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Tobacco is an important economic crop and the main raw material of cigarette

products. Nowadays, with the increasing consumer demand for high-quality

cigarettes, the requirements for their main raw materials are also varying. In

general, tobacco quality is primarily determined by the exterior quality, inherent

quality, chemical compositions, and physical properties. All these aspects are

formed during the growing season and are vulnerable to many environmental

factors, such as climate, geography, irrigation, fertilization, diseases and pests,

etc. Therefore, there is a great demand for tobacco growth monitoring and near

real-time quality evaluation. Herein, hyperspectral remote sensing (HRS) is

increasingly being considered as a cost-effective alternative to traditional

destructive field sampling methods and laboratory trials to determine various

agronomic parameters of tobacco with the assistance of diverse hyperspectral

vegetation indices andmachine learning algorithms. In light of this, we conduct a

comprehensive review of the HRS applications in tobacco production

management. In this review, we briefly sketch the principles of HRS and

commonly used data acquisition system platforms. We detail the specific

applications and methodologies for tobacco quality estimation, yield

prediction, and stress detection. Finally, we discuss the major challenges and

future opportunities for potential application prospects. We hope that this review

could provide interested researchers, practitioners, or readers with a basic

understanding of current HRS applications in tobacco production

management, and give some guidelines for practical works.

KEYWORDS

tobacco, hyperspectral remote sensing, quality estimation, yield prediction, stress
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1 Introduction

As the primary raw material for a variety of cigarette products,

tobacco is one of the most important economic crops, both in China

and around the world. China grows nearly one-third of the world’s

tobacco crop (Hu et al., 2010). The relevant industries provide the

governments with substantial fiscal revenue. The enormous

economic benefits are inextricably linked to the meticulous field

management of countless practitioners. However, in recent years, the

tobacco industry begins to face bottlenecks in development. On the

one hand, with the gradual increase in awareness of tobacco risks,

people’s attitudes toward tobacco consumption have changed.

Tobacco products are no longer seen as ordinary commodities, but

as harmful ones. A number of consumers are seeking high-quality,

less harmful products. On the other hand, as shown in Figure 1, from

2013 to 2019, the number of tobacco farmers declines from 1.84

million to 0.92 million, a reduction of nearly 50% 1, leading to

unstable yields and unsustainable development (Jia Kang, 2020). The

reasons are mainly due to the tobacco planting is a labor-intensive

industry with high labor intensity and needs to purchase roasting

facilities. The cost benefit ratio of tobacco is lower than other crops

(e.g., soybean, corn, and peanuts). Moreover, current tobacco field

management methods still largely rely on the experience of tobacco

farmers. Take fertilization as an example: when to fertilize, which

areas to fertilize, and how much to fertilize are all determined by

farmers’ observation. The advantages of this empirical method are

simple and fast. Because it doesn’t require any assistance from the

instruments. However, it requires farmers or practitioners to be able

tomake a rapid and accurate diagnosis of tobacco growth and quality,

which is not easy in practice. This qualitative approach not only

doesn’t reduce the field management costs, but also affects the

accurate assessment of tobacco growth status and quality. Besides

the empirical method, laboratory testing is another commonly used

tobacco quality diagnosis method (Deng et al., 2020). It can measure

various agronomic parameters quantitatively such as leaf nitrogen,

chlorophyll, water, and nicotine content. This approach can

accurately obtain information of various components in tobacco

leaves. However, it costs more detection time and expenses,

requires considerable professional knowledge, which is rarely used

in the actual production (Deng et al., 2020).

In light of this, a concept of “precision tobacco agriculture

(PTA)” was born. It inherited from the concept of precision

agriculture (PA) or site-specific management (SSM) (Bachmaier

and Gandorfer, 2009; Carrow et al., 2010). In our view, PTA is a

cost-effective method to address above bottlenecks and to achieve

sustainable development (Chang et al., 2014), and the specific

applications of PTA should including growth and quality

estimation, yield prediction, and stress detection (e.g., diseases,

pests, or heavy metals). In China, the first work on tobacco

management zones was carried out in 2009. And the results
1 Data source: The State Tobacco Monopoly Administration’s annual

National Tobacco Work Report, evaluated based on the national total

income of tobacco farmers and average income per household.
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showed that soil nutrients were similar within the management

zones, which provided an information basis for SSM in tobacco

fields (Xin-Zhong et al., 2009). In this case, the field information

acquisition was the first step in PTA applications. However, the

traditional destructive field sampling methods and laboratory

measurement are generally labor-intensive and time-consuming.

Therefore, there is a great demand for a method that can accurately

and quickly obtain the field information on tobacco growth and

quality during the growing seasons.

Fortunately, HRS technology, with its contactless observation,

high spectral resolution, and flexibility, is gradually becoming

recognized as a suitable alternative to traditional field sampling

methods to obtain crop information (Park and Lu, 2015; Ma et al.,

2022). In the field of agricultural, the most important ability of HRS is

that it can obtain sufficient hyperspectral reflectance data of crops

with a non-destructive mean, and with the assistance of various

regression modeling algorithms, the relationship between reflectance

data and various crop agronomic traits (e.g., leaf nitrogen,

chlorophyll, water content, etc.) can be inferred quantitatively

(Weiss et al., 2020; Jiang et al., 2022). This process is known as

“spectral inversion”. Furthermore, with the development of UAV

system platforms and lightweight hyperspectral imaging sensors, the

inversion missions of those large-scale or scattered farmlands will

become easier and faster (Johansen et al., 2019; Liao et al., 2020). The

UAV-borne HRS has demonstrated a bright application prospect

(Aasen et al., 2015; Zhong et al., 2018). As for HRS applications for

PTA applications, it has also made great improvements (Long et al.,

2019; Zhu et al., 2020). According to our survey, studies on tobacco

are increasing yearly. Figure 2 shows the number of related

publications from 2010 to 2022. The data are from the “Web of

Science” (https://www.webofscience.com) website with the topics

“tobacco” and “hyperspectral”. We can find a gradual increase in

the number of publications on tobacco. However, a large portion of

them are patents. There are not many research articles. This is also

one of the reasons why we drafted this review. We hope that

interested researchers gain some insight into the latest advances in

scientific research of HRS for PTA applications from our collection

and summary.
FIGURE 1

Number of tobacco farmers in China during 2010-2019 (million).
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In this review, we comprehensively retrieved the research of HRS

in PTA to provide readers or researchers with an enhanced

perceptiveness. The cited references mainly come from the Web of

Science, IEEE Xplore (https://ieeexplore.ieee.org), and Google Scholar

(https://scholar.google.com) websites. A few form the CNKI 2

(https://www.cnki.net) website. The literature types include

academic journals, international conferences, professional books,

and dissertations. Retrieval keywords consist of “hyperspectral

remote sensing”, “agricultural remote sensing”, “tobacco remote

sensing”, “UAV hyperspectral & tobacco”, and the combinations of

them. To ensure the timeliness of references, we tend to adopt

literatures with relatively recent publication dates. Thus, references

cited in this review were mainly published from 2010 to 2022.

