with the system to enhance the algae

growth rate and power generation. A three chamber algae-based MFC

finds application in water desalination, where saltwater is fed to the

middle chamber to facilitate flow of positive and negative ions.

Researchers have also used uplift aeration type MFC to support

high algae growth rates (Saba et al., 2017).
FIGURE 2

Schematic showing a typical MFC and its working principle. PEM, Proton exchange membraner and R, Resistance.
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TABLE 3 Different separators used in MFCs and their performances.

Membrane/Separa-
tor Base material Proton

conductivity
Power density

(mW/m2) Reference

SPEEK Sulfonated poly (ether ether ketone) 0.163 x 10-2 77
Narayanaswamy Venkatesan and

Dharmalingam (2015)

SPEEK/GO SPEEK/Grapheme oxide composite 2.55 x 10-3 41.70 Shabani et al. (2020)

PES/SPEEK
Sulfonated poly (ether ether ketone)/poly

(ether sulfone)
2.56 x 10-5 170 Lim et al. (2012)

SPEEK/SiO2 SPEEK/SiO2 1.018 x 10-2 1008 Sivsankaran and Sangeetha (2015)

SPEEK/TiO2 SPEEK/TiO2 composite 0.187 x 10-2 98.1
Narayanaswamy Venkatesan and

Dharmalingam (2015)

SPES/PES
Sulfonated polyether sulfone/polyether

sulfone
– 59 Zinadini et al. (2017)

PS/SPEEK
(Polysulfone)/(sulfonated poly ether ether

ketone)
– 97.47 Ghasemi et al. (2016)

Nafion-112 Perfluorinated membrane 4.8 x 10-2 19.7 Ilbeygi et al. (2015)

Nafion-117 Perfluorinated membrane 106.7 Ghasemi et al. (2013)

PVA/Nafion/borosilicate Polyvinyl alcohol-Nafion-borosilicate 0.07 – Tiwari et al. (2016)

Flemion
Fluorinated membrane mfg. by Asahi Glass

Company, Japan
– 200 Hosseini and Ahadzadeh (2012)

PVDF-g-PSSA
Poly (-vinylidene fluoride)

grafted sodium styrene sulfonate
0.046 147 Xu et al. (2019)

UF-1kDa Ultra filteration membrane – 36 Hou et al. (2011)

Ceramic Clay – 5.23 W/m3 Jadhav et al. (2016)

Ceramic Terracotta – 400mW Ieropoulos et al. (2016)

Ceramic Fine fire clay – 2.1 mW Merino-Jimenez et al. (2017)

Ceramic Mullite & terracotta – 27 W/m3 Tremouli et al. (2018)

Clay blended with rock
phosphate

Clay blended with rock phosphate – 960 mW/m3 Khandelwal et al. (2020)

UF Ultra-filtration membrane (0.45 μm) – 6 W/m3 Khandelwal et al. (2021)
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FIGURE 3

Schematic showing different algae assisted MFC configurations (A) single chamber; (B) Dual chamber; (C) H-shaped; (D) dual chamber integrated with
external photobioreactor and (E) three chamber with desalination.
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5 Use of algae in MFCs

5.1 Algae biomass as anodic substrate

Algae biomass is rich in decomposable carbohydrates, lipids and

proteins. Therefore, algae serve as a good source of electron donor at

the anode. The primary challenge with the use of intact algae

biomass is its complex cell wall. Algae cell wall composition varies

from class to class and species to species. The chlorophycophyta

contain a wide array of cell walls ranging from cellulose pectin

complexes to hydroxyproline rich glycoproteins. Like plants cells,

algae cell walls are intricate mix of polymers such as cellulose,

hemicellulose, lignin, pectin and arabinogalactan proteins. This

complex assembly of polymers in the algae cell wall necessitates

the biomass pretreatment to break open the structure, enhance the

surface area, and hydrolyze polymers. Researchers have used both

intact and pretreated micro and macroalgae as anodic substrates

and reported good power outputs (Velasquez-orta et al., 2009;

Cui et al., 2014). The use of pre-digested algae biomass also

supports high power output over undigested biomass (Salar-garcıá

et al., 2016).
5.2 Algae biomass at the cathodic chamber

Algae at the cathode not only serve as oxygen supplier but also as

catalysts for oxygen reduction at the electrode surface. Algae

produced metabolites also serve as electron acceptors in the absence

of oxygen particularly during the dark period. The success of algae
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assisted MFC depends on the process of photosynthesis which is

driven by light energy and carbon dioxide supply (González Del

Campo et al., 2013; Elmekawy et al., 2014).

