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The presence of ethylene during postharvest handling of tomatoes can be the main
problem in maintaining fruit shelf-life by accelerating the ripening process and causing
several quality changes in fruit. Several researchers have studied the methods for
improving the postharvest life of tomato fruit by controlling ethylene response, such as
by mutation. New ethylene receptor mutants have been identified, namely Sletr1-1,
Sletr1-2, Nr (Never ripe), Sletr4-1, and Sletr5-1. This review identifies the favorable and
undesirable effects of several ethylene receptor mutants. Also, the impact of those
mutations on the metabolite alteration of tomatoes and the future perspectives of
those ethylene receptor mutants. The review data is taken from the primary data of our
experiment related to ethylene receptor mutants and the secondary data from
numerous publications in Google Scholar and other sources pertaining to ethylene
physiology. This review concluded that mutation in the SIETRI gene was more
effective than mutation in NR, SLETR4, and SLETR5 genes in generating a new
ethylene mutant. Sletrl-2 mutant is a potential ethylene receptor mutant for
developing new tomato cultivars with prolonged fruit-shelf life without any
undesirable effect. Therefore, that has many challenges to using the Sletrl-2 mutant
for future purposes in breeding programs.
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1 Introduction

Tomato (Solanum lycopersicum) is a popular horticulture crop consumed as fresh fruit
or raw material for the food industry. Tomato production has increased worldwide every
year. Tomato contains high micro and macronutrients such as vitamins, minerals, fiber,
and other beneficial compounds for human health. Furthermore, it is a model for studying
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fruit biology, fruit development, softening, ripening, and fruit
metabolism (Brummell and Harpster, 2001; Giovannoni, 2004;
Carrari and Fernie, 2006), because it has a small genome size (950
Mb), a relatively short life cycle, and stable genetic transformation
(Osorio et al,, 2011; Kumar et al, 2012). Tomato belongs to
climacteric fruit. Thus postharvest handling is essential during
shipment and marketing. In climacteric fruits, ethylene accelerates
fruit ripening and softening. Moreover, ethylene affects leaf
abscission, stem or root elongation, root hair development,
epinasty, and flower fading (Abeles et al., 1992).

In developing countries, the loss of horticultural products
during postharvest handling reached 50% due to storage,
transportation, and packaging conditions (Kitinoja and Kader,
2015). Moreover, the presence of ethylene directly affects the lost
fruit quality. Several methods have been developed to prevent the
ethylene effect in reducing postharvest tomato fruit quality, such as
inhibiting ethylene biosynthesis and perception by chemical
compounds, atmosphere modification, and genetic modification.
In climacteric fruits such as tomatoes, the inhibition of ethylene
perception is more effective than ethylene biosynthesis due to the
limitation in the perception of ethylene to its receptor. 1-
Methylcyclopropene (1-MCP) is a non-toxic chemical compound
that effectively prevents the binding process of ethylene to the
receptor. Therefore, the ethylene effect can be minimized.
However, this method can be more laborious and impracticable to
apply to the farmers. Recently, the genetic modification approach
has been widely used to develop prolonged fruit shelf life by down-
regulated the ethylene biosynthesis and perception gene. However,
this method needs to be supported and acceptable in some
countries. The mutation method would be a practical approach
for generating new ethylene-insensitive cultivars. Mutation in the
ethylene receptor gene has successfully generated several insensitive
tomato mutants, such as Sletr1-1, Sletr1-2, and Sletr4-1 (Okabe et al.,
2011; Mubarok et al., 2015; Mubarok et al., 2019). This review
discusses the commercial use of the ethylene-insensitive mutants,
Nr, Sletr1-1, Sletr1-2, and Sletr4-1, as potential breeding material to
generate new prolonged shelf life for cultivated tomatoes. It also
highlights the prospect and problems associated with using
the mutants.