Furthermore, according to our retrieval results, the existing reviews

related HRS and agriculture applications cover various aspects: UAV-

borne HRS (Xiang et al., 2019), hyperspectral imaging technologies

(Adão et al., 2017; Mahlein et al., 2018), precision agricultural

applications (Bégué et al., 2018; Latif, 2018), leaf area index (LAI)

(Ke et al., 2016), crop yield prediction and nitrogen status assessment

(Chlingaryan et al., 2018; Fu et al., 2021), wheat grain protein (Ma

et al., 2022), etc. The rest of this article is organized as follows: in

section 2, we introduce the principles and workflow of HRS

applications for PTA; in section 3, we compare three commonly

used hyperspectral data acquisition system platforms; the details of

specific applications and methodologies are presented in section 4;

the discussion of issues and recommendations is arranged in section

5; the conclusion is in section 6. We hope that new readers and

researchers will have a holistic view according to our presentation.
2 Principles and workflow
of HRS for PTA

Minerals on earth usually have unique diagnostic spectrum

reflectance signatures (Vane and Goetz, 1993). Green plants, or
2 China National Knowledge Infrastructure
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plant ecosystems, are composed of the same compounds, which also

have numerous unique diagnostic absorption features in the solar

reflected spectrum from 400 to 2500nm. To give readers a visualized

understanding of this unique feature. Figure 3 shows a typical

reflectance curve of tobacco leaves containing several absorption

and reflection features (400-1000 nm) caused by various biological

parameters such as chlorophyll, water, and protein. This

characteristic allows us to determine the physical, chemical, and

biological compositions of plants with the help of remote sensing

technologies, which are built on spectral radiometry theory

(Borengasser et al., 2007).

As the frontier technology of the current remote sensing field,

hyperspectral imaging technologies can obtain sufficient spectra

information of ground objects from each pixel in an image of a

scene. Hyperspectral reflectance data also have been verified to be

more efficient in crop phenotypic traits estimation (Wang et al.,

2018; Angel and McCabe, 2022), as well as target classification and

precision agriculture (Teke et al., 2013; Zhao et al., 2018).

Compared to traditional multispectral remote sensing (MRS), the

main differences between HRS and MRS include two aspects. The

first is HRS imaging sensors can obtain image data in several

hundred narrow and contiguous spectral bands, while the MRS

sensors can only measure image data in a few wide and discrete

spectral bands. As shown in Figure 4, the wavelength range is from

400 to 1000 nm. The MRS has four discrete bands, usually including

red, green, blue, and near-infrared bands, whereas the HRS has 100

contiguous bands. The second is HRS data can be used to extract the

spectral features of most natural materials, which MRS data cannot

do. HRS images contain much more spectral information than

MRS. So, HRS has a greater potential for detecting differences

among materials on the earth’s 120 surface (Pu, 2017).

Figure 5 shows the general workflow of HRS applications for

tobacco quality estimation, yield prediction, and disaster level

assessment. The first is UAV-borne hyperspectral image data

acquisition. The complete improved image can be obtained by

stitching and alignment the original images. Radiometric
FIGURE 2

Search results with the topic of “tobacco” and “hyperspectral” in
Web of Science from 2010 to 2022.
FIGURE 3

Major absorption and reflection features and locations of
tobacco leaves.
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correction and geometric calibration are also necessary to reduce

noise interference, improve reflectance precision and radiometric

accuracy. These operations can convert the original images into the

hyperspectral reflectance data of the whole tobacco fields.

Radiometric correction is essential for correcting systematic error

and radiation distortion (Watts et al., 2012). Considering the

atmospheric gases and aerosols absorption during the image

collection, methods based on the radiation transmission theory

have been widely used for radiation correction, such as MODTRAN

(Berk et al., 2014), 6S (Hu et al., 2013), and FLAASH (Vibhute et al.,

2015). Moreover, due to the effects of hyperspectral sensors, system

platforms, and terrains in data acquisition. The generated image

pixels are squeezed, stretched, distorted, and offset with respect to

the actual position of planting areas. Thus, geometric correction is

necessary too. In practice, both radiometric and geometric

corrections are well-established techniques that can be processed

directly in professional software (e.g. ENVI, ERDAS, and IDRISI).

The obtained hyperspectral image contains sufficient spectra

information of tobacco leaves from each pixel in an image of a

scene. However, not all spectral bands are sensitive to the observed
Frontiers in Plant Science 04
indicators. The sensitivity of different bands is varied. Besides,

hyperspectral data also have a high dimensionality and high

similarity of adjacent bands. So, it is necessary to perform

dimensionality reduction and denoising. In order to select the

most sensitive spectral bands, various data transformation or

feature extraction algorithms are applied, such as the principal

component analysis (PCA), the successive projection algorithm

(SPA), the elastic net (EN) algorithm, and fuzzy clustering

(Koonsanit et al., 2012; Cohen et al., 2013; Liu and Li, 2017;

Zhang et al., 2017). The details of those commonly used data

dimensionality reduction methods are described in the review

Sun and Du (2019).

