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of pollinating bee species can
be highly improved by Deep
Learning models accompanied
by pre-training and strong
data augmentation
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Introduction: Bees capable of performing floral sonication (or buzz-pollination)

are among the most effective pollinators of blueberries. However, the quality of

pollination provided varies greatly among species visiting the flowers.

Consequently, the correct identification of flower visitors becomes

indispensable to distinguishing the most efficient pollinators of blueberry.

However, taxonomic identification normally depends on microscopic

characteristics and the active participation of experts in the decision-making

process. Moreover, the many species of bees (20,507 worldwide) and other

insects are a challenge for a decreasing number of insect taxonomists. To

overcome the limitations of traditional taxonomy, automatic classification

systems of insects based on Machine-Learning (ML) have been raised for

detecting and distinguishing a wide variety of bioacoustic signals, including

bee buzzing sounds. Despite that, classical ML algorithms fed by spectrogram-

type data only reached marginal performance for bee ID recognition. On the

other hand, emerging systems fromDeep Learning (DL), especially Convolutional

Neural Networks (CNNs), have provided a substantial boost to classification

performance in other audio domains, but have yet to be tested for acoustic bee

species recognition tasks. Therefore, we aimed to automatically identify

blueberry pollinating bee species based on characteristics of their buzzing

sounds using DL algorithms.

Methods: We designed CNN models combined with Log Mel-Spectrogram

representations and strong data augmentation and compared their

performance at recognizing blueberry pollinating bee species with the current

state-of-the-art models for automatic recognition of bee species.

Results and Discussion: We found that CNN models performed better at

assigning bee buzzing sounds to their respective taxa than expected by

chance. However, CNN models were highly dependent on acoustic data pre-
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training and data augmentation to outperform classical ML classifiers in

recognizing bee buzzing sounds. Under these conditions, the CNN models

could lead to automating the taxonomic recognition of flower-visiting bees of

blueberry crops. However, there is still room to improve the performance of CNN

models by focusing on recording samples for poorly represented bee species.

Automatic acoustic recognition associated with the degree of efficiency of a bee

species to pollinate a particular crop would result in a comprehensive and

powerful tool for recognizing those that best pollinate and increase fruit yields.
KEYWORDS

buzz-pollinated crops, ecosystem services, crop pollination, machine-learning,
blueberry crops
1 Introduction

Highbush blueberry (Vaccinium corymbosum L.: Ericaceae)

requires insect-mediated pollination to enhance fruit quality

(Brewer and Dobson, 1969; Benjamin and Winfree, 2014). The

flow of pollen among flowers promoted by biotic vectors increases

fruit set and berry size (Dogterom et al., 2000; Nicholson and

Ricketts, 2019). However, the specialized morphology of blueberry

flowers, characterized by the presence of poricidal anthers and

narrow/bell-shaped corollas, limits pollen access to certain floral

visitors (Buchmann, 1983; De Luca et al., 2013; Corbet and Huang,

2014; Russell et al., 2017; Cooley and Vallejo-Marıń, 2021). To

extract pollen efficiently, a floral visitor needs to vibrate a blueberry

flower such that the vibrations are transmitted to the pollen within

the anthers, stimulating it to leave via small openings. The

vibrations produce a particular audible sound that gives the name

to this phenomenon: buzz-pollination or sonication (Buchmann,

1983). Probably because of this, bees that perform floral sonication

are among the most effective pollinators of blueberries (Cane et al.,

1985; Javorek et al., 2002; Nicholson and Ricketts, 2019). In fact,

only a subset of all visitors can actually pollinate (Schemske and

Horvitz, 1984; Kandori, 2002). The quality of the pollination

provided varies greatly and is partially related to the taxonomic

identity of the flower visitors visitors (Nunes-Silva et al., 2013;

Santos et al., 2014; Silva-Neto et al., 2017; Vinıćius-Silva et al., 2017;

Toni et al., 2020; Cooley and Vallejo-Marıń, 2021; Cortés-rivas

et al., 2022). Consequently, the taxonomic identification of species

becomes indispensable to distinguishing the most efficient

pollinators of blueberry.

Nevertheless, traditional taxonomic identification of bees and

other insects normally depends on microscopic morphological

characteristics or specialized molecular biology methods, which

require time, high and costly technology, and the active

participation of experts in the decision-making process (Jinbo

et al., 2011; Gradisěk et al., 2017). Moreover, the huge number of

bee species and other insects is a challenge for taxonomists. It is

estimated that there are about 20, 000 beespecies worldwide (Orr

et al., 2020) 58% of which, about 11, 600 species of 74 genera, are

able to buzz-pollinate (Cardinal et al., 2018). Due to the limitations
02
of traditional taxonomy, the development and implementation of

new technologies that also fulfill taxonomic requirements are

needed (Gaston and O’Neill, 2004; Lewis and Basset, 2007).

To meet this need, the automatic classification of plants and

animals based on images and sounds has been developed and tested

over the last two decades (Schroder, 2002; Valliammal and

Geethalakshmi, 2011; Santana et al., 2014; Yanikoglu et al., 2014),

and is proving to be more practical than traditional investigations.

For instance, the classification of bee species from wing images can

achieve an accuracy higher than 98%, which is similar to or even

higher than the classifications by human experts (Rebelo et al.,

2021). Besides presenting a high accuracy, the automatic insect

classification can be easily measured, tested, and replicated,

relatively inexpensive and time and cost-efficient when compared

to traditional manual classification (Gaston and O’Neill, 2004;

Lorenz et al., 2017; Martineau et al., 2017; Rebelo et al., 2021).

