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aerial imagery with convolutional
neural network
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Introduction: Estimating and understanding the yield variability within an individual

field is critical for precision agriculture resource management of high value tree

crops. Recent advancements in sensor technologies and machine learning make it

possible to monitor orchards at very high spatial resolution and estimate yield at

individual tree level.

Methods: This study evaluates the potential of utilizing deep learning methods to

predict tree-level almond yield with multi-spectral imagery. We focused on an

almond orchard with the ‘Independence’ cultivar in California, where individual

tree harvesting and yield monitoring was conducted for ~2,000 trees and summer

aerial imagery at 30cmwas acquired for four spectral bands in 2021. We developed

a Convolutional Neural Network (CNN) model with a spatial attention module to

take the multi-spectral reflectance imagery directly for almond fresh weight

estimation at the tree level.

Results: The deep learning model was shown to predict the tree level yield very

well, with a R2 of 0.96 (±0.002) and Normalized Root Mean Square Error (NRMSE)

of 6.6% (±0.2%), based on 5-fold cross validation. The CNN estimation captured

well the patterns of yield variation between orchard rows, along the transects, and

from tree to tree, when compared to the harvest data. The reflectance at the red

edge band was found to play the most important role in the CNN yield estimation.

Discussion: This study demonstrates the significant improvement of deep learning

over traditional linear regression and machine learning methods for accurate and

robust tree level yield estimation, highlighting the potential for data-driven site-

specific resource management to ensure agriculture sustainability.
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1 Introduction

Over 2.2 million ha of land produces about 4.1 million metric tons

of almonds in 2020 globally, with United States (US) as the largest

producer (FAO, 2022). About 80 percent of the world’s almonds are

produced in California’s irrigated land, generating about $5bn “farm

gate value” and an additional $3 billion of indirect and induced values

(CDFA, 2022). In the last two decades, the total acreage of almond

orchards in California doubled and became the state’s second largest

agricultural commodity. The continued expansion of water and

fertilizer-intensive tree crops, coupled with climate change, poses a

threat to the long-term sustainability of almond industry, despite

ongoing research and outreach efforts focused on tree crops (Khalsa

et al., 2022). Excessive groundwater pumping especially during

drought years, for example, has caused a significant drop of

aquifer’s water depths in Central Valley (Fulton et al., 2019).

Groundwater has also been degraded due to nitrogen leaching from

agricultural fields (Harter, 2009). One out of ten public water supply

wells in California have nitrate levels exceeding the maximum

contamination level (Harter, 2009).

In response to these challenges, various regulatory programs have

been implemented in California over the past decade, requiring

growers to increase the efficiency of irrigation and nitrogen use

(Rudnick et al., 2021). Meeting these regulations will require more

precise and adaptive irrigation and nitrogen management strategies.

In particular, a change from whole-field management to zonal and

even tree-specific precision agricultural practices is critical for

maximizing ‘crop per drop or lb of N’, considering large yield

variability within an individual almond orchard (Jin et al., 2020).

Accurate yield estimation and prediction is a missing link in current

nitrogen management tool, although the guidance is available on N

fertilization given the expected almond yield for a particular orchard.

An improved understanding of within-field yield variability is also

needed for adaptive on-farm management to close the yield gap (Jin

et al., 2020). Reliable yield estimation can also help with insurance

and market decisions, which rely on the understanding of mean and

variability of yields at the field scale (Lobell et al., 2015).

Both mechanistic simulation models and statistical approaches

have been used for yield estimation (Hodges et al., 1987; Dzotsi et al.,

2013; Burke and Lobell, 2017; Kang and Özdoğan, 2019; Sidike et al.,

2019). The process models simulate crop growth, nutrient cycling,

soil-plant dynamics, and energy and water balance under various

climate and management scenarios (Zhang et al., 2019; Archontoulis

et al., 2020), such as the Agricultural Production Systems Simulator

(APSIM) model (Keating et al., 2003). Although powerful, it is

challenging to calibrate these models across different sites, because

of the complexity of the biological processes (Jagtap and Jones, 2002).

These models often require extensive biotic and abiotic data as input,

such as soil properties, which may not be available at the field or finer

scale (Sakamoto et al., 2013; Zhang et al., 2019). Moreover, the

majority of crop models focus on row crops such as corn, soybean,

barley, and etc., while the simulation of tree crops with complicated

physiological processes is very limited (Keating et al., 2003).

Statistical models, on the other hand, are based on the empirical

relationships learned from the observed yield data and the factors

affecting production, instead of simulating complex biophysical

processes (Medar and Rajpurohit, 2014). Regression models, for
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example, have been developed to quantify the impact of climate on

agriculture production at county and state level (Lobell et al., 2007;

Lobell and Field, 2011; Mourtzinis et al., 2015; Xu et al., 2016). Studies

have shown that the recent climatic trends have mixed effects on tree

crop yields in California (Lobell et al., 2007; Lobell and Field, 2011).

