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Recognition of spider mite
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on spectral-spatial clustering of
hyperspectral images from UAVs
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1College of Information Science and Engineering, Shandong Agricultural University, Taian, China, 2Key
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Spider mite infestations are a serious hazard for jujube trees in China. The use of

remote sensing technology to evaluate the health of jujube trees in large-scale

intensive agricultural production is an effective means of agricultural control.

Hyperspectral remote sensing has a higher spectral resolution and richer spectral

information than conventional multispectral remote sensing, which improves the

detection of crop pests and diseases. We used hyperspectral remote sensing data

from jujube fields infested with spider mite in Hotan Prefecture, Xinjiang to evaluate

their use in monitoring this important pest. We fused spectral and spatial information

from the hyperspectral images and propose a method of recognizing spider mite

infestations of jujube trees. Our method is based on the construction of spectral

features, the fusion of spatial information and clustering of these spectral–spatial

features. We evaluated the effect of different spectral–spatial features and different

clusteringmethods on the recognition of spider mite in jujube trees. The experimental

results showed that the overall accuracy of the method for the recognition of spider

mites was >93% and the overall accuracy of the band clustering–density peak

clustering model for the recognition of spider mite reached 96.13%. This method

can be applied to the control of jujube spider mites in agricultural production.

KEYWORDS

hyperspectral images, spider mite recognition, spectral features, spatial information,
clustering
1 Introduction

Jujube spider mites are one of the most common pests affecting jujube trees. Jujube spider

mite infestations are explosive, fast-spreading and difficult to control. The leaves of jujube trees

infected with spider mites show symptoms such as yellowing, disease spots and curling, which

damage normal growth and fruiting and seriously restrict the development of the jujube

industry. Conventional control methods use large-scale spraying of pesticides to protect jujube

trees from spider mites; however, the heavy use of pesticides not only increases the cost of
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agricultural production, but also poses potential risks to the

environment and ecosystems Huang et al. (2018). It is therefore

important to obtain accurate information about the pests and

diseases of jujube trees to achieve rapid and accurate agricultural

control that balances ecological protection and agricultural

production (Singh et al., 2020). Pest monitoring and forecasting for

jujube trees is still mainly based on traditional field surveys by plant

protection personnel (Tang et al., 2015), which is reliable, but time-

consuming, laborious, subjective, has poor timeliness and is unable to

obtain global pest information simultaneously. It is therefore difficult to

meet the current needs for pest control in large-scale planting areas and

the realization of precision agriculture (Zhang et al., 2012).

Remote sensing technology, which is time-sensitive, nondestructive

and provides simultaneous observations over wide areas, is commonly

used in agriculture (Zhang et al., 2021). Remote sensing can rapidly and

accurately recognize and monitor crop pests and diseases, providing an

effective means for the timely control of crop pests and diseases (Yuan

et al., 2019). The use of remote sensing technology to monitor pests and

diseases is based on airborne cameras and radiometers, which record

the reflectance characteristics of observed features to recognize pest and

disease infestations (Jiang et al., 2021). Remote sensing technology

recognizes and distinguishes various types of targets using spectral

characteristics. Hyperspectral data have a wide band range and high

spectral resolution, which can simultaneously obtain high-resolution

spectral information and spatial information for the more effective

recognition and diagnosis of crop pests and diseases (Lan et al., 2019).

In general, when crops are stressed by pests and diseases, the tissue

structure, water content and chlorophyll of the crop canopy are

damaged to varying degrees and the spectral characteristics of the

crop change accordingly (Xu et al., 2022). Crop pests and diseases can

be recognized by the differences in spectral reflectance between healthy

and infected crops.

Near-Earth remote sensing avoids interference from atmospheric

and terrain factors and can be used to obtain accurate spectral

characteristics of crops and to calibrate the target spectra acquired

by satellites and unmanned aerial vehicles (UAVs). Chen et al. (2007)

analyzed the canopy spectrum of cotton yellow wilt and found that

the visible band (680–760 nm) and the near-infrared band (731–1371

nm) showed a significant response to yellow wilt infestation. They

used these two response regions to construct a prediction model for

cotton canopy yellow wilt with a prediction accuracy of 82%.

Furlanetto et al. (2021) used principal components analysis (PCA)

to extract spectral features from 87 bands in soybean leaves and

combined different bands to diagnose soybean rust by linear

discriminant analysis.

Ground-based remote sensing is limited to collecting the spectral

reflectance of a single point and it is therefore difficult to monitor crop

pests and diseases in a large area at the same time. By contrast, satellite

remote sensing can obtain remote sensing information with multiple

time–space–spectrum resolutions simultaneously to rapidly and

accurately monitor the development of pests and diseases.

Prabhakar et al. used Sentinel-2 satellite data to quantitatively

invert and model the relationships between the leaf area index, the

above-ground biomass, the yield and the spectral vegetation index

between healthy and pest-infested farms using ANOVA with

coefficients of determination >0.80 (Prabhakar et al., 2022). Li et al.

(2020) selected five vegetation indices to accurately recognize root rot
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of cotton in Sentinel-2 images using binary logistic regression models

with a best recognition accuracy of 92.95%. Satellite remote sensing

can rapidly monitor the occurrence of pests and diseases over time in

large areas, but is restricted by image resolution, clouds and rain.

The UAV pest monitoring platform has the advantage of convenient

data acquisition. UAVs can carry a hyperspectrometer to obtain remote

sensing data with a high spatial and spectral resolution, which is an

effective supplement to satellite remote sensing. Huang et al. (2007) used

a regression model to assess the accuracy of photochemical indices to

quantify the disease index of wheat stripe rust and established a linear

model of photochemical indices and a disease index of stripe rust in aerial

remote sensing images in different time periods to detect wheat stripe rust

in aerial hyperspectral images. However, the imaging principle of

hyperspectral images is complex and relying only on spectral

information to recognize crop pests and diseases generates a lot of

pretzel noise. The recognition accuracy can be improved by

incorporating spatial information. Guo et al. (2021) extracted

vegetation indices and texture features from hyperspectral images of

UAVs and developed monitoring models for yellow rot using partial

least-squares regression. These studies combined the texture information

in the images to compensate for the shortcomings of using spectral

information alone, but the adopted spectral features were based on the

vegetation indices of fixed-band combinations and it is difficult to take

advantage of the rich, multi-band hyperspectral information.

Liu et al. (2020) extracted the original spectral bands, vegetation

indices and texture features from hyperspectral images and monitored

wheat blast using a back-propagation neural network, which constructed

the spectral features using interval sampling to select the feature bands

with greater chance and randomness. Compared with RGB and

multispectral images, the continuous rich spectral information of

hyperspectral images more realistically reflects the subtle differences in

the reflection characteristics of surface materials. Hyperspectral images

have strong inter-band correlation and contain a large amount of

redundant information. This study investigated how to scientifically

extract spectral features and incorporate spatial information to build a

highly accurate pest monitoring recognition model.