Nonetheless, classification based on images is difficult due to

complications derived from object size and orientation, image

quality, and light and/or background conditions (Gaston and

O’Neill, 2004). On the other hand, sound is relatively easy to

acquire and can, in principle, be picked up remotely and

continuously (Gradisěk et al., 2017). The automatic recognition of

species based on Machine-Learning (ML), a widespread model of

Artificial Intelligence, offers an automated approach for such

classification tasks, and is a powerful tool for detecting and

distinguishing vocal signals [e.g., (Acevedo et al., 2009; Briggs

et al., 2013; Hershey et al., 2017; Stowell et al., 2019; Ribeiro et al.,

2021)]. Recognizers can be used to process recordings of any

acoustic wildlife species, including those of bee buzzing sounds

(Gradisěk et al., 2017; Nolasco et al., 2018; Terenzi et al., 2019;

Cejrowski et al., 2020; Ribeiro et al., 2021). Despite the origin/

purpose of buzzing sounds being completely different from that of

animal vocal signals, the characteristics of buzzing sounds

(frequency, amplitude, duration) are widely variable and may also

differ between species and groups of bees (De Luca and Vallejo-

Marin, 2013; Rosi-Denadai et al., 2018; Rebelo et al., 2021). Four

studies addressed the problem of automatic bee species

classification, dealing with twelve, two, four and fifteen classes,

respectively (Gradisěk et al., 2017; Arruda et al., 2018; Kawakita and
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Ichikawa, 2019; Ribeiro et al., 2021). These studies indicated that

ML algorithms can generate classifiers that are able to quickly

recognize bee species based solely on their buzzing sounds.

However, small data sets with few bee species and/or manual

audio segmentation and noise attenuation were also reported

interfering with ML performance and practical applicability.

Moreover, classical ML algorithms (e.g., Random Forest, Support

Vector Machines, and Logistic Regression) fed by spectrogram-type

data, such as the Mel-frequency cepstral coefficient (MFCC), a

manually-designed summary of spectral information, represent the

only method used for sound feature extraction. MFCCs can often

lead to worse performance than the raw Mel spectral data from

which they were derived (Stowell and Plumbley, 2014; Valletta et al.,

2017). Further, the popularization of Deep Learning (DL), an

emerging field of ML, has been outperforming classical ML,

leading to significant advances in a wide range of bioacoustic

tasks, including the recognition of animal vocalizations (Xie et al.,

2019; Zor et al., 2019; Nanni et al., 2020).

Although buzzing sounds differ substantially from vocal signals

both in terms of origin and functionality, automatic sound-based

recognition with DL models, using multi-layered artificial neural

networks, in particular convolutional neural networks (CNNs),

should be especially relevant for recognizing blueberry pollinators.

This may be possible because the vibrations required to efficiently

extract pollen from flowers produce audible characteristic buzzing

sounds that present differences among bee species (Burkart et al.,

2011; Gradisěk et al., 2017; Kawakita and Ichikawa, 2019; Ribeiro

et al., 2021). Thus, we aimed to apply DL models to automatically

identify blueberry-pollinating bees based on the characteristics of

their buzzing sounds. However, neural networks, as well as

traditional ML algorithms, present some limitations. Both models

usually require large amounts of training data to capture the natural

variability in the data to be modeled. Several data augmentation

methods allow simulating overlap between multiple sound events

and the resulting occlusion effects in the spectrogram. Mixup data

augmentation creates new training instances by mixing pairs of

features and their corresponding targets based on a given mixing

ratio (Abeßer, 2020). Consequently, data augmentation can
Frontiers in Plant Science 03
significantly enhance network performance. Thus, we also

compared the performance of CNNs models combined with

audio data augmentation and Mel-spectrogram with ML models

at recognizing bee buzzing sounds. Due to the high efficiency and

accuracy demonstrated by CNNs models in automatic sound

classification in other audio domains, we expected that such

models using Log Mel-Spectrogram representations and

substantial data augmentation would obtain greater performance

at recognizing bee species compared to classifications based on

classic ML classifiers.
2 Materials and methods

2.1 Buzzing sound acquisition

The acoustic recording of bee buzzes was conducted in five

highbush blueberry orchards (V. corymbosum) located in southern

Chile (Maule and Los Rıós Regions) between the months of

September and November in 2020 and 2021. The total area of

cultivated blueberry, both organic and conventional farming, per

orchard ranged 3:2 − 141 hectares. The most common growing

cultivars were Legacy, Brigitta, Duke, and Elliot. Four of the five

orchards were supplemented with colonies of managed exotic bees

of Bombus terrestris and/or Apis mellifera (Table 1).

Visual searches were made for foraging bees beginning at 10 :

00h and ending at 18 : 30h as bee activity declined. To record

buzzing sounds, 3 − 4 researchers constantly walked through the

rows of blueberries hand-holding a recorder while searching for

flower-visiting-bees. When a bee was observed approaching a

flower, it was followed, holding a digital acoustic recorder (Zoom

H4n Pro Handy Recorder) such that it was within 1 − 5 cm of the

bee when it landed on the flower. The microphone head was

pointed at the dorsal surface of the bee thorax. All bee individuals

that could not be immediately identified were captured just after

leaving the flower with an entomological net and placed in glass

vials with ethyl acetate for taxonomic identification in the

laboratory. As a consequence of that, we can assume the number
TABLE 1 Information for the studied highbush blueberry orchards where bee buzzing sounds were acquired between the months of September and
November in 2020 and 2021.