After performing hyperspectral dimensionality reduction,

spectral inversion is conducted to extract information from

hyperspectral images for various data mining tasks. Here,

inversion modeling plays an important role in quantitative

estimation. It bridges the gap between hyperspectral reflectance

data and agronomic traits of tobacco. In general, most of the

inversion methods can be divided into empirical models and

mechanistic approaches, or a combination of them Weiss et al.
FIGURE 4

Comparison of MRS (left) and HRS (right) data, x, y indicate the spatial domain, l indicates the spectral domain.
FIGURE 5

The general workflow of UAV-borne HRS for PTA applications.
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(2020). The empirical models mainly rely on data collection and

statistics, also known as “regressions”, such as partial least squares

regression (PLSR) (Dong et al., 2015), support vector machine

(SVM) (Mountrakis et al., 2011), random forest (RF) (Johansen

et al., 2020), neural networks (Yuan et al., 2017), etc. Its main task is

to fit the numerical relationship between the measured agronomy

traits in practical and spectral features. As for the mechanistic

methods, they are mainly based on assumptions and modeling. For

example, radiative transfer model (RTM) (Erten et al., 2016),

physically-based model (Verrelst et al., 2019), SVM (Rivera et al.,

2015), and neural network (Ermida et al., 2017). Furthermore, the

deep learning methods of convolutional neural networks (CNN) are

very effective for extracting agronomic features from HRS images

(Kattenborn et al., 2021). The existing studies demonstrate that

CNN can be utilized in various specific problems, such as tree

species classification (Sothe et al., 2020), palm tree detection

(Freudenberg et al., 2019), mapping plant communities (Wagner

et al., 2019), etc. It provides researchers with a more effective HRS

image analysis method, and numerous works have demonstrated

that CNN outperforms shallow machine learning methods.
3 Moderate Resolution Imaging Spectroradiometer

4 China National Space Administration

5 National Aeronautics and Space Administration
3 Available HRS data
acquisition systems

Data is the most important part of HRS for tobacco agronomic

traits analysis. In general, there are two kinds of data that are

necessary. One is the hyperspectral reflectance data of tobacco

fields. Another is the corresponding agronomic parameter data.

The former can be obtained by various hyperspectral data

acquisition systems (e.g., handheld spectrometer, UAV-borne,

and satellite). The latter is measured by specific instruments and

laboratory analysis (e.g., LAI-2500, SPAD-502Plus, and

AutoAnalyzer 3), which may take some time to get results. In this

section, we have a brief comparison between the handheld

spectrometer, UAV-borne, and satellite systems. An intuitive

comparison can be found in Table 1.

The first is handheld spectrometers (e.g., ASD FieldSpec 4,

Specim-IQ). They have a high resolution and signal-to-noise ratio,

better intensity accuracy and wavelength accuracy, as well as strong

resistance to external interference and excellent instrument

stability. They also come with a collection of great calculation

tools and can perform some complex calculations, such as

derivation, deconvolution, etc. In the agricultural field, due to its

small size, lightweight, and convenient carrying. Some field

experiments can be carried out and the measurement results can

be displayed within seconds, which greatly improves efficiency.

Thus, they are widely adopted for crop agronomic traits monitoring

(Jia et al., 2013b; Liang et al., 2018; Cao et al., 2021). The

shortcoming is that they take a lot of time to collect data due to

the small coverage, especially when dealing with large

planting areas.

The second is the UAV-borne HRS system platforms (e.g.,

V185G, GaiaSky-mini3-VN). UAV platforms are more flexible,

especially in terms of revisit frequency. They can perform

observation tasks in a specific area at any time, as long as the
Frontiers in Plant Science 05
meteorological conditions are favorable (e.g., low wind speed, clear

sky, and cloudless), which increases the efficiency of hyperspectral

image acquisition. The application of UAV platforms makes it

possible to obtain and analyze tobacco plants quickly at the canopy

level (Inoue et al., 2012; Zhu et al., 2020; Liu et al., 2021). In

addition, with the improvement in load capacity and battery

endurance, there is also significant performance in face of large-

scale regional observation tasks (Li et al., 2022). Compared to

handheld spectrometers, UAV platforms save a lot of manual

work and time; and compared to satellite platforms, UAV

platforms are relatively accurate and convenient observation tools.

The working height of UAV-borne HRS is usually 100 m. Thus the

spatial resolution of UAV imagery is higher than satellite but lower

than handheld. There are also some limitations of the UAV itself,

such as flight duration, flight stability, and the maximum load, all of

which still need to be improved.

The third is satellite-based hyperspectral data observation

system platforms (e.g., GF-5, EO-1 Hyperion, and MODIS3). All

of them have a greater swath width and larger spatial coverage. It

makes them have a significant performance in face of large-area

observation tasks (Chaurasia et al., 2006; Wang et al., 2021). But

their spatial and temporal resolutions are relatively low. The

working height is usually several hundred kilometers and the

revisiting cycle often takes a few days. Because of the huge launch

and maintenance cost, most of the satellite system platforms are

supported by governments or large business organizations (e.g.,

CNSA4, NASA5, and Space X). However, the public can access some

satellite data for free or by paying some fees (e.g., Landsat, Sentinel,

and Gaofen). It should be noted that the quality of satellite

hyperspectral images is highly susceptible to environmental

factors such as cloud cover, rainy weather, and clutter reflections

(Mulla, 2013). So, It may be difficult for the public to collect high-

quality satellite hyperspectral images focused on the specific area

and timings (Zhong et al., 2018).
4 Applications and methods

In this section, the specific studies are introduced from three

aspects: quality estimation, yield prediction, and stress detection.
4.1 Quality estimation

Tobacco quality is a holistic and dynamic concept, high-quality

tobacco evolves over time, geography as well as consumers’ desires.

In general, tobacco quality mainly includes four aspects:
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• Exterior quality: quality indicators that can be judged by

human senses, including leaf color, length & width,

structure, chrominance, completeness, etc.

• Inherent quality: the aroma and eating flavor when

smoking, completely dependent on human feelings.

• Chemical compositions: usually measured in the laboratory,

mainly including total nitrogen, chlorophyll, total sugar,

nicotine, protein, starch, etc.

• Physical properties: flammability, absorbent, weight per

unit area, electrical conductivity, etc.
The existing researches on tobacco quality estimation are

decentralized, and the studies mainly focus on chemical

compositions and exterior quality, rarely involving inherent

quality and physical properties (not the forte of HRS technology).