Across the US, it has been estimated that warming will lead to

reduction in soybean and maize production in the Midwest

(Mourtzinis et al., 2015; Xu et al., 2016). All these statistical studies

provide guidance for county, state or nation-wide climate mitigation

and adaptation strategies. However, the utility of these coarse scale

empirical models is limited in terms of informing growers for their

on-farm resource management for individual fields or trees.

Recent advancement of remote sensing technologies enables plant

monitoring across a range of spatial and temporal resolutions,

opening doors for data-driven yield estimation at the field scale

(Shahhosseini et al., 2020; van Klompenburg et al., 2020; Rashid

et al., 2021; Muruganantham et al., 2022). Both traditional and

machine learning methods have been developed to relate field

surveyed yield data with remote sensing metrics and other

environmental drivers (Burke and Lobell, 2017; Lambert et al.,

2018; Hunt et al., 2019; Zhang et al., 2019). Burke and Lobell

(2017) found that the linear regression model, driven by vegetation

indexes (VIs) derived from high resolution multi-spectral images

from Terra Bella satellite at 1m, predicted well the yield for maize

fields in west Kenya. Machine learning models such as random forest

and gradient boosting trees have also been developed to predict yield

for individual fields over almond tree crops by integrating Landsat

VIs and weather data in California (Zhang et al., 2019), over wheat in

United Kingdom using Sentinel-2 VIs (Hunt et al., 2019), and over

cotton, maize, millet and sorghum in Mali using Sentinel-2 VIs

(Lambert et al., 2018).

Most recently more complex deep learning models such as Deep

Neural Network, Convolutional Neural Network (CNN), and

Recurrent Neural Network have been introduced to improve yield

estimation with large remote sensing datasets, due to their improved

performance over traditional statistical approaches (Ball et al., 2017;

You et al., 2017; Cai et al., 2018; Kang and Özdoğan, 2019; Khaki and

Wang, 2019; Sidike et al., 2019; Kang et al., 2020; Khaki et al., 2020;

Ma et al., 2021). The Bayesian neural network model, for example, has

been shown to predict county-level corn yield well in twelve

Midwestern states of US (R2 = 0.77), using VI time series from

MODIS imagery, climate variables, soil properties, and historical

average yield (Ma et al., 2021). A limited studies applied recurrent

neural network framework such as Long Short Term Memory models

to take into account of sequential imagery and weather for county-

level corn yield in combination with CNN; their models outperform

the traditional regression and machine learning models (You et al.,

2017; Khaki et al., 2020). Shahhosseini et al. (2021) also explored a

hybrid approach to integrate features from crop modeling to machine

learning models and found the importance of hydrological inputs for

yield estimation in the US corn belt. At field scales, data assimilation

technique has been explored to incorporate the remote sensing

observations of canopy development into the Decision Support

System for Agrotechnology Transfer (DSSAT) crop model for corn

yield mapping over the US corn belt (Kang and Özdoğan, 2019).

However, most of the studies still use human-engineered index-based

feature extraction method, such as some widely used vegetation index
frontiersin.org
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and contextual information derived from imagery, to predict yield

and do not explore the potential of learning-based feature extraction

with deep learning models that directly use multi-spectral imagery

as input.

In order to capture variations of crop yield among individual

plants for precision management, higher spatial resolution

observations of canopy structure and conditions are required, such

as those from very high-resolution commercial satellite and aerial

imagery (Sidike et al., 2019; Maimaitijiang et al., 2020). Recent

advances in computer vision and deep learning technology further

unlock the power of centimeter imagery for fine scale yield estimation

at individual plant or sub-field level. Chen et al. (2019) developed a

region-based CNN model to detect and count the number of flowers

and strawberries at plant level from the RGB drone imagery and

found an overall counting accuracy of 84.1%. Another study

integrated multi-spectral and thermal drone imagery with machine

learning and deep neural network models to estimate the sub-field

soybean yield in US (Maimaitijiang et al., 2020). However, the study

on plant-level yield variation is still very limited and the majority

focuses on row crops, mostly due to the lack of field-based yield

database for individual plants, especially for tree crops.

We here took advantage of a unique individual tree harvesting

data and aerial imagery of multiple spectral bands at 30cm spatial

resolution over an almond orchard in California’s central valley, to

explore the potential of deep learning for tree level almond yield

estimation. Specifically, we aimed to address the following questions:

(i) how CNN model can be used to estimate almond yield for each

individual tree, based on very high resolution multi-spectral imagery;

and (ii) what is the capability of the trained CNNmodels in capturing

the within-field almond yield variation; and (iii) what is the relative

importance or added value of the observations in the red edge part of

the spectrum, a spectral band increasingly available in recent imaging

systems, with regard to almond yield estimation.
2 Materials

2.1 Study orchard and Individual
tree harvest data

This study was conducted over an almond orchard with a size of 2

squared kilometers in Vacaville, California, USA (Figure 1). Under a

typical Mediterranean climate, the area experiences hot dry summer

with average daily max temperature in July of 34 °C and cool winter

with average daily minimum temperature in January of 3.7 °C. Mean

annual precipitation is 63 ( ± 21) cm and the majority rainfall occurs

from November to March (BestPlaces, 2022; Cedar Lake Ventures,

2022; WRCC, 2022). For almond tree, the water usage increases

gradually from March to July, and decreases from July to October

(Athwal, 2021). The hot and dry summer requires large amount of

irrigation water usage to support crop growing, which mainly comes

from groundwater and surface water including Lake Berryessa and

Putah Creek (SID, 2012; BoR, 2022).