We used hyperspectral images acquired by a low-altitude UAV

with a high spectral and spatial resolution, which avoided the problem

of mixed pixels (Ma et al., 2019). In processing hyperspectral images,

the workload of tagging jujube tree sample information in images is

large because, as the data dimension (i.e., the number of image bands)

increases, the amount of annotation data required has to increase

exponentially (Pothen and Pai, 2020; Wang et al., 2022). To solve the

problem of too few samples and too high a number of hyperspectral

image bands in supervised learning, we used the unsupervised

classification method to cluster each image element into different

clusters according to its attributes and distance in the feature space

without a large amount of sample data (Zhang et al., 2018).

We explored the application of UAV hyperspectral remote

sensing in jujube pest recognition and propose a method of

recognizing jujube pests by fusing spectral features and spatial

information. The pixels in remote sensing images were used as the

basic classification unit to mine the spectral features and spatial

information of the jujube canopy, which improved the recognition

accuracy of jujube spider mite. We first compared the effects of

different spectral feature construction methods on the accuracy of

jujube pest recognition using hyperspectral data. We then evaluated
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the effects of different unsupervised learning methods—K-means,

fuzzy C-mean (FCM) clustering and density peak clustering (DP)—

combined with spectral–spatial features on the accuracy of jujube pest

recognition. We propose a hyperspectral image recognition method

for jujube pests based on constructing spectral features, fusing spatial

information and clustering algorithms.

The contributions of this article can be summarized from three

aspects. First, conventional monitoring methods are inadequate in

terms of hyperspectral information utilization, this study fully

exploited the spectral information using different dimensionality

reduction methods and utilized the advantages of hyperspectral

resolution for UAV monitoring of pests and diseases. Second, the

spectral-spatial information of hyperspectral images was extracted by

weighted spatial-spectral mean filtering algorithm, we enhance the

spatial correlation of image recognition and apply it in the monitoring

of pests and diseases. Third, we compare different feature

construction and clustering algorithms, this study constructs an

effective, rapid and highly accurate model for recognition of jujube

spider mite infestations.
2 Materials and methods

2.1 Study site

The study area is located in the 224th Regiment of Xinjiang

Production and Construction Corps, Hotan Prefecture, Xinjiang

(Figure 1), at the northern foot of the Karakorum Mountains and the

southern edge of the Tarim Basin, with high terrain in the south and
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low terrain in the north. It has a warm temperate continental desert

climate, with year-round drought and little rain, sufficient light for crop

growth, total annual sunshine of 2769.5 h, abundant heat, a year-round

average temperature of 12°C and large differences in temperature

between day and night. The region is suitable for the growth of

jujube trees and the accumulation of jujube sugar. The study area is

approximately 234.75 km2 in size and jujube trees are the main crop,

with a cultivation area of about 90 km2. The jujube trees in the field are

often threatened by outbreaks and the spread of spider mites and other

pests and diseases due to the wide and dense distribution of jujube trees

in the single-species cultivation area.
2.2 Data acquisition and pre-processing

Data were collected from July 28 to August 6, 2021, during the

critical growth period of jujube trees when they are susceptible to

pests and diseases. We investigated the infestations status of jujube

fields and selected abandoned jujube fields with serious spider mite

infestations and normal jujube fields with less infestations as the

experimental area. We planned a reasonable UVA flight route, data

acquisition period ranged from 11:00 to 15:00 (the sun altitude angle

was >45°) under sufficient daylight or cloudless conditions.

A DJI M600pro UAV equipped with a Rikola hyperspectrometer

was used to collect hyperspectral image data from jujube date palm

trees in a typical area. The image pixel array of the Rikola

hyperspectrometer is 1010 × 1010 and this UAV remote sensing

platform is sufficiently convenient and flexible to adapt to complex

flight environments. The hyperspectral cameras were radiometrically
A

B

C

FIGURE 1

Location of the study site. (A) Xinjiang Uygur Autonomous; (B) Regiment 224; (C) Study site.
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corrected with diffuse reflectance gray plate, four 50cm×50cm diffuse

reflectance gray plates (reflectance of 3%, 22%, 48%, 64%) were placed

on the horizontal surface of the test location while ensuring that there

were no shadows and interfering objects on the surface of the plate.

The UAV course overlap and side-phase overlap were 75%, the flight

speed was 6 m/s, the flight altitude was 80 m, the spectral resolution

was 10 nm, the wavelength range was 500–950 nm, the number of

channels was 45 and the spatial resolution was up to 6 cm

(see Table 1).

The spectral reflectance and health status of 30 sets of samples,

consisting of a total of 90 samples, were gathered and recorded in the

study area as a validation of the recognition results. As a control, the ratio

of infected samples to healthy samples was around 1:2 (the gathered data

contained 30 infected samples and 60 healthy samples). The spectrum of

each sample was repeated five times, the average of the spectral

reflectance of the five acquisitions was regarded as the spectral

reflectance of the sample, the sampling point was located using a

hand-held GPS device and labeled in the image with ENVI. Each

sample is a small area containing multiple pixels, and the ROI of

healthy and infected is made by combining GPS positioning to

determine the image points corresponding to the sample points as a

validation set for the recognition results. 5,036 pixels of healthy area,

2,438 pixels of infected area and 11,213 pixels of ground were labeled.

The overall accuracy and kappa coefficient was calculated using the

confusion matrix to assess the accuracy of the model for recognition of

jujube spider mite infestations.

The images were noisy due to the influence of the instruments,

environment and measurement methods during image acquisition

and the hyperspectral images were first corrected to eliminate the

dark currents generated by the sensor unit, then corrected for

vignetting and geometric distortion with Nikon Capture NX-D

software, stitched with Pix4Dmapper software and the alignment

accuracy was improved using ground control points. The reflectance

of the soil background can interfere with the spectral reflectance of the

jujube canopy as a result of the complex spatial heterogeneity of the

soil composition (Yue et al., 2015; Gao et al., 2018). Using spectral

indices for extraction of the jujube area and masking the soil
Frontiers in Plant Science 04
background can effectively avoid this interference while improving

the operational efficiency of the algorithm. We compared the effects of

the visible vegetation difference index and the normalized vegetation

index on the extraction of information about the jujube canopy. Both

vegetation indices could be effectively extracted and the visible

vegetation difference index gave a better elimination of the effect of

the shadow of the jujube trees than the normalized vegetation index

(Lu et al., 2018).
2.3 Methods

2.3.1 Recognition of jujube spider mite
The process of jujube spider mite pest recognition by different

spectral feature construction methods combined with different

clustering algorithms (Figures 2, 3) consists of six steps: (1) data

acquisition (the simultaneous acquisition of jujube hyperspectral

images and ground sample points); (2) data pre-processing (e.g.,

image stitching, geometric correction, radiation correction,

background extraction); (3) dimensionality reduction of the jujube

hyperspectral images by feature extraction and selection, and the

construction of the spectral feature space of jujube trees using four

methods—PCA, local linear embedding (LLE), spectral sensitivity and

band clustering; (4) fusion of the spatial information from jujube

images using a weighted spatial–spectral mean filtering algorithm; (5)

clustering of the spectral features of the fused spatial information

from the jujube trees using three clustering methods (K-means, FCM

and density peak clustering) to obtain identification results; and (6)

assessment of recognition results of jujube spider mite infestations

based on ground sampling.