Orchard Locality Latitude Longitude Farming Area Cultivars Managed bees

Agrıćola Aguas Negras Paillaco 4∘2055:6200S 72∘45015:2000W Conventional 28 ha Brigitta, Legacy, Elliot, Draper,
Duke

Bombus terrestris,Apis
mellifera

Shine Liucura Paillaco 40∘2049:8900S 72∘46049:2100W Organic 8:1ha Brigitta, Bluecrop, Coville, Elliot,
Legacy

Bombus terrestris

Agroberries Asque Mariquina 39∘33059:400S 72∘59028:400W Organic 141ha Brigitta, Duke, Elliot, Legacy,
Topshelf

Apis mellifera

Agroberries Cun Cun Mariquina 39∘33044:000S 73∘02033:800W Conventional 114
ha

Brigitta, Duke, Elliot, Legacy,
Topshelf

Apis mellifera

Agrıćola Campos
Álvarez

Linares 35∘55045:800S 71∘29037:900W Conventional 3:2ha Duke, Legacy none
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of audio samples corresponds to the number of bee individuals. All

sampled bee individuals were taxonomically identified at the lowest

possible level by experts.
2.2 Acoustic pre-processing

We performed some data pre-processing before the training

step in order to improve the performance of the ML models. The

original sound recordings (.wav files) were manually classified and

segments with bee buzzing sounds were selected. We categorized as

sonication all the segments of buzzing sounds produced by bees

vibrating blueberry flowers, and as flight the sounds produced by

the flying displacement of the bees between flowers. Flight sounds

and sonication buzzing could be easily distinguished on the

recordings afterward by an experienced user since they present

pronounced differences in acoustic characteristics; Ribeiro et al.

(2021) showed that both sonication and flight sounds contribute

equally to the training of a bee species classifier. Thus, we used both

sound types together in all trials, since flight and sonication together

sum a higher number of audio samples and include bee species not

capable of sonicating. Recording segments with no bee sounds were

not selected but were kept for subsequent steps. The set of

recordings contained 518 audio samples (corresponding to 518

bees individuals) lasting on average 2 seconds, with 1, 867 flight

segments and 1, 728 floral sonication segments (see Table 2). We

performed these analyses using Raven Lite software (Cornell

Laboratory of Ornithology, Ithaca, New York).
Frontiers in Plant Science 04
2.3 Audio feature extraction

Audio feature extraction techniques transform raw audio data

generated by acoustic pre-processing into features that explicitly

represent properties of the data that may be relevant for ML

classification. We compared two audio feature extraction

techniques separately, Log Mel-Spectrogram and MFCC. The Mel

Spectrogram is a way to process audio such that various DL and ML

algorithms can learn from the recorded sounds. The Mel-scale is a

logarithmic transformation of the signal frequency. The Mel-

Spectrogram demonstrates a compressed form of sound in the

time-frequency domain. This nonlinear transformation constitutes

the outcome of the Short Time Fourier Transform (STFT) after the

application of Mel-filters (a bank of bandpass filters with

bandwidths modeled after the Mel-scale). The conversion of the

frequency in hertz (f ) to the Mel-scale is illustrated in Eq. 1.

mel = 2:595log
10
(1 +

f
700

) (1)
2.3.1 Data splitting
We partitioned the data set of audio samples into portions for

cross-validation purposes. The data set was split into two equal-

sized sets for training and testing in each replication, but unlike the

work shown in (Alpaydm, 1999), the training set was separated into

two pieces, with 30% used for training and 20% used for validation.

Each replication splits the data as follows: 40% for training, 10% for

validation and 50% for testing, for a total of 10 runs. Because each
TABLE 2 Species richness and corresponding recording samples of flower-visiting bees of highbush blueberry cultivars in southern Chile in 2020 and 2021.

Family Species N recordings Flight segments Sonication segments

1 Apidae Apis mellifera 29 94 0

2 Apidae Bombus dahlbomii 77 327 77

3 Apidae Bombus ruderatus 29 150 48

4 Apidae Bombus terrestris 88 387 468

5 Colletidae Cadeguala occidentalis 103 371 696

6 Colletidae Cadeguala albopilosa 5 12 32

7 Halictidae Callistochlora chloris 8 29 13

8 Apidae Centris cineraria 20 179 159

9 Colletidae Colletes cyanescens 34 78 40

10 Colletidae Colletes nigritulus 32 60 23

11 Halictidae Corynura sp. 19 28 35

12 Colletidae Diphaglossa gayi 15 50 37

13 Halictidae Lasioglossum sp. 13 13 66

14 Apidae Manuelia postica 12 15 5

15 Halictidae Ruizantheda mutabilis 11 13 4

16 Halictidae Ruizantheda proxima 23 61 25
The “N recordings” denotes the number of audio recordings sampled per bee species; the right columns present the total number of flight and sonication segments in the audio samples.
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replication was created using a distinct seed, the distribution of data

among them varies. We applied the Combined 5� 2 Cross-

validated F-Test (Alpaydm, 1999) a more reliable substitute for

the 5� 2cv t-test (Dietterich, 1998) for comparing the performance

of supervised classification learning algorithms. The combined 5�
2cv F-test reduces the drawbacks of the cross-validated t-test and

has higher power and requires five replications of two-fold

cross-validation.
2.4 Machine-learning classification

In order to relate the performance of different ML classification

techniques, we evaluated our bee buzzing sounds dataset using

classical ML and DL classifiers.
1 Acronym for Floating Operations per Second.
2.4.1 Data augmentation
By definition, CNNs benefit from large training data sets, since

this increases their capability of recognizing the acoustical patterns

of bees. On the other hand, small training sets tend to cause

overfitting bias. However, our data set is highly unbalanced,

implying that some classes (bee species) present a very low

number of audio samples. To overcome overfitting, we used data

augmentation for the data set destined to CNN classifications. Data

augmentation tends to improve the performance of ML algorithms

by generating additional data for the training set of the model

(Chlap et al., 2021). We then applied three data augmentation

techniques to augment data during the training set of CNNs: mixup

(Zhang et al., 2017) SpecAugment (Park et al., 2019a) and randomly

truncated technique.