The orchard was planted with a self-fertile productive almond

cultivar, ‘Independence’, between 2015 and 2017. Within the orchard,

rows are oriented northeast to southwest in parallel with prevailing

winds, and the average row spacing is about 6 m and the average
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spacing between trees along the same row is about 4.5 m. Almond

trees bloom between late February and early March, followed by leaf

out, fruit set and rapid growth, reaches full canopy typically in June or

early-July, and fruit maturity progresses through summer. Almonds

are typically harvested from August to October, and trees become

dormancy during the winter season.

We designed an automatic weighing system attached to the

commercial almond harvester to measure the almond yield of an

individual tree (Figure S1). The yield (including wet hulls and shells)

measurements were made for each individual tree every seven rows in

the north-west portion of the orchard between August 23 and August

27 in 2021 (Figure 1). A total number of 1,893 trees were individually

harvested, with an average fresh weight yield of 53.1 ± 17.6 kg per tree.

The location of each sampled trees was also recorded. Large yield

variation was found among individual trees with a coefficient of

variation of 33.1% and interquartile range of 24.3 kg per tree.
FIGURE 1

Study orchard as shown by the color infrared composite of CERES
aerial imagery acquired on July 29, 2021. Individual trees with yield
measurements were shown as green dots. The inset shows the
location of the study orchard among all almond orchard fields (green)
in California’s Central Valley (black polygon).
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2.2 Aerial imagery acquisition
and processing

Multi-spectral aerial imagery was acquired on July 29, 2021, about

one month ahead of the harvest, by CERES Imaging (Oakland, USA.)

A multi-spectral imaging camera was integrated with a crop duster

plane flying at 6,000 ft above the ground, resulting in images with a

0.3-meter spatial resolution. Four spectral bands are centered around

800 nm (near infrared), 717 nm (red edge), 671 nm (red), and 550 nm

(green), with a spectral resolution of 10 nm (the full width at half

maximum). The image was acquired near local solar noon to

minimize the shadow effects.
2.3 Tree identification and location
extraction from imagery

For each individual tree, extracting its center location from

CERES imagery is needed in order to match the tree yield record

from the harvester and to clip the corresponding image block as CNN

input. We developed a multi-stage segmentation method to identify

all individual crowns with varying canopy sizes, especially over a

mature orchard. First, Normalized Difference Vegetation Index

(NDVI) was calculated for each pixel from the red and near

infrared bands of the CERES aerial imagery (Figure 2A). Second,

NDVI imagery was segmented based on the NDVI threshold to

identify potential tree crowns automatically (Figure 2B). Lower

NDVI threshold tended to be more inclusive in identifying canopy
Frontiers in Plant Science 04
pixels and resulted in a tree crown boundary with multiple inter-

connected trees in it; whereas higher NDVI threshold separated

individual tree crowns better but may miss smaller trees

(Figure 2B). We therefore applied seven NDVI thresholds ranging

from 0.60 to 0.83 (Table S1), producing seven layers of potential tree

crown polygon maps. Third, for each layer, those polygons that

actually had multiple trees were removed, based on the comparison

of the polygon major axis length and the orchard tree spacing

(Figure 2C). The assumption is that one single tree crown diameter

can’t exceed the spacing between adjacent trees. Finally, by taking

advantage of higher threshold’s capability of separating individual

trees and lower NDVI threshold’s capability of identifying small trees,

we combined those seven potential single tree crown polygons

iteratively, based on their spatial relationships, into one final tree

crown boundary optimal for tree center extraction. The goal was to

remove the redundancy among those layers yet maintain the largest

crown size. Starting from the crown polygons (smallest size), typically

associated with higher NDVI threshold value, if it was spatially within

the crown polygon (larger) identified by the lower threshold value, it

was deleted; otherwise, it was added to the final single tree crown

polygons map. By iterating this step, we created a final version of

single tree crown polygons map (Figure 2D). Finally, the tree

locations were extracted from the centroid coordinates of all the

segmented tree crown polygons.