The proposed algorithms run on python 3.9 and Windows 10 as

the operating system and on a GeForce RTX 3060 GPU with 12 GB of

video memory and an Intel(R) Core (TM) i7-12700F CPU, accuracy

evaluation was accomplished in ENVI5.3.

2.3.2 Feature construction methods
Hyperspectral data are high dimensional, rich in waveband

information and have a higher spectral resolution than

multispectral data. However, tens or even hundreds of bands of

hyperspectral data bring great challenges to the classification and

recognition of ground targets (Huang et al., 2020). Building

recognition models directly with raw hyperspectral data greatly

increases the computational complexity and high-dimensional data

will also attenuate the distance effect, making it difficult to aggregate

sample points and affecting the accuracy and performance of the

classification model (Li et al., 2017). It is therefore common to use

feature extraction and feature selection to remove redundant data and

transform hyperspectral data from a high-dimensional space to a low-

dimensional subspace (Wang et al., 2018). Information that

contributes significantly to feature identification is retained and

information with a high linear correlation, redundancy and low

contribution to feature identification is removed (Liang et al.,

2016). Feature extraction and feature selection to compress high-

dimensional data are realized from different perspectives and we

therefore evaluated the effects of four different ways of constructing

spectral features (i.e., PCA, LLE, spectral sensitivity and band

clustering) on the accuracy of jujube spider mite pest recognition.
TABLE 1 Primary parameters of unmanned aerial vehicle hyperspectral
imaging system.

Parameters Specification

Weight 720g

FOV 36.5°

Spatial resolution 6cm

Spectral resolution 10nm

Spectral range 450-900nm

Bands 45

FWHM 5-13nm

Physical pixel size 5.5um

Flight altitude 80m

Flight velocity 12m/s

Image resolution 1010×1010
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(1) Feature extraction

The feature extraction method is a linear or nonlinear

transformation of the original hyperspectral image. Assuming that

fxigNi=1 represents the hyperspectral data, where N represents the total

number of image elements and xi e Rd represents the high-
Frontiers in Plant Science 05
dimensional data, then feature extraction is the projection of high-

dimensional data into a low-dimensional space that Rd!Rf and

obtain the optimum combination of the bands, where d and f are

the number of dimensions of the data—that is, the number of bands

in the image. The advantage of the dimensionality reduction method
FIGURE 3

Framework of recognition program of jujube spider mite infestations.
FIGURE 2

Flow chart of recognition of jujube spider mite infestations.
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for feature extraction is that it fuses information from all bands to

avoid the loss of spectral information, but it also destroys the original

structural properties among the hyperspectral bands and the

interpretability of the data after dimensionality reduction becomes

poor (Pascucci et al., 2020; Yanjun et al., 2020; Tang et al., 2022).

① Linear dimensionality reduction algorithm: principal

components analysis

Principal components analysis (PCA) is one of the most

commonly used algorithms for the feature extraction of

hyperspectral data and is also an effective method for

dimensionality reduction to solve the problem of high correlation

and multicollinearity among data. PCA greatly reduces the amount of

data by decomposing the covariance eigenvalues in the data. PCA

projects the original data onto a new coordinate system using linear

projection to remove redundant spectral information and retain the

main characteristics in the data (Kang et al., 2021a).

② Nonlinear dimensionality reduction algorithm: local

linear embedding

Local linear embedding is an important nonlinear manifold

learning method. Linear dimensionality reduction techniques such

as PCA have a good effect on dimensionality reduction for data with

relatively low dimensionality and a global linear structure, whereas

the processing of nonlinear data can make the data lose their original

structure and is unable to reflect the nonlinear characteristics.

Hyperspectral data inherently exhibit nonlinear data characteristics

as a result of ground scattering, the representation model as a

bidirectional reflectance distribution function, and the heterogeneity

of multiple scattering and subpixel components within the pixel.

Compared with linear dimensionality reduction algorithms such as

PCA, LLE algorithms have the advantage of applying nonlinear

feature analysis of high-dimensional data to find simple, low-

dimensional expressions of manifold structures in complex, high-

dimensional nonlinear structures (Yue et al., 2019).

(2) Feature selection

The band selection process selects a subset of the spectral feature

space in the hyperspectral image based on different criteria and

characterizes the hyperspectral data in all bands with a

representative combination of bands. This can maximize the

distinction between other targets while removing a large amount of

redundant information from the hyperspectral data. Band selection is

the selection and rejection of spectral bands, which can better

preserve their original spectral reflectance properties and physical

meaning, and is generally achieved based on the separability between

bands or the amount of information between bands (Jing et al., 2010).

In agricultural remote sensing, linear regression is normally used to

select the band with a strong correlation with the measured data by

using the reflectance and waveform characteristics of the spectral

curve. We used spectral sensitivity and band clustering to select the

characteristic bands that can effectively distinguish jujube spider

mite infestations.

① Spectral sensitivity

The spectral sensitivity reflects the difference in reflectance

between healthy and stressed plants at different wavelengths and is

calculated as the ratio of the spectral difference between the stressed

and normal plants to the normal plants. The larger the absolute value

of the spectral sensitivity, the simpler it is to distinguish infected crops

from each other in this band. Kobayashi et al. (2001) used spectral
Frontiers in Plant Science 06
sensitivity to extract regions of significant differences in the spectral

response of rice plants subjected to stress. In hyperspectral data, the

number of bands is large and the correlation between bands with

similar wavelengths is strong. The equation (1) is used to calculate the

absolute value of the spectral sensitivity of each band and the band

with the greatest spectral sensitivity and largest distance in

wavelength is selected as the characteristic band for identifying the

infected crops:

S =
Ss − Sh
Sh

(1)

where S is the spectral sensitivity, Ss is the spectral reflectance of

the stressed plants and Sh is the spectral reflectance of the

normal plants.