However, the inherent quality can be inferred by chemical

compositions (Shen et al., 2017).

4.1.1 Chemical compositions
4.1.1.1 Nitrogen

Nitrogen is the most important nutrient for tobacco growth.

Over-and-under-application of nitrogen fertilizers not only limits

tobacco productivity but also leads to a negative impact on quality.

The tobacco plants absorb the most nitrogen after 40 days of

transplanting. An excessive supply of nitrogen fertilizer will result

in the leaves being larger than normal, delaying tobacco maturity.

Insufficient nitrogen will also lead to a delay in ripening, leaves

becoming brown, and declining quality (Li, 2006). Moreover, low

leaf nitrogen content (LNC) makes it taste bland, and high LNC will

lead to a pungent smell (Shen et al., 2017). Thus, an accurate

estimation of nitrogen status is essential to determine the final

quality and total yield, improve the use efficiency of nitrogen

fertilizer, and reduce environmental pollution (Li et al., 2019).

Jia et al. (2013b) extracted the central band that is sensitive to

tobacco LNC based on the coefficient of determination (R2) of the

linear regression model using the specific ratio vegetation index

(SR) and normalized difference vegetation index (NDVI) as

independent variables. The optimum band combination was R590/

R1980 for SR, and (R1970-R650)/(R1970+R650) for NDVI. They selected

20 SR and 20 NDVI band combinations with the higher R2 as the

independent variables of stepwise multiple linear regression

(SMLR) and error back propagation neural network (BPNN)

models to inverse the tobacco LNC. The experiment results

showed that the BPNN model achieved the best performance

with R2 was 0.91 and the root mean square error (RMSE) was

0.09. The R2 and RMSE of the SMLR model were 0.86 and 0.60,

respectively. Liang et al. (2014) investigated the relationship
tiers in Plant Science 06
between spectral features of tobacco cultivars and their nitrogen

use. A 15N tracer pot experiment was conducted with four tobacco

cultivars under different nitrogen use efficiency. The authors

configured two nitrogen levels, N1 (1.0 g/pot) and N2 (3.0 g/pot),

and utilized three VIs (i.e., ratio vegetation index (RVI), difference

vegetation index (DVI), and NDVI) to evaluate the nitrogen

use efficiency.

4.1.1.2 Phosphorus

Phosphorus is an essential mineral element required for tobacco

photosynthesis and respiration. Li et al. (2014) generated a visual

reporting system to monitor the dynamic changes of phosphorus

concentration by expressing a purple gene extracted from

cauliflower. The authors selected wild-type and transgenic

tobacco plants as the experiment targets and studied their

correlation between leaf phosphorus concentration and the

hyperspectral reflectance at 554 nm. The results showed that the

R2 of transgenic tobacco leaves was 0.96, and the R2 of wild-type

leaves was only 0.45.

4.1.1.3 Potassium

Potassium is also an essential mineral element that can increase

the intensity of photosynthesis. In general, the higher content of

potassium in tobacco leaves, the higher yields and quality will be. Li

(2006) studied the quantitative relationship between the leaf

potassium concentration and 19 spectral parameters of tobacco.

The modeling method was exponential fit. According to the fitting

results, there were three spectral parameters achieved better

performance: pigment-specific simple ratio (PSSRa), optimized

soil adjusted vegetation index (OSAVI), and NDVI (670, 780

nm), the corresponding R2 were 0.929, 0.928, and 0.927,

respectively. Junying et al. (2020a) proposed a method to predict

tobacco K2O content based on UAV-borne hyperspectral imaging.

The model equation was:

Y = 5:423 − 486:029� R498:6, (1)

where Y was the predicted value of tobacco K2O content, and

R498.6 was the first derivative of the logarithm of original reflectivity

at 498.6 nm. The results on test set showed that the RMSE of this

model was 0.40, and the absolute value of the mean relative error

was 8.04%.

4.1.1.4 Chlorophyll

Chlorophyll is an important indicator in the process of plant

growth, including photosynthetic rate, nutritional status, and

maturity (Peng and Gitelson, 2012). Especially for tobacco, a

broad-leaf crop with leaves harvested, leaf chlorophyll content
TABLE 1 A comparison between handheld spectrometer, UAV-borne, and satellite-borne HRS platforms.

Platform Height Weight Spatial resolution Spectrum Revisit rate Holding cost

Handheld 1.3m 5.44kg Millimeter-level 0.35-2.5um Minutes Medium

UAV 80m 10.6kg Centimeter-level 0.4-1um Hours High

Satellite 705km 250kg Meter-level 0.4-14.4um Days Huge
The above parameters are referenced to ASD FieldSpec 4, DJ M600-borne GaiaSky-mini3-VN, and MODIS, respectively.
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plays an important role in growth and quality. Guo et al. (2019)

investigated the relationship between leaf chlorophyll content

(LCC) and various tobacco canopy hyperspectral parameters,

including 9 parameters based on red edge position, 3 parameters

based on red edge area, and 6 parameters based on VIs. Among

them, 7 parameters with high significant level were taken as the

independent variables of six regression functions to build inversion

models (i.e., linear, exponential, parabolic, power, logarithm, and

cubic regression models). Thus, there were 42 inversion results in

total. The combination of (SDr-SDy)/(SDr+SDy)
6 and linear

regression obtained the best performance with R2 = 0.948,

RMSE=0.127 mg/g, and relative error (RE)=9.31%. Jia et al.

(2020) conducted an spectral inversion of tobacco chlorophyll-a

content under different light qualities. The leaf spectral reflectance

data was collected by an ASD field spectrometer. Linear regression

and BPNN models were applied to predict leaf chlorophyll-a

content. The results demonstrated that BPNN has the most

reliable performance with R2 = 0.86 and RMSE=0.05. A similar

study can also be found in Dongyun et al. (2015). Roughly the same

parameters were used to estimate the LCC of tobacco leaves infected

by the mosaic virus. The best correlation was achieved for the

combination of (SDr-SDy)/(SDr+SDy) and SDr/SDb under the

stepwise regression model (R2 = 0.885).