2 Ethylene biosynthesis and signaling

Fruit ripening is regulated by ethylene. Ethylene biosynthesis
and signaling are modulated during the development of plant tissue
and are responsible for inducing many biochemical processes
(Abeles et al., 1992). Ethylene biosynthesis is subject to both
positive and negative feedback regulation (Kende, 1993). Ethylene
biosynthesis in higher plants has been well-characterized. 1-
aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS) and
ACC oxidase (ACO) are enzymes of ethylene biosynthesis that have
been recognized as the rate-limiting step (Yang and Hoffman, 1984;
Kende, 1993). ACS activity is the critical step in controlling ethylene
production, whereas ACO activity is constitutive (Yang and
Hoffman, 1984; Theologis et al., 1993). The genes encoding ACS
and ACO have been studied in more detail than other enzymes in
the ethylene pathway. In higher plants, ACS and ACO are encoded
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by multigene families. Eight ACS genes (LeACSIA, LeACSIB, and
LeACS2-7) (Zarembinski and Theologis, 1994; Oetiker et al., 1997;
Shiu et al,, 1998) and five ACO genes have been identified in
tomatoes (Van-der-Hoeven et al., 2002).

The receptor is the crucial factor for ethylene action. A copper
cofactor mediates the binding process of ethylene to the receptor
(Rodriguez et al., 2010). The absence of copper cofactor caused less
capability to bind ethylene. The binding site for copper could be
replaced by any other metal, such as silver, due to a strong affinity
issue. Silver is commonly used to inhibit ethylene perception by
replacing the site of copper. This situation impedes conformational
change that is typically found in the presence of copper cofactor in
the receptor site. There were three domains classification of ethylene
receptor protein based on its structure, i.e., sensor domain, kinase
domain, and response regulator domain (Ciardi and Klee, 2001).
Both amino-terminal ethylene-binding and the most highly
conserved GAF are reported subdomains of the sensor domain
(Aravind and Ponting, 1997).

In tomatoes, at least six ethylene receptor genes (LeETRI-6)
were identified, and LeETR3 is denoted as NR (Payton et al., 1996).
The expression of each tomato receptor is different in temporal and
spatial patterns depending on the development stage and external
stimuli (Alexander and Grierson, 2002). LeETRI and LeETR2 are
expressed constitutively in all tissues throughout development, NR
is up-regulated at anthesis, and both NR and LeETR4 are up-
regulated during ripening, senescence, abscission (Payton et al,
1996; Tieman et al.,, 2000), and pathogen infection (Ciardi et al.,
2000). LeETR5 is expressed in fruit, flowers, and during pathogen
infection (Tieman and Klee, 1999).

The binding of ethylene to receptors causes conformational
changes in a receptor or inactivates a receptor, resulting in the
inactivation of a negative regulator of downstream ethylene
signaling such as CTRI (Kieber et al., 1993). Suppression of CTR1
activates ETHYLENE INSENSITIVE (EIN2) to act as an essential
positive regulator of the ethylene signaling pathway (Wang et al.,
2002). Genetic epinasty analysis of ethylene response mutants has
shown that EIN2 acts downstream of CTR1 and positively signals
upstream of EIN3 (Alonso et al., 1999; Wang et al., 2002). EIN3 is
both necessary and sufficient for the activation of ethylene-
responsive target genes and, in particular, for ERF1 (Solano et al.,
1998). ERF1 belongs to a large family of plant-specific transcription
factors referred to as ethylene response element-binding proteins
(EREBPs) (Carrari and Fernie, 2006). Transcription factor ERF1
and other EREBPs can interact with the GCC box, which causes
ethylene responses in plants (Yamamoto et al., 1999).

3 Strategy to minimize ethylene effect
at receptor level

Ethylene has become a central problem in postharvest
horticultural products. Several strategies are needed to manipulate
the adverse ethylene effects leading to the maintenance of the
postharvest quality of the horticultural product, including tomatoes.
Developing new cultivars by mutation is one strategy for obtaining
tomato mutants with long fruit shelf-life, such as ripening-inhibitor
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(rin), colorless non-ripening (Cnr), non-ripening (nor), green-ripe (Gr)
and Nr.

Targeting induced local lesions in genomes (TILLING) is a
general method to identify induced point mutations in the genomes
of any organism. This method accelerates identifying the modified
function of desired genes and selecting mutants rather than
conventional mutation breeding. TILLING method has identified
some mutants, for instance, SleIF4El of tomato mutant, which
showed potyvirus resistance (Piron et al,, 2010), CmACO1 of melon
mutant, which produced long shelf-life fruit (Dahmani-Mardas et al.,
2010), Sletr1-1, Sletr1-2, and Sletr4-1, which show in the reduction of
ethylene sensitivity (Okabe et al., 2011; Mubarok et al., 2019).

