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Freshwater ecosystems are threatened by eutrophication, which causes persistent

and harmful algal blooms. Filter-feeding bivalve mollusks and submerged

macrophytes (SMs) alleviate the eutrophication effects by inhibiting

phytoplankton biomass blooms. However, very little is known about whether

and how the combined manipulation of filter-feeding bivalves and SMs control

eutrophication and influence phytoplankton assemblages. Here, we performed a

nutrient-enriched freshwater mesocosm experiment to assess the combined

effects of the filter-feeding bivalve Cristaria plicata, a cockscomb pearl mussel,

and the macrophyte Hydrilla verticillate on the biomass and composition of

phytoplankton assemblages. We found that addition of C. plicata and H.

verticillate decreased the water nutrient concentrations and suppressed overall

phytoplankton biomass. Further, distinct differences in taxa between restoration

and control treatments were observed and noticeably competitive exclusion of

cyanobacteria in the restoration treatments occurred. An antagonistic interaction

between filter-feeding bivalves and SMs was only detected for total cyanobacteria

biomass demonstrating that a larger magnitude of SM restoration may override the

effect of filter-feeding bivalves. Our results suggest that manipulation, through the

addition of bivalves as grazers, associated with the restoration of SMs, is an efficient

approach for reducing cyanobacterial blooms and alleviating eutrophication.

KEYWORDS

biomanipulation, control of cyanobacteria, eutrophication, filer-feeding bivalves,
submerged macrophytes
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1 Introduction

Eutrophication of freshwater ecosystems, driven primarily by over

enrichment of nitrogen (N) and phosphorus (P) (Carpenter et al.,

1998), is a serious threat to water quality, biodiversity and other key

ecosystem functions (Smith et al., 2006; Cook et al., 2018; Liu et al.,

2021). Nutrient enrichment promotes the appearance and persistence

of harmful algal blooms (Heisler et al., 2008; Conley et al., 2009) and

the decline of submerged macrophytes (SMs) (Zhang et al., 2017),

altering the food web structure (Fujibayashi et al., 2018; Briland et al.,

2020). Occurrences of eutrophication are expected to increase with

climate and land-use changes (Jeppesen et al., 2010; Bergström and

Karlsson, 2019; Le Moal et al., 2019), inducing regime switches from a

macrophyte‐dominated clear state to phytoplankton‐dominated

turbid state (Jeppesen et al., 2007a). Considering that human

activity is the primary cause of the eutrophication, it is crucial to

reduce anthropogenic contributions to aquatic ecosystems and to find

effective approaches to control cyanobacterial blooms that usually

dominate eutrophic waterbodies.

The restoration of SMs is considered a crucial measure for the

rehabilitation of shallow eutrophic lakes (Liu et al., 2020; Li et al., 2021a),

as SMs display certain functional traits, that they use to stabilize the clear-

water state (Puijalon et al., 2011; Su et al., 2019; Rao et al., 2020). For

example, SMs could suppress algal growth by competing for light and

nutrients (Lürling et al., 2006), producing algae-inhibiting allelochemicals

to interfere the photosynthetic activities (Zhu et al., 2010) and change

other physiological and biochemical processes (Zhu et al., 2021; He et al.,

2023), and providing grazing zooplankton with a daytime refuge against

fish predation (Burks et al., 2001). In addition, SMs can facilitate nutrient

uptake from the water column and sediment (Sand-Jensen and Borum,

1991) and reduce sediment resuspension (Horppila and Nurminen,

2003). Earlier studies involving small-scale experiments (Barrow et al.,

2019; Amorim and Moura, 2020) and natural aquatic ecosystems (Chao

et al., 2022; Peng et al., 2022) have repeatedly reported that the restoration

of SMs decreases the phytoplankton abundance and increases water

clarity. Thus, usage of SMs is a prospective tool for the elimination of

algal blooms (Jeppesen et al., 2007b). The submerged macrophyte

restoration is, therefore, expected to prevent or mitigate the expansion

of cyanobacterial blooms.