4.1.1.5 Total sugar

Total sugar is an important biochemical indicator reflecting the

quality of tobacco leaves. It has a balanced effect on the taste of

tobacco products. Junying et al. (2020b) proposed a method to

predict the total sugar content based on UAV-borne hyperspectral

imaging. The model was built by combining the spectral

characteristics and the measured total sugar values. The function

formula was:

Y = 24:74 − 3384:014� R863:59 − 1786:102� R414:7

− 2741:762� R469:29, (2)

where Y was the predicted content of total sugar, R863.59, R414.7,

and R469.29 denoted the first derivative of the logarithm of the

original spectral reflectance at 863.59, 414.7, and 469.29 nm,

respectively. According to the sample test results, the RMSE of

this model was 1.84, and the absolute value of the mean relative

error was 8.82%. Soares et al. (2019) developed an inline

simultaneous analytical method to quantify the leaf sugar content

using near-infrared hyperspectral imaging. The inversion model

was established offline using partial least square regression (PLSR).

The R2 and RMSE were 0.778 and 2.28, respectively.

4.1.1.6 Alkaloid

Nicotine is the main alkaloid in tobacco and is the primary

factor in the commercial value of tobacco Henry et al. (2019).

Moreover, nicotine is also the foremost chemical that influences

tobacco quality. The leaf nicotine content is a key indicator for

estimating the quality of fresh tobacco leaves (Dou et al., 2016). In
6 SDr(y)was the sum of the first-order derivatives inside red (yellow) edge.
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order to quantitatively determine the relationship between leaf

nicotine content and spectral reflectance, Jia et al. (2013a)

explored the specific bands that can be utilized to detect nicotine.

The SMLR and BPNN were applied to establish the inversion model

between hyperspectral reflectance and leaf nicotine content. The

experiment results showed that BPNN had the most significant

performance with R2 = 0.968 and RMSE=0.109. Soares et al. (2019)

developed an inline simultaneous analytical method to quantify

nicotine content using near-infrared hyperspectral imaging. They

used PLSR and achieved a result of R2 = 0.798 and RMSE=0.447.

Dou et al. (2016) evaluated the relationship between 11 spectral

parameters and leaf nicotine content. The first-order derivative of

reflectance data was calculated to perform a standardized analysis.

Furthermore, five methods (e.g., linear, power, logarithmic,

exponential, and negative exponential) were utilized to fit the

values. The statistical analysis showed that the combination of

power function and (SDr-SDy)/(SDr+SDy) obtained the best

results with R2 = 0.8112, RMSE=0.2272, and relative error (RE)=

14.42%. Divyanth et al. (2022) applied hyperspectral and four

machine learning algorithms to predict tobacco nicotine content.

The average spectra of region of interest (ROI) were used to

establish the inversion model based on PLSR, RF, support vector

regression (SVR), and PLSRâ€”variable importance in projection

(PLSRâ€”VIP). The models were evaluated using leave-one-out

cross-validation and on 15% test set. The results showed that the

PLSR (R2 = 0.93, RMSE=0.21%) outperformed SVR (R2 = 0.89,

RMSE=0.36%), RF (R2 = 0.90, RMSE=0.35%), and PLSR-VIP (R2 =

0.91, RMSE=0.30%).
4.1.1.7 Moisture

Leaf moisture content is an important index for tobacco

cultivation and precision field management. Sun et al. (2016)

proposed a fast and non-destructive way to evaluate the leaf

moisture content of tobacco leaves. Mahalanobis distance coupled

with Monte Carlo cross-validation (MCCV) was applied to

eliminate outlier samples. Savitzky-golay smoothing (SG),

roughness penalty smoothing (RPS), kernel smoothing (KS), and

median smoothing (MS) were applied to preprocess the raw data.

Then SPA and MLR were used to select crucial bands and build the

inversion model, respectively. The results showed that the best

model was MD-MCCV-MS (R2 = 0.9132, RMSE=0.1162).
4.1.2 Exterior quality
4.1.2.1 Leaf area index

Leaf area index (LAI) is one of the most essential exterior

parameters of tobacco. It reflects the tobacco canopy structure and

growth status. Two external quality indicators, max leaf width &

length, are necessary to determine LAI. So, we classified LAI into

external quality. The relevant formula is:

LAI = kϱ
o
m

j=1
o
n

i=1
(Lij �Wij)

m
, (3)

where k is a constant with a value of 0.6345, ϱ is the planting

density, Lij is the value of leaf length,Wij is the value leaf width,m is
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the number of measured plants, and n is the number of leaves of

each plant, respectively.

Chaurasia et al. (2006) estimated the field-scale LAI of tobacco

using MRS data from a satellite platform. The ground LAI data were

measured by LAI-2000 (LICOR Inc., Nebraska) canopy analyzer.

Two regression models (exponential and power functions) were

conducted between the measured ground LAI and three vegetation

indices (SR, NDVI, SAVI). The power model performed better than

the exponential model for LAI estimation (NDVI: R2 = 0.62). This

work demonstrated the feasibility of satellite MRS data for field-

scale LAI estimation, although the correlation is not high.

ZhengYang et al. (2011) assessed and compared the performance

of some hyperspectral models in terms of their prediction capability

of tobacco LAI. The hyperspectral data were collected in different

water and nitrogen conditions by handheld spectrometer. Four

vegetation indices, NDVI, RVI, modified soil-adjusted vegetation

index (MSAVI), and modified second triangular vegetation index

(MTVI2). The PCA method was applied for hyperspectral data

dimensionality reduction, and BPNN was used for LAI inversion.

The R2 and RMSE of the BPNN model were 0.889 and 0.195,

respectively. Qiao et al. (2011) studied the relationship between

NDVI and LAI. A linear regression model was built and the R2

was 0.568.

4.1.2.2 Tobacco classification

Tobacco classification is an important method for evaluating

the grades of tobacco leaves. The determination of tobacco grades

directly involves the purchase prices, which is important for

farmers, enterprises, and other parties, so the relevant study is of

great significance in practice. Current research advances in tobacco

classification have focused on scoring tobacco leaves for size, color,

structure, chrominance, or completeness using RGB images (Bose

et al., 2016; Fan et al., 2018; Lin et al., 2022). Considering that the

hyperspectral images contains more spectral features than RGB

images. In this case, we can establish a relationship between the

chemical compositions and exterior qualities according to the

hyperspectral reflectance data (Liu and Shi, 2020). Thus, the

classification accuracy can be greatly improved. And the

feasibility has been proven in studies on 366 the classification of

tobacco leaves health grades.