Additionally, algae can effectively remove nitrates and phosphates

from the water. Algae can grow in autotrophic, heterotrophic, and

mixotrophic mode. Heterotrophic and mixotrophic modes assist with

carbon removal. The simultaneous carbon, nitrogen, and phosphorus

removal is possible using dual chamber algae assisted MFCs. The

anode and cathode both can contribute towards carbon removal while

the algae assisted cathode can help with nitrogen and phosphorus

removal (Commault et al., 2017). The success of algae assisted MFC in

wastewater treatment depends on the algal strain, inoculum size,

density, temperature, N/P ratio, salinity, pH, light intensity and CO2

supply and capture rate. An algae assisted MFC thus needs

optimization with respect to all these parameters (Nagendranatha

Reddy et al. 2019).

6 Output from algae assisted MFC

Algae assisted MFCs can generate both bioelectricity and algal

biomass. Table 4 summarizes the prominent studies in terms of power

output obtained from different algal strains employed in algae assisted

MFCs. Power output from algae assisted MFC can be optimized by

choosing an appropriate algae species, electrode material, catalyst

coating, chamber design, light duration and intensity, electron donor

substrate, and CO2 source. The microalgae can directly generate

current either by introducing it in the anodic chamber as an

electron donor substrate or in the cathodic chamber as a biocatalyst

for generation of oxygen (Elmekawy et al., 2014).
TABLE 4 Different species of microalgae and the corresponding dissolved oxygen (DO) and power output obtained in algae assisted MFCs.

Reactor configuration Algae species DO concentration (mg/L) Power Density Reference

Dual-chamber Chlorella – 3720 mW/m3 Zhang et al. (2019)

Single chamber Scenedesmus quadricauda – 62.93 mW/m2 Yang et al. (2018)

Dual- chamber Mix culture 19.57 50 mW/m2 Nguyen et al. (2017)

Sediment MFC Mix culture 14.2 22.19 mW/m2 Neethu and Ghangrekar (2017)

Tubular Chlorella – 200 mA/m2 Ma et al. (2017)

Two chamber Spirulina – 0.85 W/m2 Colombo et al. (2017)

Air-lift type MFC C. vulgaris 5.65 558 mW/m3 Hu et al. (2016)

Two chamber Mix culture – 128 μW Gajda et al. (2015)

Two chamber C. vulgaris – 34.2 mW/m2 Commault et al. (2017)

Two chamber C. vulgaris 8.5 126 mW/m3 Bazdar et al. (2018)

Two chamber C. vulgaris – 1926 mW/m2 Cui et al. (2014)

Two chamber Microcystis aeruginosa – 58.4 mW/m3 Cai et al. (2013)

Two chamber Mix culture 20.8 0.35 V Kakarla and Min (2019)

Two chamber C. vulgaris 12 14.40 mW/m2 González et al. (2013)

(Continued)
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TABLE 5 COD removal and algal biomass generation in algae assisted MFCs.

MFC type Substrate or nutrient media
used in cathode Algal strain

Removal effi-
ciency (%) Biomass concen-

tration (mg/l) Reference

COD TN TP

Double chamber Synthetic media Chlorella sp. QB-102 – – – – Zhang et al. (2018)

Double chamber Landfill leachate wastewater Mixed culture 52.8 80 – –
Nguyen et al.

(2017)

Double chamber Synthetic media Mixed culture 100
Kakarla and Min

(2019)

Dual chamber integrated
with photobio-

reactor
CO2 Mixed culture 470 Gajda et al. (2015)

Dual chamber CO2 Chlorella vulgaris 80 360
González et al.

(2013)

Single chamber CO2 Chlorella vulgaris 44 270 Hou et al. (2016)

Dual chamber Chocolate factory Chlorella vulgaris 78.6 5.2
Huarachi-Olivera

et al. (2018)

Single & dual chamber Synthetic media Spirulina 89 5.5 17
Colombo et al.

(2017)

Dual chamber Anodic effluent Chlorella vulgaris 49 83
Commault et al.