For quality control, the extracted tree locations were plotted over

the CERES imagery for visual examination. For example, those trees

with very small or large crowns were carefully examined against

CERES imagery to ensure the location accuracy. To further ensure the
A B

DC

FIGURE 2

Illustration of individual tree identification workflow: (A). NDVI map from CERES imagery; (B). Segmented tree crowns with various NDVI threshold values,
e.g., the blue polygon represents the boundaries from the segmentation with a NDVI threshold of 0.6; (C). For each polygon layer identified using a
particular NDVI threshold, remove those crown polygons whose major axis (dashed blue line) were longer than the expected maximum tree crown
diameter, roughly the tree planting spacing along the orchard row; (D). Final tree crowns by combining all layers of potential crown polygons and center
locations of all individual trees.
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alignment with the locations of the individually harvested trees, a

visual check of the locations of starting, ending, and some randomly

selected trees within the harvested rows was also conducted. All these

processes were done in Python and QGIS.
3 Methods

3.1 Convolutional neural
network architecture

The Convolutional neural network (CNN), a most established

deep learning algorithm, is developed to estimate fresh almond yield

with multi-spectral aerial images as inputs. CNN has a unique ability

to automatically and adaptively learn spatial hierarchies of important

features that summarize the presence of detected features in the input

image for a particular predictive modeling problem (LeCun et al.,

2015). The extreme efficiency in dimensionality reduction of the CNN

model makes it unnecessary to conduct any feature extraction work,

which increases computation efficiency and improves estimation

accuracy. A surge of interest in CNN deep learning has emerged in

recent years due to its superior performance in various fields (Lobell

et al., 2015; Yamashita et al., 2018; Kattenborn et al., 2021; Li

et al., 2021).

A CNN is typically composed of a stacking of three types of layers,

i.e., convolution, pooling, and fully connected layers (LeCun et al.,

2015). The first two perform feature extraction, whereas the third

maps the extracted features into final output, such as yield. As a

fundamental component of the CNN architecture, a convolutional

layer typically consists of a combination of linear and nonlinear

operations, i.e., convolution operation and activation function. A

convolution is a simple application of a spatial filter (or kernel) to an

input image that results in an activation. Repeated application of the

same filter to an input result in a map of activations called a feature

map. A small grid of parameters called kernel, an optimizable feature

extractor, is applied at each image position, which makes CNNs

highly efficient for image processing. The kernel values are optimized

during the model training process to extract features from input data

based on the model’s task. The outputs of a linear operation such as

convolution are then passed through a nonlinear activation function,

e.g., the most commonly used rectified linear unit (ReLU). Batch

normalization can also be applied as an optimization strategy to

increase the model training efficiency, although it is not a solid

requirement of the CNN model. To reduce the dimensionality of

the extracted feature maps, a pooling layer provides a down-sampling

operation by aggregating the adjacent values with a selected

aggregation function, such as taking maximum value within the

predefined window size. Similar to convolution operations,

hyperparameters including filter size, stride, and padding are set in

pooling operations. As one layer feeds its output into the next layer,

extracted features can hierarchically and progressively become

more complex.

To improve CNN model’s overall performance, the spatial

attention module is recently introduced into the CNN architecture

by combining a global average pooling layer and the following dense

layers (Woo et al., 2018; Sun et al., 2022; Zhang et al., 2022). Global

average pooling layer is usually applied once to downscale the feature
Frontiers in Plant Science 05
maps into 1-D array by averaging all the elements in each feature

map, while retaining the depth of the feature maps. Dense layer then

connects the final feature maps to the final output of the model with

learnable weights via model training. The combination of a global

average pooling layer and the following dense layers helps the CNN

model focus more on the relevant features and thus improves.
3.2 CNN configuration and optimization

TensorFlow (Abadi et al., 2016), Keras (Chollet, 2015), and

KerasTuner (O’Malley et al., 2019) libraries in Python were used

for CNN model tuning and training processes. The CNN model took

the image blocks, centered around each individual almond tree

crown, from CERES images at 0.3 m resolution, for 4 reflectance

bands (R, G, NIR, and RE) as inputs to estimate the individual tree

almond yield (Figure 3). We started with the minimum block size of

21 × 21 pixels, equivalent to a 3m radius centered around each tree

crown center and thus representing areas slightly bigger than one tree

crown size. For each tree sample, we first identified the corresponding

CERES pixel containing the tree center (as described in Section 2.3

location), and then clipped an image block extending 10 pixels

towards all four directions from the center, for each band. This step

resulted in 21 × 21 × 4 multi-spectral imagery associated with each

individual tree crown as the input to the CNN model.

The CNN model training process is to find kernels in the

convolutional layers and weights in the dense layers to minimize

the differences between model estimations and ground measurements

on a training dataset. The Mean Squared Error (MSE) loss function

was applied for the CNN model training, which calculates the average

of the squared differences between model estimations and actual

values. To efficiently optimize the kernels and weights within the

CNN model, the Adam optimization algorithm (Kingma and Ba,

2014) is used, which extends the stochastic gradient descent algorithm

by calculating individual learning rates for different parameters based

on the estimates offirst and second moments of gradients. 5-fold cross

validation (CV) is applied to randomly split the data into separate

training and testing sets. The overall model performance is evaluated

based on the average performance over the testing set in each fold.

The Bayesian optimization algorithm is developed to select the CNN

hyper-parameters automatically.