The expression analysis of related genes of ethylene biosynthesis
and perception has been widely investigated in tomato mutants. This
analysis showed that each mutant has a different location where the
mutation occurred. In the Nr mutant, a mutation occurred in the
ethylene-binding domain of the NR ethylene receptor; therefore,
ethylene cannot be perceived, and its response cannot be expressed
(Lanahan et al.,, 1994; Wilkinson et al., 1995). In the ripening inhibitor
(rin) mutant, the mutation occurred in the RIN transcription factor;
therefore, autocatalytic ethylene production does not show, and the
ethylene signal downstream cannot be transmitted (Vrebalov
et al., 2002).

In the novel ethylene receptor mutants, in the SletrI-1 and SletrI-
2 tomato mutant of ‘Micro-Tom’, the mutations occurred in the first
and second transmembrane domain in the ethylene receptor,
respectively. The location of mutation of Sletrl-1 (P51) and Nr
(P36) are similar in the first transmembrane domain; however, they
have different ethylene sensitivity (Wilkinson et al., 1995; Okabe et al.,
2011). In the Sletr4-1, there has an amino acid substitution, G154S,
that occurs between the transmembrane and GAF domains, whereas
the Sletr5-1 tomato mutant has the amino acid substitution, R278Q,
within the GAF domain (Mubarok et al., 2019) (Figure 1).

The ethylene receptor gene plays an important role in ethylene
action. Mutation in SIETRI, SIETR4, and SIETR5 results in altered
ethylene sensitivity, showing the different changes in ethylene triple
response and fruit shelf life. From the seedlings’ ethylene triple
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response assay, the four new ethylene receptor mutants, SletrI-I,
Sletr1-2, Sletr4-1, and Sletr5-1, exhibited a different ethylene
sensitivity. Sletrl-1, Sletrl-2, Sletr4-1, and Sletr5-1 display
completely ethylene insensitive, moderate ethylene insensitive, low
ethylene sensitivity, and high ethylene sensitivity, respectively (Okabe
et al.,, 2011; Mubarok et al., 2015; Mubarok et al., 2019).

4 Favorable effects of ethylene
receptor mutant on fruit ripening

Tomato fruit development could be divided into three phases,
namely (i) the main phase with rapid and active cell division; (ii) the
phase with a stable increase in size due to cell expansion, and the fruit
ripening phase (Pirrello et al., 2012). During the ripening process, the
tomato fruit experienced specific changes in appearance, color,
texture, taste, and aroma (Giovannoni, 2004). The ripening process
in tomato fruits was further divided into three phases, i.e., mature
green, breaker, and red. Tomato fruit discoloration during the
ripening process occurred due to the increased lycopene and beta
carotene content; and chlorophyll degradation during the transition
from chloroplasts to chromoplasts. The mature green stage is the final
fruit formation stage, as indicated by fully expanded fruit size. In this
stage, seed formation began. In a later phase, the breaker, the fruit
starts to rip as characterized by specific metabolites degradation and
the initiation of ethylene production spike and respiration as a sign of
climacteric characteristics. While in the red phase, the fruit is
considered ripe, with optimum metabolite content, and also
experiences the beginning of the senescence phase (Fraser et al,
1994; Osei et al., 2017).

The fruit shelf life is one of the essential characteristics of the
postharvest quality of horticulture crops. In climacteric fruit such as
tomatoes, fruit shelf life is commonly affected by ethylene, which
accelerates fruit ripening. Therefore, to improve fruit shelf life, the
response of ethylene must be minimized. Mutation in ethylene
receptor genes significantly underestimated the ethylene response
by extending fruit shelf life. Improving the fruit shelf life of tomatoes
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FIGURE 1

Mutation location of ethylene receptor mutants; Sletr1-1, Sletr1-2, Nr, Sletr4-1 and Sletr5-1.
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TABLE 1 The differences between four ethylene receptor mutants of tomato.