Another restoration technique to improve water quality is the

biomanipulation of filter-feeding freshwater animals, such as mussels;

however, its effectiveness remains debatable. For example, grazing

studies involving filter-feeding mussels, such as zebra mussels and

triangle sail mussels, in Europe and China demonstrated that they can

efficiently consume pelagic algae and detritus (e.g. MacIsaac et al.,

1992; Gao et al., 2017). Further, mussels, as grazers, can reduce or

even prevent algal blooms (Gulati et al., 2008). Furthermore, Wu and

Culver (1991) found abundant zebra mussels in Lake Erie, and

noticed that filter-feeding Daphnia were able to reduce edible algal

density and enhance water transparency. Interestingly, some mussels

display food selectivity and avoid consuming cyanobacteria resulting

in dominance of cyanobacteria over other forms (Hwang et al., 2004;

Colvin et al., 2015). Contrary to Hwang et al. (2004) and Baker et al.

(1998); Colvin et al. (2015) reported that the invasion of zebra mussels

led to a decline in Microcystis biomass in the Hudson River.

Numerous combined technologies for controlling lake

eutrophication have been developed, demonstrating that the
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combined effect of the two technologies was better than the

technology alone. For example, the combination of large

herbivorous zooplankton and submerged macrophytes proved to be

more efficient at controlling the biomass of cyanobacteria (Amorim

and Moura, 2020). In addition, the successful restoration of

submersed macrophytes improved the water quality in a eutrophic

lake after the removal of common carp (Knopik and Newman, 2018).

Despite recent advances on biological restoration methods related to

eutrophication, little is known about whether and how the combined

manipulation of filter-feeding bivalves and SMs control

eutrophication and influence phytoplankton assemblages. Given the

complexities of climatically, thermally, ecologically, and

hydrologically induced change in natural lakes (Richardson et al.,

2019), mesocosm studies have been heralded as a useful means to

investigate the effects of multiple factors under manipulated or

controlled environmental conditions while supporting realistic

levels of biocomplexity (Stewart et al., 2013; Fordham, 2015).

In this study, we designed a 32-day nutrient-enriched freshwater

mesocosm experiment to explore the potential interactions between

the filter-feeding bivalves and SMs and their impact on the biomass

and composition of phytoplankton assemblages. We reasoned that

categorizing cyanobacteria based on the adaptations to avoid

predation (e.g. colonial and filamentous cyanobacteria) may lead to

greater insights into the combined effects offilter-feeding bivalves and

SMs on the restoration of eutrophic water bodies. We hypothesized

that: (i) biomanipulation via addition of filter-feeding bivalves and

restoration of submerged macrophyte, under nutrient enrichment,

will likely affect phytoplankton assemblages and control the growth of

cyanobacteria; (ii) the interactive effects are likely to be superior to

either alone for controlling eutrophication.
2 Material and methods

2.1 Study site and experimental design

The outdoor mesocosm experiment was conducted between 25

June and 27 July 2021 in 16 cylindrical polyethylene mesocosms on

land – at the Chagan Lake Observation and Research Station near

Chagan Lake (45.25°N, 124.28°E). The mesocosms had a diameter of

1 m and a constant water depth of 1.2 m; they contained 0.2 m

sediment and 780 L of unfiltered water collected from Chagan Lake

(Figure 1). Chagan Lake is a shallow eutrophic freshwater lake (mean

depth: 2.5 m) in a catchment area dominant by agricultural lands and

grasslands and has relatively high allochthonous inputs of nutrients

(especially nitrogen and phosphorus) through precipitation and

surface run-off (Liu et al., 2019; Du et al., 2022). Nitrogen and

phosphorus, as dissolved mixtures of sodium nitrate (NaNO3) and

potassium dihydrogen phosphate (KH2PO4), respectively, were added

daily to each mesocosm to equate to a nutrient load of 36 mg/L and 5

mg/L, which adhered to the Redfield ratio (Redfield, 1958). The walls

of the mesocosms were scrubbed daily to prevent periphyton growth.

During the experiment period, evaporation losses from the

mesocosms were replaced with unfiltered lake water when not

compensated for by rainfall.

The experiment had a factorial design (2 x 2) to evaluate of the

effects bivalves, macrophytes, and their interaction, on water nutrient
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concentrations and phytoplankton assemblages in mesocosms.