Zhu et al. (2017) used three machine learning algorithms to

achieve early detection of tobacco mosaic virus via hyperspectral

images. Herein, the SPA method was adopted to select the effective

wavelengths to reduce the redundant spectral information. The RF,

SVM, and BPNN were applied to guarantee the detection accuracy

and obtain more valuable features. The experiment results showed

that the overall accuracy of the train set and test set varied between

84.17-100.00% and 75.00-98.33%, respectively. The study in Gu

et al. (2019) attested to the applicability of HRS imaging technology

in the detection of tobacco tomato spotted wilt virus (TSWV)

infection. The authors adopted three wavelengthÆ’ selection

methods, SPA, boosted regression tree (BRT), and genetic

algorithm (GA), and four machine learning algorithms, BRT,

SVM, RF, and classification and regression tree (CART), to

analyze the spectral characteristics of normal and diseased leaves
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in the range of 400-1000 nm. The results showed that the reflectance

curve of healthy leaves was significantly higher than diseased leaves

after 5 days of infection. The overall classification accuracy reached

95.8% under the SPA-BRT model. Sahu and Dante (2018)

investigate the potential of HRS imaging for cured tobacco

classification. A multivariate calibration model was developed

using end-member extraction and linear discriminant analysis

(LDA). Mahalanobis distance was used to show the differences

between different tobacco grades. The classification accuracy can

reach 93%.

4.1.2.3 3D modeling

Considering the complex geometry of plants and their interplay

with the illumination scenario highly affects spectral information

acquisition. Behmann et al. (2015) proposed a 3Dmodeling method

combined hyperspectral images and 3D point clouds. The authors

used tobacco leaves as an example and analyzed the effects of plant

geometry on NDVI. The geometry sensor with different elevation

angles resulted in different NDVI values. The low NDVI values on

the horizontal parts were caused by the specular reflection, which

was independent from leaf chlorophyll content.
4.2 Yield prediction

Tobacco yield predictions are important to stabilize tobacco

prices in the marketplace and policy making. The producers need to

monitor crop growth and development, an accurate early

production forecast is as relevant for farmers as it is for the entire

tobacco industry. Svotwa et al. (2013) reviewed the applications of

remote sensing in crop area assessment and yield prediction, some

recommendations were given for tobacco such as the Garvin model,

feasible VIs, etc.

As soil nutrients and fertilizer application play a significant role

in tobacco growth and yield. Chang et al. (2014) investigated the

potential of NDVI for management zone delineation to build

fertilizer applications in tobacco-planted fields. The yield

mapping was built through SMLR analysis to find the key yield-

limiting factors of soil components and NDVI. The value of NDVI

was collected by the GreenSeeker handheld spectrometers.

According to the results, the soil organic matter, active

phosphorus, and available nitrogen were the main limiting factors

for tobacco growth. The results also showed that the value of

NDVI_60 (60 days after transplanting) had a relatively high

correlation with yield. Falcioni et al. (2022) proposed a rapid

quantification method to estimate biomass production using HRS

with visible, near-infrared (NIR), and shortwave spectroscopy

(SWIR). PCA and PLSR algorithms were used to extract the key

wavelengths and built the prediction model of tobacco yield,

respectively. The results showed that the most important

wavelengths were well distributed into 400 (violet) 440 (blue), 550

(green), 670 (red), 700-750 (red edge), 1330 (NIR), 1450 (SWIR),

1940 (SWIR), and 2200 (SWIR) nm operating ranges of the

spectrum. The established model also had an excellent prediction

capacity for yield with R2 = 0.85 and RMSE=0.93.
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Besides the soil nutrients and fertilizer application, photosynthetic

capacity is also a major factor affecting crop yield. Increasing

photosynthetic capacity remains probably the best strategy for

improving crop yields (Ort et al., 2015). Herein, the maximum

Rubisco carboxylation (Vc,max) and maximum electron transport

rate (Jmax) are generally used as indicators to assess photosynthetic

capacity. And hyperspectral techniques coupled with machine

learning methods are effective in quantifying these parameters

(Meacham-Hensold et al., 2019).

Three different methods used the PLSR model with inputs of

hyperspectral reflectance (400-900 nm), VIs (SR, modified

normalized difference index (mND), and structure insensitive

pigment index (SIPI)), and RTM-derived (PROCOSINE model)

crop traits, were synthesized and compared with their ability to

reveal photosynthetic differences across tobacco species (Fu et al.,

2020). The results showed that PLSR with inputs of hyperspectral

reflectance and VIs achieved an R2 of ∼0.8 for predicting Vc,max

and Jmax, higher than the R2 of ∼0.6 obtained by PLSR of

PROCOSINE model. However, the performance of the PLSR

model varies significantly across species, regions, and growth

environments. To alleviate this bottleneck, Fu et al. (2019)

developed a novel ensemble framework that stacked six machine

learning algorithms (e.g., artificial neural network (ANN), least

absolute shrinkage and selection operator (LASSO), Gaussian

process (GP), SVM, RF, and PLSR) to estimate Vc,max and Jmax.

The ensemble framework was established based on leaf reflectance

spectra in the range of 400-2500 nm and six tobacco genotypes.

According to the results, the mean R2 and RMSE of six regression

algorithms for predicting Vc,max (Jmax) ranged from 0.60 (0.45) to

0.65 (0.56) and 47.1 (40.1) to 54.0 (44.7) mmol m-2s-1, respectively.

And the stacking regression performed better than any of the

individual models with increases in R2 of 0.1 (0.08) and decreases

in RMSE by 4.1 (6.6) mmol m-2s-1.
4.3 Stress detection

Stress detection aims to assess various factors that are

detrimental to the survival and growth of tobacco plants, usually

caused by infection and competition, such as disease, pests, weeds,

heavy metal damage, etc. All of these are the main limiting factors

for the final yield and quality of tobacco.