Sletr1-1 ( i

No. Characteristics Sletr1-2 (

10.3389/fpls.2023.1079052

; Sletr4-1 ( Sletr5-1 (

1 Amino Acid P51L V69D

Substitution
2 Mutation location The first transmembrane domain of

SIETR1 of SIETR1

3 Ethylene Completely ethylene insensitive

sensitivity
4 Plant appearance Not change Not change
5 Leaf shape Not change Not change
6 Fruit color Yellow to Orange Red Light
7 Fruit size Not change Not change
8 Fruit firmness Harder Harder

by developing a new cultivar is an excellent way to get a significant
aim in tomato breeding because it can provide various benefits for
both tomato producers and consumers. Besides long fruit shelf life,
other traits must be improved in tomatoes, such as fruit performance
and fruit nutrient, because it is crucial factors for fruit quality and the
human diet.

Several mutant alleles, such as Sletr1-1, Sletr1-2, and Nr, reduced
ethylene sensitivity, impacting fruit development and ripening. In
both homozygous and heterozygous SletrI-1 mutants, there is a
disturbance in the process of petals withering, while the effect is
weaker for Nr in both homozygous and heterozygous conditions.
However, this condition is influenced by parental background (Okabe
etal, 2011). An earlier study by Okabe et al. (2011) reported that petal
flowers of Sletr]l-1 mutants still stick to the fruit even up to 60 days
after pollination (DAP), while in WT-MT and Sletr1-2, the petal
withered at 3 and 5 DAP, respectively.

The delay in petal abortion can be used as one of the indicators
related to ethylene sensitivity that further affects fruit development,
ripening, and postharvest fruit shelf life. The ripening phenotypes in
Sletr1-1 were different between homozygous and heterozygous plants.
The homozygous Sletr1-1 displayed yellow and orange color (Okabe
et al., 2011) whereas heterozygous SletrI-1 fruits showed reddish-
orange color. Homozygous Sletrl-1 and Nr showed similar fruit
ripening phenotypes due to imperfect ripening processes (Lanahan
et al, 1994; Okabe et al, 2011). Phenotypic differences in fruit
ripening were not detected between homozygous and heterozygous
Sletr1-2, where the fruit showed perfect ripening. Crossing
commercial tomato cultivars with several mutants, such as Nr,
Sletr1-1, and Sletr1-2, might facilitate the development of a
commercial F1 hybrid line. However, not all ethylene-insensitive
mutants can be used as genetic material in the breeding program of
long fruit shelf-life tomatoes, for example, Nr and Sletr1-1. Although
both Nr and Sletri-1 had low sensitivity to ethylene, these two
mutants displayed an incomplete maturation phenotype, even
though they had an insufficient red color in heterozygous form.

The fruit shelf life of the mutant differs from one another either in
homozygote or heterozygous form. In homozygous conditions, the
fruits of Sletr1-1 and Sletr1-2 are still intact. They do not show any
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The second transmembrane domain

Moderate ethylene insensitive

G154 R278Q

Within the GAF
domain of SIETR5

Between the transmembrane and
GAF domains of SIETR4

Low ethylene insensitive Increased ethylene

sensitivity
Not change Not change
Not change Not change
Red Red
Not change Not change
Not change Not change

damage characterized by the absence of a black spot on the fruit
surface during the 60 days of storage in a sealed chamber at 25°C,
while the WT-MT fruit shows some damage at the age of 20-25 days
after harvesting (Okabe et al., 2011). However, the increase in fruit
storage resistance is not very strongly shown in the homozygous
Sletr4-1 (Mubarok et al., 2019). It was likely that the fruit shelf life
could be dramatically extended, and post-harvest fruit damage could
be inhibited. The use of Sletr1-2 as breeding material to form a hybrid
generation has been carried out. The Sletr1-2 has a strong inheritance
pattern in increasing the shelf life of fruits in all commercial parental
backgrounds. However, the length of fruit shelf-life resistance is
different in each parental background of ‘Aichi First’, ‘Ailsa Craig’,
‘Moneymaker’, and ‘M82’, with an average increase in shelf-life
resistance ranging from 4-5 days longer in open room conditions
at a storage temperature of 20 + 2°C and relative humidity of 80%
(Mubarok et al., 2015).