The general setup of the possible CNN structures for the Bayesian

optimization algorithm are as follows: three to four convolutional

blocks followed by a spatial attention module with a global average

pooling layer and two fully connected dense layers. For the first dense

layer, there are 30 to 100 neurons followed by a dropout layer. For

each convolutional block, there are 16 to 128 convolutional layers

(kernels) followed by a batch normalization and pooling layers, then

another 16 to 128 convolutional layers followed by a batch

normalization, pooling and ReLU activation layers. The pooling

layers in each convolutional block can be either average pooling or

max pooling. The overall architecture of the CNN model for the

Bayesian optimization algorithm is shown in Figure S3. For model

compiler, the Bayesian optimization algorithm selects learning rate

varying from 10-4 to 10-2 with Adam optimizer. For the Bayesian

optimization algorithm itself, the maximum trail number was set to

50, and for each trail, the batch size is 128 with 100 epochs.
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To investigate the impact of input image block size used for the

CNN model and explore how the neighboring trees potentially

influence yield estimation, another two separate CNN models were

built with an input image size of 41 × 41 pixels (roughly 6m radius)

and 61 × 61 pixels (9m radius), respectively. To understand the

contribution of the red edge band to the yield estimation, a reduced

CNN model was constructed by excluding red edge reflectance as

input, hereafter called “reduced CNN model”, considering that red

edge band is not as widely used for aerial imaging as the other three

bands. Similarly, another 14 sets of reduced CNNmodels were further

built with all the combinations of different reflectance bands as input

and compared how they influenced model’s yield estimation accuracy

(Table S2).
3.3 Traditional machine learning
model estimations

For comparison purposes, Other statistical models were also built

for individual tree level almond yield estimation, including stepwise

linear regression as a baseline for linear relationships and four

traditional machine learning approaches. The Scikit-learn (Buitinck

et al., 2013) and hyperopt (Bergstra et al., 2013) libraries were used for

building support vector regressor (SVR) (Platt, 1999), random forest

(RF) (Breiman, 2001), and extreme gradient boosting (XGB) models

(Chen and Guestrin, 2016). Additionally, a DNN model was also

developed using the same libraries as CNN model. The traditional

machine learning models use the human-engineered index-based

feature extraction method to predict almond yield, which differs
Frontiers in Plant Science 06
from the CNN model that directly takes imagery as input. By

comparing traditional machine learning models against CNN

model, it helps to evaluate the advantages of applying learning-

based feature extraction in yield prediction.

Regression models were built using features at individual tree level

as inputs, including VIs and texture. 13 commonly used vegetation

indices (VIs) were calculated from CERES multi-spectral imagery,

including those sensitive to structure, greenness, and chlorophyll

content (as described and summarized in Table S3 in the

supplementary material). A circular buffer with a 2.5-meter radius

was used to calculate the zonal statistics of remote sensing metrics,

since most tree crowns have diameters less than 5 meters. Tree crown

pixels were identified with NDVI greater than 0.5, and the fractional

coverage of tree crown within the buffer area was then calculated to

represent the size of crown. The average of VI values over the

identified crown pixels within the buffer area were also derived to

represent the overall biomass of an individual tree. In total, 14

variables were calculated including 13 VIs and one fractional

coverage variable.

To extract textural features for each of the four band images, the

gray level co-occurrence matrix (GLCM) (Haralick et al., 1973) was

applied. The GLCMs were constructed with a moving distance of one

pixel and four moving directions. Eight texture measures were

calculated from reflectance imagery with a 2x2 moving window,

including contrast, dissimilarity, homogeneity, angular second

moment, correlation, mean, variance, and entropy (Nichol and

Sarker, 2011; Wood et al., 2012). For each individual tree, the

corresponding texture features were extracted and averaged from

textural images, resulting in a total of 32 texture features.
FIGURE 3

CNN model structure for tree-level yield estimation with multi-spectral aerial imagery. Input size represents total number of tree samples × image block
height × image block width × number of bands. For each tree sample, an image block was clipped for each one of the four band imagery, with 21 by 21
pixels (at a 30cm resolution) centered at the identified tree center location.
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3.4 Accuracy assessment and yield
variability analysis

To evaluate models’ performance in predicting almond yield, the

predicted and observed individual tree yield from the reserved testing

samples were compared, and the coefficient of determination (R2),

Root Mean Squared Error (RMSE), and RMSE normalized by

averaged yield measurement (NRMSE) were calculated. Statistics of

these metrics were reported based on 5-fold cross validation.

For the model with highest accuracy, its capability to capture the

within-field yield variations, such as overall spatial patterns, row to

row variations, and tree to tree variations along selected transects was

also evaluated. For all harvested rows, the yield distribution for all

trees within each individual row was analyzed based on CNN

estimations. Furthermore, three transects that are perpendicular to

the row orientation of the orchard were randomly selected to examine

the inter-row yield variations. The locations of the selected transects

are shown in Figure 4 highlighted in blue lines.
4 Results

4.1 Optimized CNN model and performance

After 50 iterations of Bayesian optimization process during model

training, the final optimized CNN model had eight convolutional layers,

each of which was followed by a batch normalization and an ReLU

activation function. Four max pooling layers were deployed after every

two convolutional layers to extract spatial features and reduce image

dimension. A global average pooling layer further flatten the image into

one-dimension array. A 100-neuron dense layer is introduced. The final
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one neural dense layer further reduces the input data into a single output

value, which directly connects to the tree level yield data (Figure 3).