The mixup is a simple method to generate training data (Zhang

et al., 2017) by mixing audio samples of two different bee species

(both the feature space and the labels). If x1 and x2 are two different

input samples (spectrograms in our case), and y1, y2 their respective

one-hot encoded labels, then the mixed sample and target are

obtained by a simple convex combination:

xmix = lx1 + (1 − l)x2

ymix = ly1 + (1 − l)y2

where l is a scalar sampled from a symmetric Beta distribution

at each mini-batch generation:

l ≃ Beta(a ,a)

where a is a real-valued hyperparameter for tune.

The SpecAugment (Park et al., 2019b) is an occlusion

augmentation technique, applied to Log Mel-Spectrograms.

SpecAugment is applied at the mini-batch level, meaning that the

same random strides are masked in all the samples of a given mini-

batch. Frequency masking is applied such that f consecutive Mel

frequency bins ½f0, f0 + f � are masked, where f is chosen from a

uniform distribution from 0 to a frequency mask parameter f 0, and

f0 is chosen from ½0, F − f �, where F is the number of Mel frequency

bins (Park et al., 2019a). SpecAugment was originally proposed in

automatic speech recognition, but it has been rapidly used with
Frontiers in Plant Science 05
success for other audio-related tasks, such as audio tagging (Park

et al., 2019a).

Lastly, randomly truncated (RT) is a technique that consists of

samplingN seconds of an audio sampling considering random parts

of segments that contain buzzing sounds, instead of taking a fixed

segment in each forward pass of the DL model.

2.4.2 Classical machine-learning algorithms
For the classical ML approach, we chose some of the most

commonly used and most successful ML classifiers at recognizing

the taxonomic identity of bees by their buzzing sounds (Ribeiro

et al., 2021): Logistic Regression, Support Vector Machines,

Random Forest, Decision Trees and a classifier ensemble.

Ensemble learning is a general meta approach to ML that seeks

better predictive performance by combining the predictions of

multiple models (for more details see Sagi and Rokach (2018)).

Ensemble methods train multiple ML classifiers to solve the same

problem and elect the class by taking a (weighted) vote of their

predictions (Kuncheva, 2004).

2.4.3 Deep Learning algorithms
Unlike classical ML, Deep Learning (DL), especially CNNs,

allows computational models that are composed of several

processing layers to learn representations of data with multiple

levels of abstraction. We chose two CNNs classifiers that have

reached high performance in other audio domains: EfficientNet V2

and Pre-trained Audio Neural Networks (PANNs).

EfficientNet is a family of models that are optimized for FLOPs1

and parameter efficiency (Tan and Le, 2019) and has shown good

performance in other audio domains (Gong et al., 2021). It leverages

neural architecture search to search for the baseline, named

EfficientNet-B0, which is scaled up with a compound scaling

strategy to obtain the family of models B1-B7. The EfficientNet

V2 family is an improvement and outperforms previous models in

both training speed and parameter efficiency. In this work, we used

version Small of the model EfficientNet V2 family, without pre-

training. The model was pre-trained with the ImageNet dataset,

instead (Deng et al., 2009). ImageNet pre-trained models have been

successfully used to boost the performance of CNNs models in

audio classification tasks in recent years (Gwardys and Grzywczak,

2014; Müller et al., 2020; Palanisamy et al., 2020; Zhong et al., 2020;

Gong et al., 2021).

PANNs is a CNN model trained on Log Mel-Spectrogram

representations of AudioSet recordings (Gemmeke et al., 2017;

Kong et al., 2020). AudioSet is a large-scale dataset of manually-

annotated audio events that endeavors to bridge the gap in data

availability between image and audio research. Using a carefully

structured hierarchical ontology of 632 audio classes guided by the

literature and manual curation, data from human labelers were

collected to probe the presence of specific audio classes in 10 second

segments of YouTube videos. PANNs architecture can be

transferred to a wide range of audio pattern recognition tasks,
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being useful in scenarios like we have, where the total amount of

data available for training is scarce.
2.5 Evaluation metrics

We used the following metrics to evaluate the performance of

classifications generated by classifiers: Accuracy (Acc), Macro-

Precision (MacPrec), Macro-Recall (MacRec) and Macro-F1

(MacF1). These metrics are determined by the classification

output that comes from the confusion matrix. In this matrix,

diagonal elements show the object similar to the actual label

whereas off diagonals tell the misclassification information of

the model.

Let i be a class from the set of classes C. Let T be test set and let c

be a classifier, such that c(t) = l, where t is an element of the test set T
and l ∈ C is a label corresponding to a class in C assigned to t by c. Let
g(t) be the ground truth class label of t. In regard to the c classifier,

we define:
Fron
• True Positives of class i, denoted by TPi, as the number of

elements in T correctly labeled with class i by c, i.e., TPi =

jft ∈ T j   c(t) = g(t) = igj.
• False Positives of class i, denoted by FPi, as the number of

elements in T that were wrongly classified by c as belonging

to class i. Formally, FPi =  jft ∈ T j   c(t) = i∧ g(t) ≠ igj.
• False Negatives of class i, denoted by FNi, as the number of

elements in T belonging to class i but classified by c with a label

different from i, that is, FNi = jft ∈ T j   c(t) ≠ i∧ g(t) = igj.
The above numbers are used to define traditional effectiveness

measures of classifiers. These measures are: Precision, Recall and

F1-score [for more detail see Ribeiro et al. (2021)].