5 Undesirable effects of ethylene
receptor mutant

Mutations in the SIETR1, SLETR4, and SIETRS5 genes do not affect
plant external appearance, especially in vegetative organs. However,
there is an alteration in plant sensitivity to abiotic stress. The SletrI-1
is a promising genotype since it has low sensitivity to ethylene and
shows dominant inheritance during a breeding program in increasing
the shelf life of tomato fruits (Okabe et al., 2011). However, some
undesirable characteristics are found in the mutant Sletr1-1, i.e., stress
sensitivity response. The F1 generations of Sletrl-1 experience
withering and disease attacks during the transplanting process to
the NFT system. The wilting plant is caused by root damage when
transplanted from the nursery (Mubarok et al., 2015). The inability of
the F1 Sletr1-1 to recover the damaged root system and the inhibition
of new root formation cause secondary threats, such as the pathogen
attack to the root and stem base. In contrast, the F1 Sletr1-2 are not
susceptible to biotic and abiotic stress, whereas all hybrid of F1 SletrI-
2 shows similar characteristics to F1 WT-MT, i.e., healthy and white
roots without roots rot after transplanting (Mubarok et al., 2015).
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Heterozygous Sletr1-1 shows increased susceptibility to infections of
diseases caused by Fusarium oxysporum. A similar finding was reported
in the AtetrI-1 mutant of Arabidopsis thaliana that showed an increase in
disease infection by certain pathogens such as Botrytis cinerea, Fusarium
solani, Fusarium oxysporum f. sp. matthiolae, Xanthomonas campestris
pv. Campestris, and Pythium spp (O'Donnell et al,, 2003; Agarwal et al,,
2012). In addition, Nr mutants cannot produce adventitious roots in
waterlogging conditions (Visser and Voesenek, 2004; Vidoz et al.,, 2010)
and are susceptible to some pathogens (Francia et al.,, 2007; Kavroulakis
et al., 2007; Cantu et al., 2009).

Aside from the increased susceptibility to biotic and abiotic stress,
another undesirable characteristic in the ethylene mutant is a change in
fruit color as the implication of the pigment reduction, especially
lycopene and beta carotene. In tomatoes, the fruit color can be used to
estimate maturity level (Table 1). The delay in fruit ripening occurs in the
mutant SletrI-1. This mutant Sletrl-1 undergoes yellow or orange
discoloration 7 to 10 days later than WT-MT. Moreover, this mutant
mostly does not produce full red fruit color nor does the F1 generation
(Okabe et al,, 2011; Mubarok et al., 2015). The inability to produce full
red color is also observed in the mutant Nr (Lanahan et al., 1994). On the
opposite, this phenomenon is not found in the mutant Sletr1-2 or its F1
generation. SletrI-2 fruits can produce the normal red fruit color as its
wild type even in their F1 generation (Okabe et al, 2011; Mubarok et al.,
2015). Although the mutants SletrI-1 and Nr produce fruits with a long
shelf life, they have yet to be widely used in breeding programs due to
their susceptibility to biotic and abiotic stress, and the imperfection of the
fruit ripening process leads to less red color (Francia et al, 2007;
Kavroulakis et al., 2007; Cantu et al., 2009)

6 Metabolite alteration of ethylene-
insensitive mutants

The change or mutation in related genes in ethylene biosynthesis and
action may regulate the gene transcription and ultimately affect the
metabolite contents of the tomato fruit. In the rin mutant, the mutation
in the RIN gene inhibits carotenoid biosynthesis, aroma, production of
flavor compounds, and softening (Herner and Sink, 1973; Tigchelaar
et al., 1978; Knapp et al,, 1989; Vrebalov et al., 2002; Kumar et al., 2012).
The novel insights into the molecular biology of ethylene-mediated
ripening regulatory networks in tomato during fruit development has
been revealed by analyzing nor, rin, and Nr mutant at transcriptomic,
proteomic, and metabolomic levels (Osorio et al., 2011). Recently, a new
investigation on the effect of the mutation in rin mutant showed that the
RIN mutation results in a profound change in fruit transcriptome during
ripening that is similar to other spontaneous mutations, such as Nr, hp-
2dg, and cnr (Eriksson et al., 2004; Alba et al., 2005; Osorio et al., 2011;
Rohrmann et al., 2011; Kumar et al., 2012; Mubarok et al., 2021).