(2017)

Dual chamber CO2 from anode chamber Chlorella vulgaris 90 1247 Cui et al. (2014)

Dual chamber Externally supplied CO2 Chlorella vulgaris 5.5 3600 Bazdar et al. (2018)

Dual chamber CO2 from anode chamber
Scenedesmus acutus

PUVW12
87 290

Angioni et al.
(2018)

Single chamber
Anaerobically digested kitchen waste

effluent

Golenkinia sp. SDEC-16,
Scenedesmus

SDEC-8 & Scenedesmus
SDEC-13

43.6 38 100 325 Hou et al. (2016)

Two chamber municipal solid waste leachate Synechococcus sp.
76.5 90.2 94.3 254

Lakshmidevi et al.
(2020)

Two chamber Synthetic wastewater Dunaliella salina
59.32 – – 4.02 ± 6 × 106 cells/ml

Mishra and
Chhabra (2022)
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TABLE 4 Continued

Reactor configuration Algae species DO concentration (mg/L) Power Density Reference

Two chamber C. vulgaris 100% saturated DO in water 23.97 mW/m2 Gonzalez del Campo et al.
(2014)

Two chamber C. vulgaris 7 42.98 mW/m2 Gonzalez Del Campo et al.
(2015)

Two chamber C. vulgaris – 62.7 mW/m2 Gouveia et al. (2014)

Two chamber Chlorella sp. QB-102 – 36.4 mW/m2 Zhang et al. (2018)

Two chamber C. vulgaris – 327.67 mW/m2 Huarachi-Olivera et al. (2018)

Two chamber Synechococcus sp. 10.2 110.92 mW/m2 Lakshmidevi et al. (2020)

Two chamber Chlorella sp. G29-5 – 505.6 mW/m2 Wu et al. (2021)

Two chamber Cladophora sp. 18.7 619.1 mW/m2 Tas ̧kan and Tas ̧kan (2022)

Two chamber Dunaliella salina 5.83 213.38 mW/m2 Mishra and Chhabra (2022)
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The algal biomass production in algae assisted MFC is important

to assess the overall system performance and net energy recovery. The

Table 5 summarizes the key studies reporting the chemical oxygen

demand (COD) removal by particular algal strains and their net

biomass production. The main factors which affect the algal growth in

MFC include reactor configuration, wastewater composition and light

intensity (Luo et al., 2017). Despite some obvious advantages, the

algae growth rates and productivities achieved in MFCs are low. This

is primarily due to the lack of studies specifically investigating the

algae growth rate in MFCs and on system scale up.
7 Factors affecting power output in
algae assisted MFC

7.1 Light

Light is the primary requirement for photosynthesis. Light

intensity, its duration (light/dark period), and wavelength all affect

algae growth. High light intensities lead to photo oxidation and

growth inhibition. On the other hand, low light intensities lower

algae growth rates and promote bacterial growth. Both polychromatic

and monochromatic light is used for cultivating algae. Amongst the

monochromatic light, the red and blue light is most preferred for high

rate algal cultures. Light source and its orientation with respect to

MFC affect algae growth. Researchers prefer using inbuilt LED lights

that ensure direct illumination and minimize the self-shading effect. It

also helps to regulate temperature and ensure low temperatures

enabling optimized algae growth. The ratio of light/dark period is

also critical and varies from species to species and system to system

(Saba et al., 2017; Nagendranatha Reddy et al. 2019).
7.2 CO2 concentration

Carbon dioxide is another key ingredient required for algae growth.

Most of the algae grow well at atmospheric CO2 levels. However, higher

concentrations are shown to promote algae growth and carbon capture

(Singh and Singh, 2014). Researchers have studied the impact CO2

concentration on growth and lipid production in algae (Sato et al., 2003;

Wang et al., 2010). The response varies from species to species and also

on the cultivation conditions. In an algae assisted MFC, the CO2

required by the microalgae can either be the CO2 present in the

anodic off-gas (Wang et al., 2010) or it can be CO2 sparged separately

(González Del Campo et al., 2013). However, CO2 sparging is associated

with certain disadvantages, including the lowering of the pH on the

dissolution of CO2 in water, which can be resolved by the use of a higher

initial inoculum concentration (Chiu et al., 2009; Zhang et al., 2014).

Increasing the CO2 concentration by 10-15% has resulted in a 6%

increase in the lipid content, confirming the significance of the CO2

concentration in the lipid content of algal cells (Liu et al., 2011).
7.3 Dissolved oxygen

Photosynthesis liberates oxygen via light reaction and algae

consume oxygen while respiring. A high concentration of oxygen

becomes inhibitory for algae growth and leads to photo-oxidative
Frontiers in Plant Science 10
damage. It was found that a DO concentration exceeding 30 mg/l