② Band selection based on clustering

Band selection of hyperspectral data can be divided into

supervised, semi-supervised and unsupervised methods according

to the availability of the corresponding samples for training.

However, in practice, it is hard to obtain sufficient ground sample

information. We therefore used the unsupervised band selection

method, which considers the amount of information and the

correlation of the image data bands themselves and clusters them in

the whole spectral interval to form a band subspace. The band

selection methods commonly used for hyperspectral data include

the optimum index factor method, the adaptive band selection

method and the automatic subspace partition (ASP) method.

Traditional band selection used the standard deviation and

correlation coefficient to construct the optimum index factor to

select the optimum band combination based on the information

content of each band, but the computational effort required to

calculate the correlation coefficient among the bands of

hyperspectral data is too large for this method to be used for

hyperspectral band selection. Then adaptive band selection method

was proposed, which calculates the ratio of the standard deviation of

each band to the correlation coefficient of the adjacent bands as an

index to select the best band, which reduces the computational effort

(Baisantry et al., 2021; Kang et al., 2021b). However, the adaptive

band selection method does not consider the connection between the

candidate bands and the non-adjacent bands and therefore the

selected band combination may not be the optimum solution (Yang

and Kan, 2019). We therefore used an ASP method for the band

selection of hyperspectral images of jujube trees. The ASP algorithm

divides the hyperspectral data space into multiple subspaces by

defining the inter-band correlation coefficient matrix and the

nearest neighbor transferable correlation vector according to the

band space relationship of the spectrum. The algorithm then selects

the most representative bands from the spectral space (Zhang and

Liu, 2020).

2.3.3 Weighted spatial–spectral mean filtering
In the process of hyperspectral data acquisition, which is

influenced by both the environment and sensors, the acquired

spectral reflectance inevitably contains errors. Most of the current

recognition and classification methods only utilize the spectral

information in the hyperspectral data and ignore the correlation of

pixels in space. This is prone to pepper noise and the misclassification

of objects and largely affects the accuracy of recognition and
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classification (Du et al., 2016). The full utilization of spatial

information in hyperspectral images can partially alleviate the

effects of errors. We therefore used the WSSMF algorithm to

improve the accuracy of the jujube pest recognition algorithm

(Zhao et al., 2012).

We generally consider adjacent pixels in the same area of an

image to be of the same object type. We used the weighted spatial–

spectral mean filtering algorithm and the WSSMF algorithm

reconstructed the central pixel point by measuring the spectral

similarity between the central pixel and the pixels in the

neighborhood (Kang et al., 2013; Zeng et al., 2018) (Figure 4). For a

given pixel point xi, we define the window size w with xi as the center

and the neighborhood radius a=(w-1)/2, then the neighborhood area

W(xij) can be expressed as Equation (2):

W(xij) = xpg j p ∈ ½i − a, i + a�, q ∈ ½i − a, i + a�� �
(2)

If we define k=w2-1, then the elements in the neighborhood

W(xij) are represented as xi, xi1, xi2, xi3…, xik, The size of the weighted

mean filter window w can be adjusted according to the strength of the

spatial distribution features of the image and the weighted spatial–

spectral mean filtering of the central pixel point x in combination with

the neighboring pixels as Equation (3):

xij =
oxpq∈W xijð Þwpqxpq

oxpq∈W xijð Þwpq
= o

i+1
p=i−1oj+1

q=i−1wpqxpq

oi+1
p=i−1oj+1

q=i−1wpq

(3)

where wpq=exp{-g0||xij-xpq||2}+is the weight occupied by

neighboring pixels in the neighborhood of the pixel point space and

the spectral value of the center pixel is used as the spectral value of all

pixels in the neighborhood after weighting according to the distance

distribution of the neighboring pixels from the center pixel point xi, g0
is the spectral factor that adjusts the weight of pixel points between

neighbors, which we replaced using the average of the Euclidean

distance between the neighboring pixels and the central pixel xi, i.e.,

let as Equation (4).

g0 =
1
w2 o

w2

k=1

jjxij − xikjj (4)
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To balance the recognition effect and computational efficiency, we

take the filtering window value as 5. The WSSMF algorithm can use

the spatial correlation in hyperspectral data to effectively reduce the

influence of noise the data, strengthen the spatial correlation between

adjacent image elements and effectively improve the spatial continuity

of the recognition results.

2.3.4 Hyperspectral image clustering
The classification of hyperspectral remote sensing images includes

both supervised and unsupervised classification. In the process of

supervised classification, training sample data and a priori

information are both required and, as a result of the high-

dimensional characteristics of hyperspectral data, the amount of

sample data required for supervised classification grows

exponentially. In practice, it is difficult to obtain a large amount of

hyperspectral sample data, which seriously restricts the classification

accuracy. In unsupervised classification, the data are classified into

different clusters based on the data characteristics only through

similarity metrics (Krishnan et al., 2022). With the development of

artificial intelligence technology, more and more hyperspectral

clustering algorithms have been proposed, but many of them are still

in theory, it is difficult to guarantee robustness in application. The

robustness of K-means, FCM and DP clustering algorithms have been

verified by a large number of applications and experiments. We

therefore used clustering algorithms to cluster the spectral features of

jujube trees and evaluated the effectiveness of the K-means, FCM and

density peak clustering algorithms to recognize the jujube trees infected

with spider mite through the extracted spectral–spatial features.

(1) K-means clustering algorithm

K-means is a well-established unsupervised classification

algorithm for remote sensing images. It is based on distance metrics

and has a low complexity, efficient clustering, excellent scalability and

high efficiency in dealing with large amounts of data (Ji et al., 2019).

We used the K-means clustering algorithm to cluster the date

palm trees based on their spectral features. The spectral features were

divided into k clusters by minimizing the sum of the squared

distances between discrete points and the nearest center of mass. In

the recognition of jujube spider mites, the cluster centers were set to
FIGURE 4

Weighted Spatial-Spectral Mean Filtering algorithm.
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three—that is, healthy date palm trees, date trees infected with jujube

spider mite and the ground surface—and the steps of the K-means

clustering algorithm for jujube pest recognition were as follows:

Step 1: Randomly select three points (c1, c2 and c3) from the

spectral feature set as the initial center of mass.

Step 2: Calculate the Euclidean distance dij=||k-kc||
2 between each

sample point X to each center of mass of the points c1, c2 and c3 and

assign the sample points to their nearest clusters.

Step 3: Recalculate the centers of mass of all clusters.

Step 4: Repeat steps 2 and 3 until the cluster point was in a

stable position.