6.1 Sugar

Ethylene accelerates fruit ripening, which contributes to changes in
the nutrient content; however, it also accelerates quality deterioration by
shortening the shelf life of the fruit. There is a change in the total sugar
content during fruit maturation that can be used to determine the
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sweetness of tomato fruits (Mubarok et al, 2019). The entire sugar
content of the mutant Sletr1-1 and Sletr1-2, both in homozygous and
heterozygous form, is lower than WT-MT, except for the F1 SletrI-2
heterozygous (Mubarok et al., 2016). The fruit of nor mutant has the
lowest total sugar content, followed by the fruit of Nr, rin, Sletr1-1, and
Sletr1-2 (Osorio et al., 2011; Mubarok et al., 2016; Mubarok et al., 2019;
Osorio et al., 2020). The difference in the sensitivity to ethylene can cause
the variation in sugar content in these mutants. Mutant tomato plants,
namely nor, Nr, and rin, have complete ethylene insensitivity character
(Osorio et al,, 2011), while the mutant SletrI-1 and Sletr1-2 have partial
ethylene insensitivity character. The variation of ethylene sensitivity may
affect the expression of genes that regulate the conversion of starch into
sugars (Osorio et al, 2020), thus leading to the difference in sugar
content. Baldwin et al. (1998) stated that glucose and fructose are the
tomato’s main sugar components contributing to the sweetness level.
Under the heterozygous line of the F1 Sletr1-2, the SletrI-2 mutation did
not significantly affect the changes of sucrose, fructose, and glucose under
different pure-line cultivar parents. These results contrast with previous
studies in the homozygous line of Nr, nor, and rin, demonstrating the
reduction in sucrose, glucose, and fructose levels (Hobson, 1980; Osorio
et al., 2011).

6.2 Total soluble solid

Sugar content is preliminarily studied as the total soluble solids (TSS)
variable, including in the tomato study (Mubarok et al., 2019; Mubarok
etal, 2021). The TSS in tomato fruits increased in line with the ripening
process (Mubarok et al., 2019), as the impact of the conversion of starch
into sugar and the hydrolysis of polysaccharide cell walls to hemicellulose
and pectin during the maturation process (Mubarok et al., 2022). In
general, the stronger the red color observes, the higher the ripening level
of the tomato fruit and the higher the TSS content. Before fully ripe, the
starch content in the fruit can reach 20% of the dry weight; then it is
degraded into other compounds, such as sugar (Ho, 1996).

Mutant tomatoes, namely Sletr1-1, Sletr1-2, Sletr4-1, Sletr5-1, rin,
and nor, have lower TSS content than WT-MT tomatoes on all
maturity stadia (Mubarok et al., 2015; Mubarok et al., 2019; Mubarok
et al., 2019). The rin and nor mutant have similar TSS, i.e., 4.6°Brix,
and this result is still lower than the TSS value of SletrI-1, Sletrl-2,
Sletr4-1, and Sletr5-1 (Mubarok et al., 2015; Mubarok et al.,, 2019;
Mubarok et al., 2019). This phenomenon is associated with the lower
expression of genes that regulate the activity of pectinase in rin and
nor tomatoes (Osorio et al.,, 2020), compared to Sletri-1, Sletrl-2,
Sletr4-1, and Sletr5-1. So, the amount of pectin converted by pectinase
during storage is also lower (Osorio et al., 2011).

6.3 pH and titratable acidity

Aside from the sugar content indicated by the TSS variable, the
alteration in the mutant is also found in terms of acidity level. Fruit
pH and titratable acidity (TA) are two common variables used to
determine the acidity level of tomato fruit (Mubarok et al., 2019).
Along with TSS, acidity variables form the balance of sour and sweet
in the fruit taste profile and post-harvest quality in tomato fruits
(Grierson and Fray, 1994). An earlier study by Tran et al. (2017)
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showed that the total acid content increase during fruit formation and
enlargement. However, it declines in line with the ripening process
due to the degradation of organic acids during ethylene biosynthesis
in the respiration stage.