We based performance mostly on the F1-score since classes

were unbalanced and Accuracy tends to underestimate classes with

a smaller number of samples in relation to those with a larger

number (Steiniger et al., 2020). The F1 measure is a combination of

the precision and recall measures and is defined by Eq. 2.

F1(c, i) =
2p(c, i)r(c, i)
p(c, i) + r(c, i)

(2)

When comparing the performance of classifiers generated from

distinct learning methods, it is common to use a global measure. A

global measure aims at resuming the performance of the classifier

over all classes in the test set. In this work we use the following

global measures to compare the results of the classifiers we used:

Accuracy (Acc) (which is equivalent to Micro-F1), Macro-Precision

(MacPrec), Macro-Recall (MacRec) and Macro-F1 (MacF1) [for

more detail see Ribeiro et al. (2021)]. The Macro measures are

basically the average of the corresponding metric.

MacF1(c) = o
Cj j
i=1F1(c, i)

Cj j (3)
tiers in Plant Science 06
2.6 Baselines establishment

The majority baseline was used to compare the performance

metrics of CNNs recognizers. This baseline consists in assigning all

audio samples to the majority class, that is, the bee species with

more audio samples: Cadeguala occidentalis and Bombus terestris.

Additionally, we assigned the best ML algorithm (based on the

highest Macro F1-score) as an ML baseline to compare its

performance with those of CNNs. We compared the performance

metrics of each CNN classifier with those from the two baselines

(majority baseline and best ML classifier) using the combined 5� 2

cross-validated F-test (detailed in “Data splitting” section). We

assumed a significance level of a = 0:05. If the p-value was

smaller than a , we rejected the null hypothesis and accepted that

there is a significant difference between a pair of models.
3 Results

3.1 Characteristics of buzzing sounds

During 990 hours of sampling effort distributed among 554

non-consecutive days of 2020 and 2021, we recorded 518 audio

samples of 16 bee species visiting flowers of highbush blueberry

cultivars in five orchards of southern Chile (see Tables 1, 2); most,

13 species, were native Chilean bees and three were exotics. In the

set of 518 audio samples, we identified 3, 595 buzzing-sound

segments, 1, 728 were of sonication and 1, 867 of flight (see

Table 2). The distribution of samples per bee species was highly

unbalanced and varied from five (Cadeguala albopilosa to 103

(Cadeguala occidentalis). The length of recordings ranged from 5

seconds to over one minute.
3.2 Performance of classical machine
learning algorithms

The performances (based on macro-F1 score) of the classical ML

algorithms at recognizing flower-visiting bees of blueberry crops were

low, ranging between 17:24 and 34:97%. However, the performances

of the classical ML classifiers at recognizing bee species visiting

blueberry crops depended on the algorithm employed. Support-

Vector Machines (SVM) reached the highest Macro-F1 among the

classical ML classifiers (Table 3), correctly predicting most audio

samples of the majority classes (above 50%): 61:3% of Apis mellifera,

67:3% of Bombus dahlbomii, 84:6% of Cadeguala occidentalis and

69:8% of Bombus terrestris (see Figure 1). However, the SVM failed

to recognize most audio samples of minority classes (below 50%):

Manuelia postica 28:6%, Ruizantheda mutabilis 19:6%, and

Ruizantheda proxima 34:2% (see Figure 1).

On the other hand, the audio feature extraction technique had

little effect on the performances of ML algorithms, ranging from

18:88 to 34:97% with MFCC and from 17:24 to 33:11% with Log
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Mel-Spectrogram. The ML algorithms presented a slightly higher

performance (based on Macro-F1 score) when fed by MFCC than

when fed by Log Mel-Spectrogram (Table 3).
3.3 Performance of the Deep
Learning classifiers

Both of the tested CNNs (EfficientNet V2 Small and PANNs)

reached higher performance in recognizing buzzing bee sounds

than the majority baseline (assigning all the audio samples to the

majority class), regardless of whether they were tested

unaccompanied or combined with pre-training and/or audio data

augmentation or of sampling technique (see Table 4). However,
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without data pre-processing (audio data augmentation, sampling

technique, or pre-training) the CNNs did not present an evident

higher performance (based on Macro-F1 score; p ≤ 0:05, combined

5� 2cv F-test) in relation to the best classical ML classifier (SVM)

(Figure 2). EfficientNet V2 Small overperformed SVM only when it

was combined with some audio data augmentation and/or pre-

training (Figure 2). However, PANNs without pre-training was

capable of overperforming SVM, though data pre-processing also

boosted its Macro-F1 score (see Table 4; Figure 2).

Accordingly, pre-training increased the performance of CNNs at

acoustic recognition of bee taxa (Table 4) by reducing the variability of

F1-scores reached per model run (see Figure 2). The average

performances of EfficientNet V2 Small and PANNs models were

higher with pre-training (see Table 4): The Macro-F1 score of

EfficientNet V2 Small ranged from 14:74% ( ± 4:14) to 47:55% ( ±

9:27) without pre-training and from 22:70% ( ± 6:04) to 58:04% ( ±

2:47) with pre-training; for PANNs they ranged from 35:95% ( ± 3:40)

to 55:00% ( ± 3:81) without pre-training and from 35:25% ( ± 4:14) to

56:96% ( ± 2:30) with pre-training.