(2) Fuzzy C-mean clustering algorithm

The FCM is a division-based clustering algorithm that gives the

maximum similarity between objects classified into uniform clusters and

the minimum similarity between different clusters. The FCM algorithm

characterizes the fuzzy segmentation of images with fuzzy affiliation,

defines the non-similarity measure of pixels and clusters as the Euclidean

distance, and constructs the objective function from it. It obtains the

optimal fuzzy segmentation by solving this objective function, which has

the advantage of fast convergence and is widely used in image processing

(Yifan et al., 2021). The steps of FCM clustering algorithm for jujube

hyperspectral image pest recognition are as follows:

Step 1: Given the number of categories m and the allowable error

E, the number of iterations t=1.

Step 2: Initialize the distance centers c1, c2 and c3.

S t ep 3 : Ca lcu la t e the a ffi l i a t ion degree u ( t ) , uij =
½ 1
jjxj−wi jj�

1
m−1

oc
k=1½

1
jjxj − wijj

� 1
m−1

.

Step 4: Correct the clustering center w(t+1), wi =
on

j=1(uij)
mxj

on
j=1(uij)

m

, i = 1, 2, 3……,c.

Step 5: Calculate the error: e =oc
i=1 j jw(t + 1) − w(t) j j2, if e<

E, then the algorithm ends, otherwise t=t+1, repeat the steps.

(3) Density peak clustering algorithm

Density peak clustering is a density-based clustering method. The

algorithm finds the denser points by calculating the density of the data

points and calculating the distance of the denser points. The point

with both the larger density and larger distance values is determined

as the cluster center. Density peak clustering has a better clustering

effect on high-dimensional data and datasets with an uneven density

distribution (Ge et al., 2021). It is simple and accessible to implement

and the clustering results are less sensitive to different parameters.

The steps of the density peak clustering algorithm for jujube

hyperspectral image pest recognition are as follows:

Step 1: Calculate the sample point distance matrix dij=dist(Xi, Xj)

using the spectral sample set data, where Xi is each data point.

Step 2: Determine the neighborhood truncation distance dc.

Step 3: Calculate the local density ri = o
xj∈X

c(dist(Xi,Xj) − dc) and

the center shifted distance di = f
m in
j : ri<rj

(dist(Xi,Xj)), if ∃ j s:t:ri < rj

m ax
j

(dist(Xi,Xj)), otherwise
otherwise for each point.
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Step 4: Select the cluster centers and categorize the non-cluster

center data points.

2.3.5 Accuracy evaluation
In this study, we use the confusion matrix, overall accuracy (OA),

producer accuracy (P) and user accuracy (U) for accuracy evaluation

the confusion matrix was obtained from the recognition results and

ROI validation samples to calculate the OA, Kappa coefficient, P, and

U for each model.

The confusion matrix is a representation used for accuracy

evaluation, and the upper and left sides of the confusion matrix

respectively represent the ground truth sampled pixel values and

model predicted pixel values for health, infection and ground. The

recognition accuracy is evaluated by OA and the Kappa coefficient,

OA represents the probability that the recognition result is consistent

with the corresponding area on the ground, Kappa coefficient is a

consistency test indicator using discrete multivariate techniques, P

and U respectively evaluate the recognition accuracy of a single

category from the perspective of map producers and users. The

formulae are as follows:

OA = o
n
k=1pkk
p 

(5)

where on
k=1pkkrepresents the number of pixels of all samples

correctly identified, p represents the total number of samples.

Kappa =
Po − Pe
1 − Pe

(6)

where Po represents the overall accuracy, Pe is the hypothetical

random agreement.

P =
pc
pt

(7)

where pc represents the correctly recognized samples of a specific

class, and pt is the total number of pixels in the category.

U =
pc
pr

(8)

where pr represents the total number of pixels classified into

this category.
3 Results

We evaluated and compared the different methods of recognizing

jujube spider mite pests with UAV hyperspectral images using ground

sample sites as a reference. We used a confusion matrix, the overall

classification accuracy and the kappa coefficient as evaluation metrics

for the final results.
3.1 Spectral response of jujube spider mite
infestations

We extracted the spectral reflectance of healthy jujube trees with

jujube spider mite infestations recorded on the ground (Figure 5). The

waveform characteristics of the spectral reflectance of jujube trees
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infested with spider mite were similar to those of healthy jujube trees,

although there were some differences. We collected images of healthy

and infected jujube trees to record the differences in the visible, the

healthy jujube trees and leaves appeared green while the infected

jujube trees and leaves were yellowish (Figure 6). The samples infested

with jujube spider mite had a higher reflectance in the visible range

(450–730 nm) than the healthy jujube samples. By contrast, the

reflectance of healthy jujube samples in the near-infrared band

(780–900 nm) was much higher than that of the samples infested

with jujube spider mite. The differences in the spectral waveform

between healthy jujube samples and samples infested with jujube

spider mite provide a theoretical basis for the establishment of

recognition model of jujube spider mite infestations.
3.2 Spectral feature selection and extraction
jujube spider mite infestations

We extracted the spectral features sensitive to jujube spider mite pests

by feature extraction and feature selection. In the feature extraction

process, the principal components of the hyperspectral images were

extracted using PCA and their cumulative information contribution was

counted. The first four principal components contributed 97% of the

information.We extracted the original hyperspectral data with PCA to its

first four principal components as spectral features to achieve linear

dimensionality reduction of the hyperspectral data. We also extracted

four components of the hyperspectral data as spectral features for the

next step of classification and recognition using the LLE nonlinear

dimensionality reduction algorithm.

In the feature selection process, we extracted different

combinations of spectral bands using spectral sensitivity with ASP.

Figure 7 shows that the spectral sensitivity of each band was

calculated separately and the absolute value was taken. The feature

bands were selected with the two constraints of a large spectral

sensitivity and a long inter-band distance interval. To ensure the

effectiveness of the clustering algorithm, the dimension of the

constructed jujube spider mite feature spectral space cannot be too
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high—that is, there cannot be too many bands in the combination of

feature bands.

We selected a total of seven bands of spectral reflectance at 538, 583,

636, 674, 754, 800 and 862 nmas the bands sensitive to jujube trees infected

with spider mites based on the constraints of high spectral sensitivity and

long band intervals (Figure 8A). In the band clustering process, the bands

were clustered according to the amount of band information using the ASP

method.We also calculated the reflectance band combinations for a total of

seven bands at 583, 610, 636, 664, 701, 754 and 773 nm (Figure 8B).
3.3 Establishment and evaluation of the
model for the recognition of jujube spider
mite pests

We evaluated the recognition accuracy of the jujube pest

recognition models constructed by different spectral feature

construction methods combined with different clustering algorithms.