4.3.1 Disease and pest
Hyperspectral imaging technology has been successfully applied

for plant disease detection, modeling, and classification (Moghadam

et al., 2017). Wang et al. (Wang et al., 2011; Wang et al., 2012)

focused on tobacco plants and studied the feasibility of HRS

technology to monitor disease and pest stress in natural

conditions. The raw hyperspectral data were measured by ASD

handheld spectrometers and transformed by the first differential

coefficient. The results showed that the wavelengths of 631, 638,

696, 733, and 864 nm were sensitive to severity levels, which

provided a theoretical foundation for the application of HRS

technology to quantify disease and pest stress levels.
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Yusuf and He (2011) investigated the effect of black-shank

disease on the spectral characteristics and leaf water content of

tobacco. The diseased tobacco plant samples were obtained via

artificial inoculation. The corresponding reflectance data were

collected by the hyperspectral imaging system in the laboratory.

PCA and minimum noise fraction (MNF) methods were used to

extract pivotal information and remove noise. Plant senescence

reflectance index (PSRI) and water band index (WBI) were used to

determine the disease level and leaf water content. The results

demonstrated the wavelength of 730 and 790 nm were the most

useful for discriminating black-shank disease severity levels, with an

overall accuracy of 90 to 94%. Krezhova et al. (2014) applied HRS

technology to detect TSWV infection at young tobacco plants. The

hyperspectral reflectance data were obtained by a handheld

spectrometer on the 14th and 20th days after the inoculation. The

leaf viral concentration was determined by the serological method,

i.e., double antibody sandwich enzyme-linked immunosorbent

assay (DAS-ELISA). According to the results, on the 14th day

after inoculation, there are no visible changes but the mean spectral

reflectance had significant differences between healthy and infected

plants at four spectral ranges (green, red, red edge, and NIR

regions). And on the 20th day, the infection was deepening and

the position of red edge was shifted. The results were consistent

with the serological analysis.

Hayes and Reed (2021) conducted a field study using UAV-

borne hyperspectral imaging to detect tobacco black-shank disease.

In this work, the authors proposed two hyperspectral indices

(broad-band index and narrow-band index) to observe the

differences in the mean spectral reflectance of symptomatic and

asymptomatic tobacco plants. The subspace LDA algorithm was

adopted to test the identification ability and obtained an overall

accuracy of 85.7%. Hong-Bo et al. (2007) investigated the spectral

features of tobacco leaves infected by aphids and had a comparison

of different damage levels. The reflectance curve and its first-order

derivative curve were selected as the observation indices. And the

linear regression model was applied to analyze the leaf chlorophyll

content under different aphid damage levels(healthy, light, middle,

and severe). The results showed that the values of reflectance curves

decreased with increasing damage levels. The descent rate was 12%,

27%, and 52%, respectively. As for the first-order derivative curve,

the maximum values of spectral reflectance also decreased as the

damage level increased. The maximum values of the derivative were

0.031, 0.022, 0.026, and 0.019, respectively.

4.3.2 Heavy metal
Excess heavy metals in crops will depress normal plant growth

and the yield will be harmful if they are loaded into the food chain.

Copper ion is an indispensable element for plant growth, but too

large concentrations can also impair normal plant growth. Qu and

Jiao (2018) investigated the copper ion content of tobacco leaves

under copper-stressed conditions from hyperspectral data by

inverting a modified RTM (PROSPECTcu). According to the

experiment analysis, the copper ion content had a high sensitivity

in the range of 1896-1973 nm. The results showed that the values of

R2 and RMSE were 0.87 and 0.087, respectively. Yu et al. (2021)
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aimed to identify the tobacco canopy features that respond to leaves

stressed by different concentrations of hydrargyrum (Hg). PCA and

the competitive adaptive reweighted sampling (CARS) algorithm

were used to reduce the hyperspectral data dimensionality and pick

effective wavelengths. Partial least squares discriminant analysis and

least-squares SVM (LS-SVM) algorithms were utilized to assess the

stress levels of tobacco plants. As a result, the combination of CARS

and LS-SVM methods achieved an accuracy of 100%.

4.3.3 Nutrition deficiency
Henry et al. (2023) investigated the spectral differences of

tobacco leaves under macronutrient deficiencies. Information

entropy and spectral derivatives methods were adopted to identify

the efficient wavelengths. PCA and LDA algorithms were used to

reduce data dimensionality and classify the symptoms. The results

showed that the overall accuracy on young, intermediate, and

mature plants was 92%, 82%, and 75%, respectively. The results

also showed that the deficiencies of nitrogen, sulfur, and

magnesium will affect the classification accuracy to a large extent,

but phosphorus and potassium deficiencies had little effect on

the results.
5 Issues and recommendations

HRS is a non-destructive information acquisition technology

about objects from distance. This character is perfect for crop

quality estimation, yield prediction, and stress detection. The

existing researches show that HRS technology has enormous

potential for various agricultural applications. In our view, HRS

will be indispensable for digital agriculture and agricultural

informatization in the future. Certainly, there are also some

problems to be solved, whether the technology itself or the

specific applications.
5.1 Issues

First of all, the cost of hyperspectral data acquisition is relatively

high, no matter the financial or labor cost. Taking the example of a

UAV-borne HRS system, the price of UAVs varies by type and

function. It may take thousands to tens of thousands of RMB. The

carried hyperspectral camera, the price is approximately half a

million RMB or more (Feng et al., 2021). Ordinary farmers or

research groups rarely have their own UAV-borne HRS devices due

to lacking finance and technology support. They usually choose to

rent a suite of equipment from the data service providers, and the

price is about 50000 RMB per time. As for the ground-based

handheld spectrometer, it can provide the highest accuracy of

reflectance data with less interference, but it requires operators to

traverse the entire field and select suitable samples to collect spectral

data. This method is troublesome and time-consuming, especially

facing a large-scale area. And its price is about 150000-300000

RMB. Thus, the popularization of agricultural UAV-borne HRS still

faces obstacles.
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Secondly, external factors will affect the image quality during

data collection, such as measuring time, light intensity, solar

altitude angle, etc. Due to the limitation of endurance capability,

the UAVmust complete the mission within a limited time (about 30

minutes). To guarantee image quality, the UAV should keep at a

suitable height (about 50-100 m). The obtained hyperspectral

images contain the spectral information of all ground objects in

the lens, such as crops, soil, roads, and weeds, which may cause

noise for targets to distinguish. How to balance the image quality

with the flying height, time, spatial resolution, and coverage area

still need further investigation.