Cristaria plicata was chosen as the filter-feeding bivalve in our

mesocosms as it is an excellent cleaner of suspended particles (Yu

et al., 2020), and Hydrilla verticillate, was used as the macrophyte

owing to its allelopathic effects on phytoplankton (Gao et al., 2015)

and nutrient removal capability (Li et al., 2021b). Three treatments

(bivalve: C. plicata alone; macrophyte: H. verticillate alone; bivalve +

macrophyte: C. plicata and H. verticillate together) and a control

(both species absent), each one with four replicates, were randomly

assigned to the mesocosms and all received a common nutrient

loading over the entire experiment. The bivalve, macrophyte, and

bivalve + macrophyte treatments have been proposed as strategies for

mitigating eutrophication for many temperate shallow lakes, and

consequently, served as the restoration treatments (Søndergaard

et al., 2007; Zhang et al., 2014). We added two C. plicata with a

biomass of 413.8 ± 13.6 standard error (S.E.) g/m2 to the bivalve

treatment mesocosms. C. plicata were hung with string bags, 30 cm

above the sediment surface. Individual H. verticillate samples were

purchased from a commercial nursery. At the beginning of the

experiment, the average stem length of H. verticillate was 34 ± 0.8

S.E. cm and they were bundled together in groups of five to eight and

weighted down in the sediment to encourage root growth. The total

wet weight of macrophytes within each mesocosm was 650 ± 10.3 S.E.

g L-1.
2.2 Sample collection and analysis

Samples of water nutrients and chlorophyll a concentrations were

collected at the beginning of the experiment (day 0) and on day 4, 8, 12,
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16, 20, 24, 28, and 32. The water samples were collected with a tube

sampler at two different depths (surface and 5 cm above the sediment),

from which subsamples were taken for water nutrients and

phytoplankton analysis. We determined concentrations of total

phosphorus (TP), phosphate (PO4-P), total nitrogen (TN), ammonia

nitrogen (NH4-N), nitrate nitrogen (NO3-N) and nitrite nitrogen

(NO2-N) using standard methods (American Public Health

Association, 1992). Chlorophyll a (as a proxy of total phytoplankton

biomass) concentrations determined spectrophotometrically from

matter retained on Whatman GF/C glass microfiber filters after cold

ethanol extraction in darkness (Jespersen and Christoffersen, 1987).

To characterize the phytoplankton assemblage composition, we

collected phytoplankton from all enclosures. Phytoplankton sampling

was done at the beginning (day 0) and at the end of the experiment

(day 32). A subsample of the mixed tube sample water was

immediately fixed with Lugol’s solution. All samples were analyzed

using a Sedgewick-Rafter counting chamber and an inverted

microscope (RVL-100-G, ECHO, San Diego, California, USA). At

least 500 natural units were enumerated and identified to the genus

level (Hu and Wei, 2006). Cell volumes of each phytoplankton taxa

were calculated after approximation to the nearest geometric standard

solid (Hillebrand et al., 1999). The biomass estimates were calculated,

assuming that the density of the organisms equals that of water (1

mm3 L-1 = 1 mg L-1) (Wetzel and Likens, 2000). As chlorophyll a (mg/
L) measured using the spectrophotometric method and total

phytoplankton biomass (mm3/L) estimated from microscope counts

and measurements were positively correlated (R2 = 0.82, p < 0.001),

we used the latter measurement to estimate the biomass of

cyanobacteria genera. In the case of cyanobacteria, species were

classified into colonies and filaments based on their life form.
FIGURE 1

Experimental mesocosms used in our study at the Chagan Lake Observation and Research Station.
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2.3 Statistical analyses

Prior to analyses, water nutrient and chlorophyll a concentration

data were natural logarithm-transformed to meet the assumptions of

normality and homoscedasticity when necessary. Principal response

curve (PRC) method was used to evaluate the time‐dependent

influence of the bivalve (C. plicata), submerged macrophyte (H.

verticillate) and their potential interactions on key water nutrient

concentrations in response to nutrient enrichment. The PRC method

is a special case of partial redundancy analysis (RDA) and requires

repeated observations from multiple time periods in order to

represent the deviation in the treatments from the controls over

time (Van den Brink and Braak, 1999; Oksanen et al., 2020). The

statistical significance of the PRC models was tested using the Monte

Carlo permutation test (Van den Brink and Braak, 1999). The PRC

analyses displayed an affinity for the different water nutrient

(response) variables with the trajectory by giving each variable a

quantitative score. In our study, higher scores of water nutrient

variables in a restoration treatment group, resulted in more

pronounced responses compared with the control treatment during

the experiment (Van den Brink and Braak, 1999). Statistical

differences among the control and restoration treatments at the

beginning and the end of the experiment were compared using

Kruskal-Wallis test. If a significant difference was found, post hoc

comparisons among treatments were performed using Wilcoxon test.