The trained CNN full model, with four spectral band imagery as

inputs, performed very well in predicting almond yield at the individual

tree level. The 5-fold cross validation with the testing data showed that it

captured 96% ( ± 0.2%) of tree-to-tree variation in almond yield, with a

RMSE of 3.5 kg/tree ( ± 0.11) and a normalized RMSE of 6.60% ( ± 0.2%)

(Figure 5). The scatter plot of predicted vs. observed tree yield also

showed a good agreement (Figure 6). The predicted yield by the full CNN

model for all individually harvested trees followed very similar

distribution as shown by the measurements (Figure 5), with a mean

yield of 52.9 ± 17.2 vs. 53.1 ± 17.6 kg/tree and the interquartile ranges of

23.8 vs. 24.3 kg/tree. No statistically significant difference was found

between predicted and observed tree yield based on the two-tailed t-test

(p-value of 0.75).

The performance of the full CNNmodels with all four bands varied, very

slightly, with the size of input image blocks (Table 1). For example. when

using image blocks covering nine tree crowns, the re-trained CNN model

captured 97% of yield variability and had slightly larger uncertainty with a

NRMSE 5.2%. However, the estimation bias is larger for CNN models with

image blocks covering more tree crowns. Hereafter only the results from the

CNN model with 21 × 21 pixels image block size was reported.
4.2 Impact of spectral information

When removing the red edge imagery from the input imagery, the

accuracy of the reduced CNN model was reduced significantly, with a

lower R2 of 0.68 ( ± 0.08) and higher NRMSE of 18.7% ( ± 2.3%) than

the full CNN model with four band imagery as input (Figure 7).

Among the reduced models with all possible combinations of three
A B

FIGURE 4

Maps of (A) individual tree yield estimated by the CNN mode, showing within-field yield variation, and (B) red edge reflectance. A close-up of the yield
map shows detailed spatial distribution of the estimated tree yield (those trees with ground yield measurement were indicated by black circles). Also
shown are three transects (blue lines) for detailed tree-to-tree yield variation analysis.
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bands, the CNN model driven by red edge, NIR, and red reflectance

performed the best, with a R2 of 0.85 ( ± 0.01) and NRMSE of 12.6%

( ± 0.7%). For two band combinations, the reduced model with NIR

and red edge bands or NIR and green bands had similar performance

(R2 0.85 ( ± 0.02) and 12.6% ( ± 0.8%)). When driven by only one

single band imagery, the red edge based CNN model still captured

83% ( ± 2%) of yield variability among individual trees, and NRMSE

only increased slightly to 13.8% ( ± 1.0%). These results demonstrated

the importance of red edge imagery in almond yield estimation.
4.3 Comparison with machine
learning models

Our comparison showed that CNN model significantly

outperformed the linear regression model and the other machine
Frontiers in Plant Science 08
learning models, based on the 5-fold CV, regardless of

combinations of input features such as VIs, texture, and raw

multi-spectral reflectance (Figure 7). XGB and RF models

captured only up to 54% ( ± 3.8%) of yield variability, similar to

linear regression models. In addition to achieving the highest R2, the

CNN model was found more robust and stable as shown by much

lower standard deviation of R2 among different folds of test sets,

compared with other models (Figure 7). The scatter plots of

predicted vs. measured yield further showed better performance

of the CNN model (Figure 6).
4.4 Predicted yield map and spatial patterns

The CNN full model, once trained and validated, allowed us to

estimate yield for every individual almond tree in the orchard. The
TABLE 1 Performance of CNN models with different image block sizes of the input aerial image clipped around each individual tree crown center.

Image block size Test R2 RMSE (kg/tree) NRMSE IQR (kg/tree) Bias (kg/tree)

21×21 pixels 0.96 ( ± 0.002)
3.50

( ± 0.11)
6.6% ( ± 0.2%) 23.82 -0.181

41×41 pixels 0.95 ( ± 0.017)
4.02

( ± 0.53)
7.6% ( ± 1.0%) 23.55 1.46

61×61 pixels 0.97 ( ± 0.005)
2.77

( ± 0.34)
5.2% ( ± 0.6%) 22.69 -2.35
All four spectral bands were used as input.
FIGURE 5

Distributions of almond tree yield predicted by the full CNN model (red) vs. measured by individual tree harvester (blue). Dashed vertical lines represents
the 25th percentile, median, and 75th percentile respectively.
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yield map showed within-field variations of almond yield from tree to

tree (Figure 4A). Trees with higher yield were mostly located in the

northeast corner of the orchard, while least productive trees were

mainly distributed around the orchard boundary. The overall spatial

pattern was consistent with the pattern captured by the red edge

reflectance (Figure 4B).