The fruit TA value of insensitive ethylene mutants, namely rin,
nor, Sletr1-1, Sletr1-2, Sletr4-1, and Sletr5-1, are higher than WT-MT.
Lobit et al. reported that the TA and fruit pH are closely related (Lobit
et al., 2002). The increase in TA is accompanied by a decrease in the
pH. Therefore, the pH of the insensitive ethylene mutant of rin, nor,
Sletr1-1, Sletrl-2, Sletr4-1, and Sletr5-1 is lower than WT-MT
(Mubarok et al., 2015; Mubarok et al., 2019; Mubarok et al., 2019).

6.4 Lycopene, beta carotene

In addition to TSS and TA, some phytochemicals, such as
lycopene, beta carotene, flavonoid, and polyphenols, are reported to
differ in ethylene insensitive mutant compared to its wild type, leading
to the variation of antioxidant activity. Lycopene is a carotenoid
responsible for reddish color formation on tomato fruits (Rai et al,
2013). The rin and nor have the lowest lycopene content. This finding
can be caused by the low expression of genes that play a role in the
process of lycopene formation, namely PSYI, PSY2, PDS, ZDS, and
CRTISO genes (Kitagawa et al., 2005; Osorio et al., 2020). The SletrI-1
and SletrI-2 have a higher lycopene content than rin and nor, but they
are still lower than the WT-MT (Mubarok et al., 2015; Mubarok et al.,
2019; Mubarok et al,, 2019). The findings show that ethylene may
associate with the formation of lycopene.

Beta carotene in ethylene insensitive mutant is lower than that in
WT-MT. The rin and nor have the lowest beta carotene content. It
may be caused by the low activity of the CRTR-bl gene, which
converts Y-carotene into beta-carotene (Osorio et al., 2020). The
mutant Sletr1-1 and Sletrl-2 have higher beta carotene than the rin
and nor mutant (Mubarok et al.,, 2015; Mubarok et al., 2019). This
phenomenon can be associated with the difference in ethylene
insensitivity levels between mutant genotypes.

6.5 Polyphenols and flavonoids

The content of polyphenols and flavonoids in the fruit of
ethylene-insensitive mutant tomatoes varies in response to
genotypic factors. The content of polyphenols and flavonoids in rin
and nor mutant is very low (Minoggio et al., 2003). Meanwhile, the
polyphenol content in fruits of the Sletrl-1 and Sletrl-2 is not
significantly different from WT-MT, whereas the flavonoid content
in these mutants is lower than in WT-MT (Mubarok et al., 2019). The
rate of polyphenol and flavonoid content, from low to high, can be
sorted as follows; rin, nor, Sletrl-1, Sletr1-2, and WT-MT. The lower
polyphenols and flavonoids in ethylene-insensitive mutants have
ascertained ethylene’s involvement in the biosynthesis of
polyphenols and flavonoids (Chaudhary et al., 2018). Meanwhile,
the difference in flavonoid and polyphenol content among mutants
can be caused by differences in the degree of insensitivity level to
ethylene (Osorio et al,, 2020).
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6.6 Antioxidant activity

The antioxidant activity of ethylene insensitive mutant, namely
rin, is the lowest, followed by nor (Minoggio et al., 2003), Sletr1-1, and
Sletr1-2. The antioxidant activity of Sletrl-2 is not significantly
different from WT-MT (Mubarok et al., 2019), while the
antioxidant activity of rin, nor, and Sletrl-1 is lower than WT-MT.
This situation is associated with the lower content of lycopene, beta
carotene, flavonoids, and polyphenols on rin, nor, and SletrI-1 rather
than Sletr1-2 and the WT-MT (Minoggio et al., 2003; Kitagawa et al.,
2005; Mubarok et al., 2019; Osorio et al., 2020). Earlier study reported
that both lycopene and beta carotene are potent antioxidant
compounds whose content dramatically affects the rate of
antioxidant activity of tomato fruit (Mubarok et al., 2019).