Four different spectral features were extracted using PCA, LLE, spectral

sensitivity and ASP. We then used three clustering methods (K-means,

FCMs and density peak clustering) to establish PCA–K-means, PCA–

FCM, PCA–DP, LLE–K-means, LLE–FCM, LLE–DP, SS–K-means,

SS–FCM, SS–DP, BC–K-means, BC–FCM and BC–DP for jujube

spider mite pest recognition and evaluated their recognition effects.

Figures 9A, B show the results of the feature extraction and

feature selection of the jujube tree pest recognition model mapping.

The model recognition effect is generally consistent with the ground

field survey: the southwestern area is unmanaged abandoned land

with a serious outbreak of jujube tree pests, whereas the rest of the

area contains jujube trees that are generally healthy, with only

sporadic infestations of spider mites.

Table 2 record the results of the different recognition models of

jujube spider mite pests. In general, the recognition methods of

constructing the spectral–spatial features of jujube trees and

clustering were highly accurate, with overall accuracies >93% and

kappa coefficients >0.8. The BC–DP and LLE–DP recognition models

were the best for the recognition of infected jujube trees, with an
FIGURE 5

Spectral characteristics of healthy and infected jujube.
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overall accuracy >96% and kappa coefficients >0.92. The overall

accuracy and kappa coefficient for spider mite pest recognition

were higher than those of the other models. By contrast, the PCA–

K-means and PCA–FCM recognition models had the lowest accuracy

for jujube spider mite pest recognition, with an overall classification

accuracy of 94% and kappa coefficients of about 0.89. Among the

different spectral feature selection methods, the band clustering and

nonlinear dimensionality reduction algorithms achieved better results

than the relatively low overall recognition accuracy of spectral

sensitivity and PCA (Figures 10A, B). Among the different

clustering methods, the density peak clustering algorithm was
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significantly more effective than the K-means and fuzzy C-means

algorithms, whereas the K-means and FCMs algorithms were only

approximately accurate in the recognition of jujube spider mite pests.
3.4 Analysis of recognition accuracy of
different spectral feature selection and
extraction algorithms

Table 3 shows the experimental results of the statistically different

spectral feature construction methods, in which the overall accuracy
FIGURE 7

Spectral sensitivity of jujube spider mite infestation in each waveband.
A B

DC

FIGURE 6

Images of healthy jujube trees and infected jujube trees. (A) Healthy jujube tree, (B) Infected jujube tree, (C) Leaf of healthy jujube trees, (D) Leaf of
infected jujube trees.
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of the recognition results obtained using PCA, LLE, spectral

sensitivity, band clustering and other dimensionality reduction

methods were 94.6, 95.4, 95 and 95.5%, respectively, and the kappa

coefficients were 0.898, 0.914, 0.906 and 0.916, respectively. The

results (Figure 11) showed that band clustering achieved the best

results in the hyperspectral jujube spider mite pest recognition model,

with the highest overall recognition accuracy and kappa coefficient.

The recognition accuracy of the nonlinear dimensionality reduction

method LLE was slightly lower than that of band clustering, which

was also a better feature construction method, but the computational

complexity of its solution was generally higher than that of band

clustering due to the complexity and nonlinearity of the hyperspectral

data. Spectral sensitivity is a classic and extensively experimentally

validated spectral band selection method for pests and diseases, with

an accuracy of 95% for jujube spider mite pest recognition, which was

lower than the band clustering and nonlinear dimensionality

reduction LLE methods. The lowest recognition accuracy was

achieved by PCA, one of the most commonly used hyperspectral

feature extraction methods, with an overall accuracy of about 94.6%

for the recognition of jujube spider mite pests. Overall, the use of

feature selection and extraction algorithms to construct spectral

features to recognize jujube spider mite pests was very effective and

the recognition accuracy was >94% in all cases, with the highest

overall accuracy and kappa coefficient for waveband clustering in

cross-sectional comparison with other methods. This was therefore

the optimum method for constructing spectral features.
3.5 Analysis of recognition accuracy of
different clustering algorithms

Table 4 shows the statistical results of all the experiments using

the same clustering algorithm. The recognition accuracy of the results

obtained using the K-means, FCM and density peak clustering

algorithms were 94.8, 94.7 and 95.8%. The results (Figure 12) show

that density peak clustering was the optimum clustering method in

the hyperspectral infected jujube tree recognition model, with a kappa

coefficient of 0.921 for the recognition results, which is 2% better than

the K-means-FCM method. K-means is a classic clustering algorithm

widely used in the classification of remote sensing images; fuzzy
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clustering has been increasingly used in remote sensing and other

research fields in recent years with the development of fuzzy

mathematics. The difference between K-means and fuzzy clustering

in the accuracy of jujube leaf mite pest recognition was not significant

and the kappa coefficients were both about 0.9. The K-means and

FCM algorithms are distance-based clustering methods. When

dealing with a large amount of data, the clustering results of K-

means and FCM are susceptible to the influence of the initial values,

which restricts them from achieving a high clustering accuracy. The

density peak algorithm first calculates the density of data points to

obtain the centers of clusters, which improves the overall efficiency

and performance of the clustering process.
4 Discussion

4.1 Feasibility analysis of hyperspectral
images for recognizing spider mite pests in
jujube trees

In pest and disease monitoring, a high spatial resolution makes it

possible to obtain agronomic parameters at fine scales, whereas a high

spectral resolution can capture subtle spectral changes caused by crop

stress as a result of pests and diseases. We extracted the spectral

profiles of healthy jujube trees and trees infested by jujube spider mite.

The spectral profiles of jujube trees infested with spider mites had a

significantly higher reflectance in the visible range and a lower

reflectance in the near-infrared range than healthy jujube trees.

This is due to the damage to the chlorophyll and canopy cell tissues

inside the jujube tree as a result of stress from the spider

mite infestations.

In traditional pest monitoring, the spectral features are mainly

characterized by the vegetation index of crops, which is a combination

of the reflectance of different features at multiple wavelengths. In

multispectral remote sensing, the vegetation index is a robust and

effective way of extracting spectral features limited by the number of

wavelengths, but it cannot fully exploit the spectral information in

hyperspectral images from the full wavelength range. Although some

researchers have extracted the optimum spectral bands of plants using

algorithms such as the continuous projection transform, there is still a
A B

FIGURE 8

Combination of feature bands selected. (A) Combination of feature bands selected by spectral sensitivity, (B) combination of feature bands selected by
band clustering.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1078676
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wu et al. 10.3389/fpls.2023.1078676
lack of evaluation of the optimum methods for constructing

spectral features.

We evaluated four methods of constructing spectral features—

PCA, LLE, spectral sensitivity and band clustering—with final

recognition accuracies of 94.6, 95.4, 95 and 95.5%, respectively.