Despite the better recognition of audio samples of the majority

classes by PANNs, EfficientNet V2 Small was better at hitting the

samples of minority classes. Also, EfficientNet V2 Small with Mixup

RT with pre-training correctly predicted the most audio samples of

the majority classes (above 50%): 61:3% of Apis mellifera, 67:3% of

Bombus dahlbomii, 84:6% of Cadeguala occidentalis and 69:8% of

Bombus terrestris (see Figure 3). On the other hand, EfficientNetV2

Small failed to recognize most audio samples of lower represented

classes (below 50%):Manuelia postica 19%, Ruizantheda mutabilis

14:1%, Ruizantheda proxima 39:9%(see Figure 3).

Regardless of the differences above, the overall performance for

acoustic recognition of bee species did not vary significantly among

the CNNs architectures employed (EfficientNet V2 Small and

PANNs). Despite that, EfficientNet V2 Small combined with

Mixup, audio Randomly Truncated (RT), and pre-training

overreached PANNs and achieved the highest Macro F1-score of

58:04% ( ± 2:47) among all CNNs models and baselines tested

(see Table 4).
4 Discussion

The studied CNNs can contribute towards automation of

blueberry pollinating bee species recognition. These popular DL

models reached better performances at assigning bee buzzing

sounds to their respective taxa than expected by chance.

However, CNNs were highly dependent on acoustic data pre-

training and data augmentation to outperform classical ML

classifiers at recognizing bee buzzing sounds.
4.1 Sound feature extraction type did not
influence classical ML performance

Although the Mel-frequency cepstral coefficient (MFCC) can

often lead to worse performance than the raw Mel spectral data

(Stowell and Plumbley, 2014; Valletta et al., 2017), our results
FIGURE 1

Confusion matrix showing the log-transformed number of audio
segments correctly assigned to respective bee identity (diagonal
elements) versus those erroneously assigned (non-diagonal
elements), by the ML classifiers. SVM fed by MFCC achieved the best
performance among the classical ML algorithms. Cell color
represents the corresponding number (log-transformed) of audio
segments predicted in a given cell, ranging from gray (zero
predicted audio segments) to dark blue.
TABLE 3 Average predictive performance of different classical
Machine-Learning algorithms combined with different audio feature
extraction techniques (MFCC and Log Mel-Spectrogram) to recognize
bee species based on buzzing sounds recorded during visits to
flowers of blueberry cultivars in southern Chile.

Flight + Sonication

Algorithms MacF1 (%) MacF1 (%)

MFCC Log Mel-Spectrogram

LR 32.52 ( ± 1.86)a 28.60 ( ± 1.07)a,b

SVM 34.97 ( ± 1.52)a 33.11 ( ± 1.65)a

RF 24.79 ( ± 0.46)b 23.66 ( ± 1.73)b,c

DTree 18.88 ( ± 2.88)c,d 17.24 ( ± 2.02)c,d

Ensemble 26.43( ± 0.73)c 21.37 ( ± 0.66)c

Mean ( ± SD) 27.51 ( ± 5.72) 24.79 ( ± 5.54)
The performances of the classical ML algorithms were measured by Macro-F1 score (MacF1)
(± standard deviation). Bold numbers represent the best results per evaluation metric within
audio feature extraction technique. Different superscript letters denote significant differences
in F1-score among algorithms (p ≤ 0:05, 5� 2cv Combined F test).
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indicated no difference between employing MFCC and Log Mel-

Spectrogram on the performance of classical ML algorithms at

assigning bee buzzing sounds to the species to which they belong.

MFCC is a more time-consuming method than Log Mel-

Spectrogram since MFCC is a manually-designed summary of

spectral information whereas Log Mel-Spectrogram involves a

much simpler representation of a raw spectrogram. Despite that,

MFCC has some advantages, including providing a substantially

dimension-reduced summary of spectral data, which is positive for

use in classical ML systems since they cannot cope with high-

dimensional data (Stowell and Plumbley, 2014). However,

dimension reduction necessarily implies a loss of information that

could be made available for later processing and the consequent risk

of discarding information that a classifier could have used. Despite

MFCC being originally designed to represent human speech

[24,40], which differs perceptually and from the production of bee

buzzing, it can be applied to the acoustic bee recognition task with

classical ML algorithms. However, our results indicated that the
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Mel-spectrogram, not only MFCC as previously speech (Fayek,

2016; Logan, 2000), can be a suitable sound feature extraction

method for the recognition of buzzing bee species.
4.2 CNNs were highly dependent on pre-
training and data augmentation to
outperform classical ML classifiers at
recognizing bees’ buzzing sounds

To our knowledge, this is the first application of CNNs to the

task of acoustical classification of bee species. Despite Support-

Vector Machine (SVM) being the best classical ML algorithm for

bee sound recognition (Ribeiro et al., 2021), our results indicated

that convolutional neural networks (CNNs) can outperform them.

In fact, SVM and other classical classifiers are designed to model

small variations which result in the lack of time and frequency

invariance (Van Noord and Postma, 2017) which is often
TABLE 4 Average predictive performance of Deep Learning models combined with an audio feature extraction technique (Log Mel-Spectrogram) to
recognize bee species based on buzzing sounds recorded during visits to flowers of blueberry cultivars in southern Chile.