6.7 Organic acids

The presence of organic acids correlates with fruit quality that
directly affects fruit sourness, such as tomato. Tang et al. (2010) stated
that the organic acid content is essential in food nutrition. The
primary organic acids in tomato fruit, namely citrate, and malate
(Baldwin et al., 1998). Oms-Oliu et al. (2011) stated that the
metabolisms of citrate and malate are subjected to ethylene
regulation. Several factors affect the levels of organic acids in
tomato fruit, and ethylene is one of the influencing factors
(Mubarok et al., 2016). The change of organic acid content in fruit
is directly affected by the function of ethylene response. Inhibition of
the ethylene perception due to a mutation in the ethylene receptor
gene significantly increased the total organic acid content (Osorio
et al., 2011; Mubarok et al., 2016). Mubarok et al. (2016) stated that
the F1 generation of Sletr1-1 and SletrI-2 mutants have a higher total
organic acid, malate, and citrate content than the control. High
organic acid content was also detected in the Nr mutant due to a
mutation in the ethylene receptor gene (Osorio et al., 2011).

6.8 Amino acids

The ethylene was not directly affecting the change in fruit amino
acids. Mubarok et al. (2016) reported that the variation of the amino
acids in four F1 generations of SletrI-2 was dependent on the genetic
background. Although the Sletr1-2 mutation did not directly affect the
total amino acids, it significantly induced changes in the individual
amino acid levels, such as glutamic acid, glutamine, aspartic acid, and
GABA (Mubarok et al., 2016). Oms-Oliu et al., 2011 stated that those
four amino acids are the primary amino acids in the tomato fruit
(Oms-Oliu et al,, 2011). Different behaviors in accumulating
individual amino acids were also observed in the Nr mutant”®
Regarding fruit taste quality, glutamic acid substantially enhances
taste perception or fruitiness intensity that correlates with fruit shelf
life (Yilmaz, 2001; Oms-Oliu et al., 2011). Associations between long
fruit shelf life and lower levels of glutamic acid have been
demonstrated in the Nr mutants. Still, it was not shown in the
Sletr1-2 F1 (Pratta et al., 2004; Osorio et al., 2011). The Sletr1-2 F1
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hybrid showed no change in the level of glutamic acid compared with
the WT-MT F1 hybrid line fruit. Based on this study, we conclude
that Sletr1-2 F1 can produce red fruit and glutamic acid that did not
influence the postharvest fruit quality (Oms-Oliu et al., 2011).

7 Future perspective

The presence of ethylene hormone can affect the growth, yield,
and quality of horticultural commodity yields. In post-harvest
handling, the presence of ethylene can have both positive and
negative effects depending upon the purpose of its use. For storage
and transportation purposes, especially in climacteric fruits such as
tomatoes, ethylene accelerates the fruit ripening, leading to shorter
fruit shelf life. Mutant with ethylene gene receptor modification can
be used as an alternative solution because the negative influence of the
ethylene hormone in this genotype can be minimized.

These mutants can be used as elders in plant breeding programs to
produce new superior tomato cultivars with longer fruit shelf life
(Mubarok et al, 2015; Wiguna et al., 2021). With the production of
this shelf-resistant commercial tomato cultivar, the post-harvest problem
in tomato fruits can be solved. The use of these mutant tomatoes for
breeding programs will be more effective when compared to other
ethylene-inhibition methods, such as controlled atmospheric storage
with high-cost disadvantages. In the future, these mutants will have a
considerable function, especially in plant breeding programs to assemble
tomatoes for fresh consumption. With the knowledge of these mutants, it
is hoped that the breeding program can run well and that new superior
tomato cultivars can be produced, especially for the raw consumed
tomatoes such as beef and cherry tomatoes.

8 Conclusions

Ethylene is one of the critical problems in the post-harvest
handling of climacteric fruits such as tomatoes. Developing tomato
cultivars that are insensitive to ethylene is one of the effective ways to
control the negative influence of ethylene in accelerating fruit damage.
The TILLING method has successfully obtained mutant tomatoes less
sensitive to ethylene, including N, SletrI-1, Sletr1-2, and Sletr4-1. The
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