All the dimensionality reduction methods, apart from PCA,

achieved an accuracy of >95% for recognition. The accuracy of

the nonlinear dimensionality reduction method LLE was

significantly higher than that of PCA, which may be caused by

the composition of the hyperspectral data, the high-dimensional

characteristics of the hyperspectral data, information redundancy

and the physical properties of object scattering. Dimensionality
Frontiers in Plant Science 12
reduction of hyperspectral data using linear models usually results

in some errors because they are usually nonlinear, resulting in a

hyperspectral structure that also exhibits nonlineari ty

(Shuangping et al., 2015). The accuracy of feature selection is

slightly higher than that of feature extraction because feature

extraction is based on the amount of information between

bands. Although the spectra of healthy and stressed jujube trees

are different, the spectral curves are similar. Although feature

extraction is commonly achieved based on the difference in

information between bands—in addition to the influence of

weeds, shadows and other factors—the effect of the spectral

features extracted under the approximate spectral features will
A

B

FIGURE 9

Recognition results mapping of jujube spider mite infestations. (A) Recognition results mapping of feature extraction models, (B) Recognition results
mapping of feature selection models.
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TABLE 2 Accuracy evaluation of each model on the recognition results of infected jujube trees.

DR Cluster Healthy Infected Ground Sum U(%) OA(%) Kappa

PCA

K-means

Healthy 4972 465 0 5437 91.4

93.99 0.887

Infected 0 1378 0 1378 100

Ground 64 595 11213 11872 94.4

Sum 5036 2438 11213 18687

P(%) 98.7 56.5 100

FCM

Healthy 4972 425 0 5397 92.1

94.19 0.891

Infected 0 1417 0 1417 100

Ground 64 596 11213 11873 94.4

Sum 5036 2438 11213 18687

P(%) 98.7 58.1 100

DP

Healthy 4841 0 0 4841 100

95.82 0.922

Infected 6 1852 0 1858 99.7

Ground 189 586 11213 11988 93.5

Sum 5036 2438 11213 18687

P(%) 96.1 76 100

LLE

K-means

Healthy 4703 66 0 4769 98.6

95.22 0.911

Infected 113 1878 0 1991 94.3

Ground 220 494 11213 11927 94

Sum 5036 2438 11213 18687

P(%) 93.3 77 100

FCM

Healthy 4647 62 0 4709 98.7

94.99 0.906

Infected 149 1891 0 2040 92.7

Ground 240 485 11213 11938 93.9

Sum 5036 2438 11213 18687

P(%) 92.3 77.6 100

DP

Healthy 4757 2 0 4759 99.9

96.08 0.927

Infected 111 1984 0 2095 94.7

Ground 168 452 11213 11833 94.7

Sum 5036 2438 11213 18687

P(%) 94.4 81.3 100

SS

K-means

Healthy 4852 228 0 5080 95.5

94.97 0.905

Infected 14 1682 0 1696 99.2

Ground 170 528 11213 11911 94.1

Sum 5036 2438 11213 18687

P(%) 96.3 69 100

FCM

Healthy 4775 0 0 4775 100

94.75 0.901
Infected 14 1718 0 1732 99.2

Ground 247 720 11213 12180 91.3

Sum 5036 2438 11213 18687

(Continued)
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be reduced after clustering, which also leads to. In this experiment,

the overall recognition accuracy of spectral feature extraction was

lower than that of feature selection. Feature selection may achieve

better results when the spectral differences of the recognized

features are large.

Extracting spectral–spatial features that effectively distinguish

healthy jujube trees from those infested with spider mites is a key

issue recognizing jujube spider mite infestations. Previous studies
Frontiers in Plant Science 14
either focused on only the spectral features of vegetation and

neglected the spatial information in images, or the texture features

were only introduced as a supplement with a gray level co-occurrence

matrix (Guo et al., 2020). We used a weighted spatial–spectral mean

filtering method to incorporate spatial information from the

hyperspectral data into the spectral features, providing a new way

to effectively use spectral–spatial information in pest and

disease monitoring.
A B

FIGURE 10

Comparison of the evaluation results of each model. (A) Comparison of the evaluation results of feature extraction models, (B) Comparison of the
evaluation results of feature selection models.
TABLE 2 Continued

DR Cluster Healthy Infected Ground Sum U(%) OA(%) Kappa

P(%) 94.8 70.5 100

DP

Healthy 4635 0 6 4641 99.9

95.21 0.91

Infected 153 1944 0 2097 92.7

Ground 248 488 11213 11949 93.8

Sum 5036 2432 11219 18687

P(%) 92 79.9 99.9

BC

K-means

Healthy 4829 0 0 4829 100

95.29 0.911

Infected 0 1764 0 1764 100

Ground 207 674 11213 12094 92.7

Sum 5036 2438 11213 18687

P(%) 95.9 72.4 100

FCM

Healthy 4666 56 0 4722 98.8

95.12 0.909

Infected 142 1896 0 2038 93

Ground 228 486 11213 11927 94

Sum 5036 2438 11213 18687

P(%) 92.7 77.8 100

DP

Healthy 4908 106 0 5014 97.8

96.13 0.928

Infected 0 1843 0 1843 100

Ground 128 489 11213 11830 94.8

Sum 5036 2438 11213 18687

P(%) 97.5 75.6 100
front
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4.2 Analysis of the main factors affecting the
accuracy of jujube spider mite recognition

Spectral reflectance is the most important factor affecting the

recognition of jujube tree pests. The reflectance of healthy and infected

jujube trees will change as a result of the influence of environmental
Frontiers in Plant Science 15
factors such as light and temperature and the hyperspectral sensor will

show deviations in the radiation information recorded from jujube trees.

Unlike low-growing plants (e.g., wheat and rice), when sensors

record radiation information from forest trees such as jujube trees,

they are inevitably affected by shadows caused by shading and the

spectral reflectance is between the ground and healthy jujube trees,
TABLE 3 Accuracy evaluation of recognition results of different spectral feature extraction methods (OA and Kappa of Table 3 is the accuracy evaluation
of all recognition algorithms using some kind of dimensionality reduction).