Thirdly, the ripening and harvesting times of tobacco leaves in

different positions are varied (usually 20 days apart). The order of

harvesting is bottom, middle, and top, respectively. Some

observation tools (e.g., UAVs) can only obtain the canopy

reflectance data. Therefore, we can easily find that the canopy

spectra are not fully representative of the bottom and middle. In

practical research, this problem may lead to large differences

between the results obtained by model prediction and the actual

values. Besides, the growth status of tobacco seedlings in each

period from transplanting to harvesting may also affect the final

quality. However, many studies collected plant samples from one

stage (e.g., returning seedling stage, root elongation stage,

flourishing stage, or maturity stage). So, whether the canopy

spectral data in one stage can predict the final tobacco quality is

also a question that needs to be verified.

Fourthly, the relevant research about tobacco are decentralized,

mainly focusing on one agronomic parameter, and establishing an

inversion model based on the corresponding hyperspectral

reflectance data. As for the deeper active mechanisms, there are

few studies explored. According to the discovery of Li (2006), the

potassium ion has significant effects on leaf nitrogen and

chlorophyll content. So, the relationship between various

biophysical indices is an important basis for spectral inversion.

How to exploit these relationships to monitor agronomic

parameters of tobacco that are not sensitive to the spectral

response is also worth studying.

Finally, the localization and universality of various models. Due

to the differences in species, regions, and growing environment, the

established inversion models may have some unique geographical

features. We named this phenomenon “model localization”. But

some researchers prefer universal models. For example, (Feng et al.,

2021) hope to construct a universal crop monitoring model based

on UAV-borne HRS. The support of existing technologies such as

ensemble learning (Fu et al., 2019) and transfer learning (Zhang

et al., 2021; Wan et al., 2022) make it possible to build

universal models.
5.2 Recommendations

The researches mentioned in this review illustrated that the

HRS technology was effective for various precision tobacco

agriculture scenarios (e.g., quality estimation, yield prediction,

and stress detection). However, there are still many challenges to
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make these studies available to guide the practical production. Here

are some recommendations for future studies.

The first is hyperspectral data collection. Recent researches have

demonstrated that UAV-borne HRS is a game-changer in precision

agriculture, which offers unprecedented spectral, spatial, and

temporal resolution (Maes and Steppe, 2019). However, the

accuracy of UAV-based data is relatively lower than handheld

spectrometers. So, more works with near-ground HRS calibration

were needed to strengthen UAV-borne HRS for precision tobacco

agriculture applications. Meanwhile, low-cost and high-

performance UAVs should be manufactured to make them

affordable to more people and to improve the performance of

UAV platforms in terms of flight stability, duration and load. In

our view, data quality is important, and it relies on high

performance sensors, and only a tool that is economical enough

will be widely used.

The second is data processing and modeling. Hyperspectral

sensors are very sensitive optical components that are highly

susceptible to environmental interference. The quality of the

obtained data has a significant impact on modeling. And

considering the hyperspectral data coupled with field sampling

data is indispensable in spectral inversion. Many studies lacked

the detection of outliers in field samples. They usually employed one

or more algorithms to build simple inversion models and selected

the best one which has the highest R2 and lowest RMSE. The main

work of researchers is to optimize the models and improve their

accuracy. We think this is detrimental to the development of the

remote sensing community. In future studies, more universal

models should be introduced based on some novel technologies

such as ensemble learning and transfer learning. Of course, methods

to reduce the noise caused by environmental factors should also

be proposed.

The third is to pay more attention to multi-parameter and

multi-stage models for quality estimation, yield prediction, or stress

detection. The existing literature mainly performs inversion or

predictive modeling based on a single parameter or growth stage.

It’s necessary to investigate the dynamic development of tobacco

phenotypic traits at different growth stages. Furthermore, the

canopy reflectance spectrum is a comprehensive indicator. It is

the result of all factors (internal and external) reacting together. So,

the inversion models based on multi-parameter are meaningful to

improve the overall accuracy. It can be used as a new research

direction in the future.

The fourth is the relationship between the inherent quality and

chemical compositions of tobacco. Currently, the inherent quality

estimation mainly depends on the feelings of people smoking.

However, this method requires evaluators to smoke frequently,

which is very harmful to their health. So, we have an idea that the

first step is the quantitative inversion of chemical compositions

using HRS, and the second step is to establish the quantitative or

qualitative relationships between chemical compositions and

inherent qualities. The objective is to find the optimal range of

each chemical composition corresponding to high-quality tobacco

that meets consumers’ demands.
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6 Conclusions

In this paper, we focused on the application of HRS in precision

tobacco agriculture and presented a comprehensive review of

related applications and methodologies in terms of quality

estimation, yield prediction, and stress detection. Compared to

traditional destructive field sampling, laboratory testing, and MRS

methods, HRS can provide unprecedented spectral, spatial, and

temporal resolution. We compared three commonly used HRS

system platforms: handheld, UAV, and satellite. Both of them

have benefits, shortcomings, and suitable scenarios. We also

depicted a detailed technology roadmap of UAV-borne HRS for

precision tobacco agriculture. As for the specific applications, we

summarized in three parts: quality estimation, yield prediction, and

stress detection. The relevant modeling methods and their

performances were also analyzed. In summary, the key issue is

how to establish the quantitative inversion models between spectral

features and the corresponding observation indices. The commonly

used methods for hyperspectral data dimensionality reduction are

PCA, SPA, GA, clustering analysis, etc. And inversion models are

usually driven by PLSR, PCR, MLR, BPNN, SVM, RF, etc. Several

studies used stacking regression. The independent variables of these

algorithms are usually full-band spectrum, key-band spectrum,

first-order derivative spectrum, and various VIs. Also, how to

improve the accuracy and universality of the relevant models is

still a challenge that needs to be solved.
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