Methods MacF1 (%) MacF1 (%)

Without Pre-training With Pre-training

EfficientNet V2 Small 25.08 ( ± 5.25) 22.70 ( ± 6.04)

EfficientNet V2 Small + Mixup 31.91 ( ± 5.32) 43.39 ( ± 3.03) **

EfficientNet V2 Small + SpecAugment 20.54 ( ± 4.61) 31.33 ( ± 2.80)

EfficientNet V2 Small + RT 37.12 ( ± 5.62) 47.39 ( ± 4.80) **

EfficientNet V2 Small + Mixup + SpecAugment 14.74 ( ± 4.14) 39.32 ( ± 1.74) **

EfficientNet V2 Small + Mixup + RT 47.55 ( ± 9.27) 58.04 ( ± 2.47)**

EfficientNet V2 Small + SpecAugment + RT 20.69 ( ± 4.88) 41.59 ( ± 4.76) **

EfficientNet V2 Small + Mixup + SpecAugment + RT 16.63 ( ± 4.96) 48.48 ( ± 2.11) **

Mean ( ± SD) 26.78 ( ± 10.55) 39.19 ( ± 7.98)

PANNs 42.66 ( ± 6.20) ** 35.25 ( ± 4.14)

PANNs + Mixup 52.50 ( ± 2.36) ** 51.95 ( ± 1.64) **

PANNs + SpecAugment 52.95 ( ± 1.84) ** 44.85 ( ± 5.63)

PANNs + RT 46.58 ( ± 4.68) ** 42.55 ( ± 5.47)

PANNs + Mixup + SpecAugment 43.11 ( ± 3.62) ** 56.96 ( ± 2.30)**

PANNs + Mixup + RT 50.07 ( ± 1.92)** 52.33 ( ± 2.71)**

PANNs + SpecAugment + RT 55.00 ( ± 3.81)** 52.18 ( ± 3.58)**

PANNs + Mixup + SpecAugment + RT 35.95 ( ± 3.40) 53.33 ( ± 2.80)**

Mean ( ± SD) 47.35 ( ± 6.06) 48.67 ( ± 6.69)

Baselines

Methods MacF1 (%)

Majority Class 2.98 ( ± 0.00)

SVM 34.97 ( ± 1.52)
The performance of the CNNs algorithms was measured by average Macro-F1 score (MacF1) (mean ± standard deviation). Bold numbers represent the best results per evaluation metric within
buzz-sound. (**) denotes that the performance of the algorithm is higher than the baselines (based on MacF1 score; p ≤ 0:05, 5� 2cv Combined F test). RT, Randomly Truncated Technique;
PANNs, Pretrained Audio Neural Networks.
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insufficient to cover the high-dimensional audio data of bee buzzing

sounds. Therefore, CNNs become a primary choice in other

applications of DL, not only for bee sound recognition

recognition (Takahashi et al., 2016). In contrast to classical ML,

CNNs were designed to process high-dimensional data well, which

is the direct representation of raw audio data, like Log Mel-

Spectrogram (Stowell and Plumbley, 2014; LeCun et al., 2015).

However, our results did not indicate that CNNs models alone

overperformed classical ML, it only become evident when CNNs

were combined with Log Mel-spectrogram and data augmentation

techniques. In fact, CNNs can address the former limitations by

learning filters that are shifted in both time and frequency (Zhang

et al., 2015). However, it also generated very fast pre-training

overfitting, resulting in models excessively adapted to the training

set and with reduced capacity to transfer learning to validation and

testing sets (Chicco, 2017). To mitigate overfitting and improve the

generalization of models, we used the spectrogram augmentation

technique and cross-validation to counterbalance it by generating

additional pre-training audio samples and acoustic noise by

applying random time-frequency masks to Log Mel spectrograms.

Cross-validation is a well-known technique to deal with overfitting

and was implemented in all ML classifiers here. The trained model

does not overfit to a specific training subset, but rather is able to

learn from each data fold, in turn (Chicco, 2017). Yet, data

augmentation techniques can lead to a significant improvement

in the performance of DL classifiers, but not for classical ML. Deep

Learning models can take advantage of the iterative characteristic of

this type of optimization, by epochs, in which the same data set can

be represented in different ways for the classifiers. In practical

terms, it would be like the model being exposed to different data. On

the other hand, the augmented data for classical ML algorithms

would be static. Therefore, we suppose that CNNs models best
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overperformed ML in acoustic recognition of bee species when

using Mel-spectrogram information and Mixup data augmentation.

Even with this improvement, however, our results indicated that the

performance of CNNs is still unsatisfactory at recognizing buzzing

bees in relation to ML standards (maximum F1-score 58:04% ( ±

2:47)). Hence, the CNNs tested here would not be the ultimate

model and still have room for improvement, especially from novel

Neural Networks architectures based on attention like the

“transformers/perceivers” are likely to achieve higher performance

for the task of bee species identification (Elliott et al., 2021; Wolters

et al., 2021).

However, it is important to highlight that the two DL classifiers

tested here, employ the mixup data augmentation technique slightly

differently. The technique was used in the PANNsmodel as described

in the original work, directly on the log Mel spectrogram

representation. However, in the EfficientNet V2 Small model, the

mixup was applied to the waveform. Based on previous experiments,

we conclude that for this specific model, the application of mixup on

the waveform provides better overall results.
4.3 Imbalanced data bias and
noise corruption

In general, Machine-Learning can review large volumes of data and

discover specific trends and patterns that would not be apparent to

humans. To generate suitable classifications, ML models need massive

resources with a considerable amount of accuracy and relevancy.