DR Healthy Infected Ground Sum U(%) OA(%) Kappa

PCA

Healthy 14785 890 0 15675 94.3

94.6 0.898

Infected 6 4647 0 4653 99.8

Ground 317 1777 33639 35733 94.1

Sum 15108 7314 33639 56061

P(%) 97.8 63.5 100

LLE

Healthy 14107 130 0 14237 99.1

95.4 0.914

Infected 373 5753 0 6126 93.9

Ground 628 1431 33639 35698 94.2

Sum 15108 7314 33639 56061

P(%) 93.3 78.7 100

SS

Healthy 14262 228 6 14496 98.4

95 0.906

Infected 181 5344 0 5525 96.7

Ground 665 1736 33639 36040 93.3

Sum 15108 7308 33645 56061

P(%) 94.4 73.1 99.9

BC

Healthy 14403 162 0 14565 98.8

95.5 0.916

Infected 142 5503 0 5645 97.5

Ground 563 1649 33639 35851 93.8

Sum 15108 7314 33639 56061

P(%) 95.3 75.2 100
front
The bold values are the main reference standard for accuracy evaluation (OA and Kappa).
FIGURE 11

Comparison of recognition results of different spectral features.
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which can cause a large number of misclassifications. These factors

cause a large amount of pepper noise, which affects the recognition

accuracy of the model. To reduce the errors caused by shadows and

mismatches between the object and its spectra, we used weighted

spatial–spectral mean filtering to combine the recognized objects with

the spectral reflectance of their neighbors. This makes full use of the

spatial correlation between the pixel points and reduces the influence

of a large amount of pepper noise on the recognition results.

The background also reduces the recognition accuracy. When the

UAV acquires ground images, objects such as bare ground, weeds,
Frontiers in Plant Science 16
agricultural facilities and their cluttered spectral characteristics can

cause bias in the recognition results. When clusters of clusters

increase, this also increases the time and result complexity of the

clustering algorithms. We compared the reflection characteristics of

different objects and used the spectral index to extract the surface

background uniformly, which greatly reduced the influence of the

surface background on the recognition accuracy.

Another influencing factor is the error caused by the high-

dimensional characteristics of hyperspectral data itself, which has a

large amount of redundant information and strong correlations
TABLE 4 Accuracy evaluation of the recognition results of different clustering methods.

Clustering Healthy Infected Ground Sum U(%) OA(%) Kappa

K-means

Healthy 19356 759 0 20115 96.2

94.8 0.902

Infected 127 6702 0 6829 98.1

Ground 661 2291 44852 47804 93.8

Sum 20144 9752 44852 74748

P(%) 96.1 68.7 100

FCM

Healthy 19060 543 0 19603 97.2

94.7 0.9

Infected 305 6922 0 7227 95.8

Ground 779 2287 44852 47918 93.6

Sum 20144 9752 44852 74748

P(%) 94.6 71 100

DP

Healthy 19141 108 0 19249 99.4

95.8 0.921

Infected 270 7623 0 7893 96.6

Ground 733 2015 44852 47600 94.2

Sum 20144 9746 44852 74742

P(%) 95 78.2 100
front
The bold values are the main reference standard for accuracy evaluation (OA and Kappa).
FIGURE 12

Comparison of recognition results of different clustering algorithms.
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between adjacent bands. The constraints of high dimensionality in

machine learning and deep learning based on distance metrics can

reduce the classification accuracy when dealing with high-

dimensional data. We adopted the method of dimensionality

reduction to extract spectral features after data pre-processing,

which reduced the data volume and data dimensionality. We

compared the effects of feature selection and feature extraction and

four methods (the linear dimensionality reduction algorithm, the

nonlinear dimensionality reduction algorithm, spectral sensitivity and

band clustering) on the recognition of jujube spider mite pests. We

verified that using spectral–spatial features combined with clustering

can achieve a good accuracy in jujube spider mite pest recognition.

Although the acquired hyperspectral images have both a high

spectral resolution and high spatial resolution, there are still a large

number of mixed pixels. The spectral reflectance of mixed pixels is

usually between the spectral reflectance of the two types of objects,

which can cause a large number of misclassifications. The more mixed

pixels there are, the larger the error, especially when the spatial

resolution is lower. Although the spatial information has weakened

the influence of mixed pixels, they are still one of the main factors

limiting the recognition accuracy.
4.3 Deficiencies and improvement directions

We explored the high-precision recognition of jujube spider mite

infestations on a regional scale using UAV hyperspectral data. Low-

altitude remote sensing is highly accurate, but it is also limited by

time, space, funding and other factors, and there is still a need to

develop three-dimensional, accurate, real-time, wide-scale and all-

round pest monitoring systems.

The traditional clustering algorithms still have the defects of low

computational efficiency and poor noise immunity. Similarity-

constrained subspace clustering algorithm achieves fast clustering of

hyperspectral images by sparse matrix and spatial filtering, which

greatly reduces the clustering time of hyperspectral images and

effectively improves the clustering performance (Hinojosa et al.,

2021). Subspace clustering via dictionary learning with adaptive

regularization uses dictionary modeling to achieve effective

subspace clustering, which improves the robustness of HIS against

noise and spectral variation (Huang et al., 2021). Algorithms

mentioned above have good promise in improving the

computational efficiency and noise resistance of clustering

algorithms for recognizing spider mite infestations, these advanced

clustering algorithms could be applied in subsequent studies.

For data processing, we used the clustering method in

unsupervised learning due to the high dimensionality of

hyperspectral data and the difficulty of obtaining ground sample

points. After increasing the number of ground samples and further

improving the data quality, supervised learning and deep learning

methods were used to construct the recognition model.
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In terms of data source resolution, the UAV-mounted

spectrometer has a high accuracy, but is limited by regional and

cost factors. Achieving large-scale, real-time pest monitoring requires

a satellite-scale pest recognition model and the establishment of a link

between aerial and satellite measurements.

At present, there are few available hyperspectral satellites and

their spatial resolution is low. It is worth exploring whether using a

multispectral satellite with a low spectral and high spatial resolution

for pest recognition and monitoring will achieve better results. We

need to find the optimum balance of spectral and spatial resolution to

achieve the optimum solution for pest recognition modeling.

The mixed image element problem is an important factor limiting

the classification accuracy of remote sensing images. At present, there

has been much research on mixed image decomposition. An

important direction to improving the accuracy of pest recognition

needs to consider how to integrate the mixed image decomposition

algorithm into the disease recognition model or to reduce the error

caused by the mixed image to an acceptable range.
5 Conclusions

We have presented a spider mite pest recognition model based on

constructing the spectral features of jujube trees through feature extraction

and feature selection, incorporating spatial information into the images

using weighted spatial–spectral mean filtering and recognizing spider mite

infestations of jujube trees using clustering. Through experimental analysis,

we showed that this recognition model has a high recognition accuracy

(>93%) for jujube spider mite infestations. The BC–DP algorithm was the

best model for jujube mite pest recognition, with an overall accuracy of

96.13% and a kappa coefficient of 0.928. This recognition model is not

limited to the recognition of jujube spider mite infestations and could be

extended to the recognition of other crop diseases and object classification,

although further experimental verification is required.
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