When row to row yield variation was examined, the CNN model

predicted yield followed similar distribution with the ground

measured yields for every seven rows with individual tree yield

measurement (Figure 8). Row 14 had the highest yield as shown by

both estimation (66.9 ± 15.0 kg per tree) and measurements (68.4 ±

13.3 kg per tree); in contrast, the production of Row 84 was 25% lower

(50.3 ± 16.1 kg per tree) and 30% lower (47.6 ± 15.4 kg per tree) for

both estimation and ground measurements, respectively. The

estimation showed large within-row yield variability, with

coefficient of variation (CV) ranging from 20.0% to 44.9% and

inter-quantile range (IQR) ranging from 16.4 to 31.1 kg per tree,

similar to the variability observed by the measurements (Figure 8).

For rows without ground measurements, the predicted yield also

captured similar general trend of row-to-row variation as that from

the measurements over the sampled rows.

Furthermore, along the transect lines across rows, the inter-row

variability from the CNN predicted tree level yield agreed relatively

well with that from the ground measurements (Figure 9). Among the

measured rows, for example, the most productive trees were found in

Rows 77 (104.1 kg/tree), 7 (85.4 kg/tree), and 77 (84.4 kg/tree), for

each transect, respectively, based on the predicted yield map. In

contrast, the least productive trees had much lower yield, i.e., 38.7 kg/

tree in Row 91 for transect 1, and 35.9 kg/tree in Row 84 for transect 3.

These findings were similar to the observations from the harvesting

data. The yield distributions along each row and the inter-row yield

variations demonstrated the consistent performance of CNN model

over space with less spatial dependency and variations.
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5 Discussions

5.1 Yield estimation model performance

As a first study on tree level almond yield estimation, our findings

showed the high accuracy of the CNN model in capturing the spatial

yield variability from tree to tree, when driven by multi-spectral

reflectance from high resolution aerial imagery. The comparative

analysis in this study showed that the CNN model outperforms the

traditional machine learning models. First of all, the CNN model

framework is able to automatically learn the complex associations

from the multi-spectrum tree crown imagery to fully capture the

complexity of tree physiology. The spatial pattern of multi-spectral

reflectance over the whole crown plays an important role in yield

estimation, which cannot be acquired by the average values. For the

traditional MLmodels, the models’ performance generally agrees with

literatures using similar features as input for soybean and corn yield

estimations. One study focusing on soybean yield estimation with

multi-spectrum UAV images shows that models with VIs and thermal

information have R2 varying from 0.520 to 0.625 (Maimaitijiang

et al., 2020). Based on linear, RF, and XGB results, adding texture

features improve model’s ability to explain almond yield variation by

1%, 3%, and 3%, respectively. Some literatures focusing on row crops

also have similar finding, but the texture features play a more

important role than tree-based plants (Maimaitijiang et al., 2020;

Wang et al., 2021). In the soybean study, the VIs, thermal, and

structure information explain 52% to 63% of the yield variation with

different methods, but adding texture features improves the

estimation to explain 65% to 72% of the yield variation, which

means that adding the texture features improves about 20% of the

estimation accuracy (Maimaitijiang et al., 2020); another rice yield

estimation study shows that growing stage VIs explain 56.6% of yield

variation and adding extra texture features helps to explain 65.5%
FIGURE 6

Scatter plots of predicted yield by the full CNN model, XGB, and Linear models vs. measured yield.
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yield variation, which increases estimation accuracy by 16% (Wang

et al., 2021).

Second, the human-engineered features commonly used by

traditional statistical approaches may not fully capture the

characteristics influencing yield variation. Most of previous studies

focused on crop yield estimation with human-engineered features

including VIs and textures, with both ML and AI models showing R2s

between 0.7 to 0.9 for mostly row crops including wheat, soybean, corn

and so on (Kuwata and Shibasaki, 2016; Hunt et al., 2019; Jin et al., 2019;
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Maimaitijiang et al., 2020; Ma et al., 2021; Wang et al., 2021) and almond

orchards at the block level (Zhang et al., 2019). Although these studies use

various indices from multi-spectral and thermal UAV images to satellite-

based radar backscatter, the estimation accuracy are in general lower than

our CNN model with multi-band reflectance as direct inputs. This

suggests that human-engineered features may not be comprehensive to

fully capture the canopy structures and conditions and yield variations.

For example, some information may be lost by only using the well-

known remote sensing indices.
FIGURE 8

Yield variation within each row as represented by the boxplots of the tree-level yield estimated by the CNN model (blue), and across individual rows. The
boxplots of measured yield record for those rows with individual tree harvesting are also shown here in orange for comparison.
FIGURE 7

Model performance in predicting tree level yield, quantified by R2 with the test data set, for CNN models with different spectral bands and machine
learning models with different combinations of input features.
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Third, super high spatial resolution imagery may improve yield

estimation accuracy with more details, especially for deep learning

approaches. Gavahi et al. (2021) developed a DeepYield model, which

combines convolutional long-short term memory for soybean yield

estimation using MODIS Terra and Aqua surface reflectance, land

cover type, and surface temperature products. Their results show that

the DeepYield model outperforms CNN model with R2s of 0.864 over

0.80, which are generally better than many indices-based yield estimation

studies. But their yield estimation accuracy is still lower than our CNN

model, which is possibly due to their low spatial resolution of input image

(500 m and 1 km of MODIS Terra and Aqua products).