However, our data set as well as other bioacoustic data sets are

usually imbalanced, and with background noise (Rodrigues, 2019).

Consequently, the imbalance was the main challenge to handle our

data set using ML models. In-field bee audio data collection and

acoustic pre-processing require domain knowledge and were

exhaustive and very time-consuming: we spent 990 hours of

fieldwork to record 518 audio samples, which corresponds to an

average of 1.9 hours to record one sound file. Moreover, audio data

collection was susceptible to bee species richness and abundance

differences, thus limiting the number of samples for rare species (see

also Ribeiro et al. (2021)). This not only impacts the applicability

domain of the implemented ML but also influences the utility of the

models for prospective use (Rodrigues, 2019). A data set is imbalanced

when one class is over-represented with respect to the others, causing

the model to return sub-optimal solutions due to bias in the majority

class (Chicco, 2017). As a result, these classifiers tend to ignore small

classes while concentrating on classifying the large ones accurately.

Here, we dealt with data imbalance by employing pre-training and data

augmentation (as discussed in the previous section) and measuring the

performance of the classifiers based on Macro-F1 score instead of

Accuracy. We employed macro-F1 since Accuracy underestimates

classes with a smaller number of samples in relation to the larger

ones. Macro-F1 score is considered a suited metric for an unbalanced

test set because it better describes performance by class and not by

sample number (Steiniger et al., 2020).

However, relating bee species performance with its respective

pollination efficiency (Cortés‐Rivas et al., 2023), we found that the

bees most efficient at pollinating were also the majority classes here
FIGURE 2

Violin plots representing the performance of the bests classical ML
(SVM) and DL (EfficientNet V2 Small and PANNs) models combined
with different pre-processing techniques (sound feature extraction,
pre-training, and/or data augmentation) at recognizing bee species
based on buzzing sounds recorded during visits to flowers of
blueberry cultivars in southern Chile. Classifier performance was
based on Macro-F1 score (MacF1); Each dot represents the F1 score
achieved by an independent model run (10 runs per model, 120
epochs). Note the effect of pre-training which increased the
performance of DL classifiers while reducing F1-score scattering.
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(e.g. B. terrestris, C. occidentalis, B. dahlbomii). In practice, this

reduces the imbalanced data bias since the majority and most hit

classes are also the most efficient pollinators. Thus, we suppose that

the ML algorithms are capable of recognizing well the most efficient

pollinators of highbush blueberry crops in Chile.

Besides imbalanced data bias, background noise corruption was

another frequent problem in our data set. However, we decided to input

the original audios without noise removal or attenuation. Since noise

corruption must be unavoidable in practical situations, audios without

noise removal/attenuation bring more realistic model projections. In

addition, by not removing noise from the input data, we also gain two

functionalities: (1) we getmore data for our deep neural network to train;

and (2) we can train our neural network on noisy data whichmeans that

it will generalize well on noisy test data as well.
4.4 Consequences of automating bee
recognition for blueberry fruit yields

Automating the taxonomic recognition of flower-visiting bees

would be especially relevant for blueberry fruit set and size, since the
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quality of the pollination provided is dependent, among other

factors, on the taxonomic identity of a flower visitor (Brewer and

Dobson, 1969; Dogterom et al., 2000; Benjamin and Winfree, 2014;

Nicholson and Ricketts, 2019). A parallel study focusing on

pollinator performance and covering most of the species analyzed

here revealed that only a subset of the flower-visiting bee species

achieved high performance at pollinate blueberry cultivars, while

others were poor pollinators or even considered flower resource

thieves (Cortés-Rivas et al., 2023). Therefore, automating acoustic

recognition of bee species, especially distinguishing pollinators from

nectar/pollen thieves, could result in a comprehensive and powerful

tool for agriculture decision-making processes. Farmers could

recognize the best pollinators without needing an expert in insect

taxonomy. Aware of the value of bees to crop income, farmers could

be encouraged to consider the pollination perspective in their crop

management, which results in the conservation of local wild bee

species, thereby contributing to advances toward more sustainable

and higher-yield agriculture.

In summary, we compared the performance of CNNs models at

recognizing blueberry-pollinating bees with the current state-of-

the-art models for bee automatic recognition. We found advantages
B

A

FIGURE 3

Confusion matrices showing the log-transformed number of audio samples correctly assigned to respective bee identity (diagonal elements) versus
those erroneously assigned (out-of-diagonal elements) by the DL classifiers. (A) EfficientNet V2 Smallcombined with Mixup and RT data
augmentation techniques with pre-training achieved the best performance at acoustic recognition of bees visiting flowers of blueberry crops,
followed by (B) PANNs combined with Mixup and SpecAugment with pre-training. Cellcolor represents the corresponding number (log-transformed)
of audio segments predicted in a given cell, ranging from gray (zero predicted audio segments) to dark blue.
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for CNN classifiers in recognizing bee species based on their

buzzing sounds over the classical ML algorithms used (Ribeiro

et al., 2021). CNNs algorithms powered by a combination of

transforming sound events into Mel-spectrogram images and

strong data augmentation overperformed classical ML algorithms

and could lead to automating the taxonomic recognition of flower-

visiting bees of blueberry crops. As far as we know, the use of DL

classifiers for bee taxa identification based on respective buzzing

sounds has not been reported previously. However, there is still

room to improve the performance of DL models. Further studies,

focusing on recording samples for poorly represented classes, and/

or applying algorithms that can perform more complex processing

tasks like unsupervised learning systems, could help to achieve

better classification results.
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