inhibited the C. vulgaris growth by 30% (Kazbar et al., 2019). MFC

circumvents this problem as oxygen is quenched through the

reduction reaction in a circuit MFC. The solubility of oxygen in

water is also dependent on temperature, salt content, and duration of

light/dark cycles. It is often observed that during night time, the DO

level drops and so is the power output from a MFC (Gonzalez Del

Campo et al., 2015). A DO level of 4.5-5.5 mg/l is suitable for

supporting continuous power output from a MFC (Rodrigo et al.,

2010), while an algae based cathode can realize DO levels in the order

of 6.6 mg/l (Kang et al., 2003). Another major factor that determines

the DO concentration in water is temperature. Hence, the use of

proper lighting equipment with useful wavelengths is of utmost

importance. In other words, DO is dependent on the temperature

as well as the duration of the light/dark cycles. One important

investigation to show this relationship was the one carried out by

Gouveia et al. (2014) wherein experiments were conducted using two

light intensities 26 μE/m2 and 96 μE/m2. An increase in algal growth

rate with increased oxygen concentration resulting in enhanced

power generation at higher light intensity was observed in this

investigation (Gouveia et al., 2014).
8 Scaled-up studies on
algae-assisted MFCs

The employment of microalgae in the cathodic chamber of MFC is

comparatively a new technology, therefore, there are thus far not so

many large-scale studies involving AMFCs. However, there are

numerous reports for MFC applications on larger scale for wastewater

treatment and bioelectricity generation. Scaled-up implementation of

MFCs can be done either by increasing the size of a single reactor or

stacking several miniature reactors. However, miniaturization does not

increase internal resistance much, hence this strategy can provide

uncompromised power output. In a recent study, a low-cost liter scale

AMFC was constructed using inexpensive materials such as rock

phosphate (RP) blended clayware as anodic and low-density

polythene bag as cathodic chamber. This study was carried out under

natural sunlight in outdoor conditions without controlling temperature

and pH. The slow release of P from RP resulted in enhanced algal

growth of 4.6 g/l along with a power density of 1.2 W/m3. This

inexpensive AMFC assembly costs only 11.25 USD, implying the

possibility of large-scale application (Khandelwal et al., 2020). In an

another study, multiple anodes were connected in series with capacitors

and this stacked assembly was operated in an algal raceway pond (16 L).

The highest voltage and power output obtained from this study was

1.4 V and 2.34 W/m3, respectively (Yang et al., 2019).

Recently, sediment microbial fuel cells (SMFCs) have also emerged

as a novel technology to treat sedimental wastes. Sharma et al. (2021),

compared two SMFCs, having plant and microalgae in the cathode

chamber. The algae-based SMFC performed better in terms of COD,

phosphate and nitrate removal and the algae biomass productivity of

0.031 Kg/m3/d was attained (Sharma et al., 2021). Similarly, in another

study involving SMFC, a power density of 5.17 W/m3 was obtained

using Chlorella vulgaris at the cathode (Song et al., 2020).

In addition to this, most of the AMFC studies have been carried

out in batch mode, whereas to bring the technology from lab to the
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real world the process should be either in continuous or semi-

continuous mode (Kannan and Donnellan, 2021). Nguyen and Min

(2020) treated leachate wastewater in continuous mode with a

hydraulic retention time of 20 h. The effluent from anodic

compartment was recycled to the cathodic chamber for the growth

of algae, ensuring maximum removal of COD and reutilization of

nutrients (Nguyen and Min, 2020).
9 Future outlook

This review summarizes the potential of third generation biofuels

and their integration with BESs. Several studies have shown the

possible applications of AMFCs at commercial scale. Researchers

have explored few macroalgae spp. in AMFCs and concluded that

employment of macroalgae in AMFCs can be more beneficial than

that of microalgae in terms of waste treatment and algal biomass

harvesting. Further research is required to assess the full potential of

AFMCs. In addition, approaches to increase the efficiency by selecting

the correct microbial consortia/microalgae, required for wastewater

treatment, biofuel, biomass and bioelectricity generation are of

paramount importance.

Considerable research has also been carried out on genetical

modification of microalgae to magnify their cellular potential.

These genetic engineering strategies along with omics would extend

the existing knowledge of metabolic pathways. However, studies on

employment of genetically modified algae in AMFCs are very limited

and need further investigation.

The better understanding of the electron transfer mechanisms

between electrode and microbes can further aid in selecting suitable

strains and electrode materials to boost the power output.

Additionally, the selection of better membranes and electrodes

which are easily scalable at affordable cost needs further research.

Also, novel engineering solutions for reactor design to promote algal

growth and boost power output along with easy harvesting of algal

biomass, are required. Furthermore, integration of AMFCs with

different technologies such as anaerobic digestion (AD) can add

more value to the overall operation and increase process efficiency,

nutrient uptake and waste removal. For example, a typical AD process

treating food waste can generate biomethane and the AD effluent can

be utilized in AMFCs for both bacteria and algae in the anodic and
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cathodic chamber, respectively. The overall output from this coupled

process such as biomethane, bioelectricity, waste treatment and algal

biomass can be developed as a biorefinery.
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