5.2 Importance of red edge band

From the CNN model result, reflectance in the red edge band was

found to play a vital role in almond yield estimation. The red edge

spectral band covers a transitional wavelength region from the red

band, where the absorption by chlorophyll is dominant, to near

infrared where strong scattering by leaf cell structure is further

enhanced by multiple scattering among layers of leaves. Reflectance

in the red edge band serves as a critical proxy for canopy size and leaf

volume. Previous study shows that the red edge band is less saturated

at high biomass condition than its adjacent wavelengths and the

common vegetation indices such as NDVI (Todd et al., 1998;

Mutanga and Skidmore, 2004; Aklilu Tesfaye and Gessesse Awoke,

2021). Moreover, the change in the red edge reflectance may capture

some stress conditions of plants, as shown by a recent study on

grapevine water stress detection with drone imagery (Tang et al.,

2022). Our finding also indicates the potential utility of red edge

imagery from Sentinel 2A and 2B satellites for scaling up yield

estimation at a large scale.
Frontiers in Plant Science 11
5.3 Uncertainties and future work

This is the first study attempted for the tree-level yield estimation,

especially capturing the spatial variability of almond yield within an

individual orchard. Although it proves the concept of integrating aerial

and drone-based images with deep learning techniques for high resolution

yield estimation, some uncertainties still exist. Potential errors, for example,

may exist in the harvest yield records used for the model training and

testing, as this was the first time the individual tree harvester was designed

and tested in the almond field. The sampling strategy, designed by the

other group for individual tree harvesting, i.e., every seventh row, prevented

us from taking full advantage of the spatial information from neighboring

trees for yield estimation in the model building process.

The success of integrating the CNN model with multi-spectral

imagery in estimating the within field variability is likely because the

imagery at various wavelengths captures the information on the tree

structure and plant conditions due to the light-matter interaction. The

structural variability such as canopy size can result from cumulative

impacts on plant growth by soil properties and long-term climate, while

weather variability can also affect the plant health during a particular

season. Nonetheless, our study was still constrained by the availability of

the yield records for individual trees in one orchard over one single year.

Although the unique yield dataset provided sample data covering the

gradient of spatial yield variation within a single orchard, it does not

represent the yield variability across different orchards where climate and

soils may vary significantly. Similarly, the lack of yield record at the tree

level from multiple years has prevented us to incorporate weather

information in our modeling approach. Future work is needed to

collect more ground truthing data and include additional predictors

such as soil properties and weather variables for more robust yield

estimation and prediction (Zhang et al., 2019).
FIGURE 9

Almond yield variation from tree to tree along three selected transects as shown in Figure 4. CNN-estimated yield is represented by red while harvest
data in blue; red open circles are for CNN estimation at rows without individual tree yield measurements.
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With rapid advancement in deep learning technology, an important

next step is to explore the potential and utility of other powerful approaches

such as transformer networks (Vaswani et al., 2017; Liu et al., 2022) and

generative adversarial network (Goodfellow Ian et al., 2014). This is

particularly helpful for developing a scalable yield estimation workflow,

when integrating the time series of high-resolution satellite-based or aerial-

based imagery, sometimes at different spatial scales and from different

sensors. Remote sensing imagery during the whole growing season and

possibly from previous year, for example, can be utilized to integrate the

phenological information, e.g., bloom development (Chen et al., 2019), to

further improve yield estimation accuracy.

6 Conclusion

Individual tree level yield estimation is critical for precision on-farm

management and for improving our understanding of yield variability

within a field. The challenge of matching efficient supply of inputs like

water and fertilizer with tree scale demand is hampered by a lack of

understanding of yield variation within orchard blocks. Our work makes

a significant step toward bringing awareness to the problem by coupling

high-resolution imagery and modeling and paves the way for future

innovation in precision orchard management. A CNN deep learning

models in estimating almond yield was developed and evaluated, by

taking advantage of a unique tree yield data and super high resolution of

multi-spectral aerial imagery in 2021 over a single cultivar almond

orchard in California’s Central Valley. The 5-fold cross validation

showed that the CNN model with spatial attention module, driven by

4-band block imagery of 21 by 21 pixels, captured 96% (±0.2%) of tree-

to-tree variation within the study almond orchard with a very low RMSE

3.50 kg/tree and NRMSE of 6.6% ( ± 0.2%). The reduced CNN model

with the red edge band reflectance alone had a R2 of 0.83 ( ± 0.02) and

NRMSE of 13.8% ( ± 1.0%). The CNN model performed significantly

better than traditional machine learning methods and stepwise linear

regression driven by tree-level features such as VIs and texture.

The almond yield for all individual trees predicted by the CNN

model also captured well the spatial patterns and variability of

almond yield from row-to-row and from tree-to-tree both within a

row and along a transect perpendicular to the row orientation. Our

findings demonstrated the potential of applying deep learning

technology to integrate high resolution multi-spectral aerial images

for accurate and robust tree level yield estimation. The data-driven

approach developed here fills an important gap in tree level yield

estimation critical for site-specific orchard resource management,

ultimately contributing to agriculture sustainability.
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