AUTHOR=Hoffmann Danielle Yvonne , Shachar-Hill Yair TITLE=Do betaine lipids replace phosphatidylcholine as fatty acid editing hubs in microalgae? JOURNAL=Frontiers in Plant Science VOLUME=14 YEAR=2023 URL=https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2023.1077347 DOI=10.3389/fpls.2023.1077347 ISSN=1664-462X ABSTRACT=

Acyl editing refers to a deacylation and reacylation cycle on a lipid, which allows for fatty acid desaturation and modification prior to being removed and incorporated into other pools. Acyl editing is an important determinant of glycerolipid synthesis and has been well-characterized in land plants, thus this review begins with an overview of acyl editing in plants. Much less is known about acyl editing in algae, including the extent to which acyl editing impacts lipid synthesis and on which lipid substrate(s) it occurs. This review compares what is known about acyl editing on its major hub phosphatidylcholine (PC) in land plants with the evidence for acyl editing of betaine lipids such as diacylglyceryltrimethylhomoserine (DGTS), the structural analog that replaces PC in several species of microalgae. In land plants, PC is also known to be a major source of fatty acids and diacylglycerol (DAG) for synthesis of the neutral lipid triacylglycerol (TAG). We review the evidence that DGTS contributes substantially to TAG accumulation in algae as a source of fatty acids, but not as a precursor to DAG. We conclude with evidence of acyl editing on other membrane lipid substrates in plants and algae apart from PC or DGTS, and discuss future analyses to elucidate the role of DGTS and other betaine lipids in acyl editing in microalgae.