Subsequently, we investigated the effects of bivalve addition

(bivalve), macrophyte addition (macrophyte), and their interaction

(bivalve + macrophyte) on phytoplankton biomass (chlorophyll a

concentration). For chlorophyll a concentrations collected multiple

times (i.e., on day 0, 4, 8, 12, 16, 20, 24, 28, and 32), we performed

a two-way repeated measures ANOVA (RM-ANOVA) using a

restricted maximum likelihood (REML) method. If there was a

main effect of bivalve, macrophyte, or their interaction, we

performed post-hoc analyses on the data under each treatment. If

there was a significant (p < 0.05) interaction with time, we performed

post-hoc analyses on the data within each sampling time.

The shifts in phytoplankton assemblage composition over time

and across treatments were evaluated using a multivariate ordination

technique: principal coordinate analyses (PCoA). The PCoA was

performed using Hellinger-transformed species data (Legendre and

Gallagher, 2001) and a Bray-Curtis dissimilarity matrix. The PCoA

was paired with a permutational multivariate analysis of variance

(PERMANOVA; Anderson, 2001; Oksanen et al., 2020) to test for

statistically significant differences in phytoplankton assemblage

composition in different treatments with an F-type test (999

permutations) using the same dissimilarity matrix (Bray-Curtis)

and transformed species data.

The effect of the addition of filter-feeding bivalves and SMs on the

biomass of the cyanobacteria genera was tested using a generalised

linear mixed-effects model (GLMM; Bolker et al., 2009; Harrison

et al., 2018) with a normal distribution. In separate analyses,

dependent variable were (i) total biomass of cyanobacteria, (ii)

biomass of filamentous cyanobacteria, and (iii) biomass colonial

cyanobacteria. Models were fitted using bivalve, macrophyte and

their interaction as fixed effects. All models included mesocosm
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identity as a random effect. We reported the GLMM marginal R2

(R2 m) that describes the variance explained by the fixed effects alone,

and the conditional R2 (R2 C) that describes the variance explained by

both fixed and random effects (Nakagawa and Schielzeth, 2013).

Statistical analyses were performed using R statistical (version

4.0.3) software (R Core Team, 2020). The PRC, PCoA and

PERMANOVA were performed using the vegan package version

2.5-7 (Oksanen et al., 2020). The RM-ANOVA was performed

using the ez package version 4.4-0 (Lawrence, 2016). We conducted

GLMM using the glmmTMB package version 1.1.3 (Brooks et al.,

2017). TheMuMIn package version 1.46.0 (Bartoń, 2022) was used to

generate the R2 value of each model.
3 Results

3.1 Treatment effects on physicochemical
parameters

No significant differences were found for the physicochemical

parameters among the treatments at the beginning of the experiment

(Kruskal-Wallis test: P > 0.05; supplementary Table S1, Figure S1). At

the end of the experiment, the biomass of C. plicata and the total wet

weight of macrophyte increased to 450.2 ± 12.8 standard error (S.E.)

g/m2 and 3257.6 ± 52.9 S.E. g L-1, respectively. During the experiment,

nutrient concentrations in the water shifted in parallel in the

restoration treatments (i.e., bivalve, macrophyte and bivalve +

macrophyte treatments) relative to the control treatment, with the

strongest treatment effects apparent in the bivalve + macrophyte

treatment (Figure 2A). The principal response curves (PRC) revealed

that 39.2% of the total variance present in water nutrient

concentrations is explained by treatment (Monte Carlo, P < 0.001).

Nitrogen and phosphorus loading led to increased nutrient

concentrations in the control treatment, but the decline in the

nitrogen to phosphorus ratio (N: P) of restoration treatments. Total

phosphorus, total nitrogen, phosphate and nitrate nitrogen had high

positive scores (Figure 2B), with the diagram indicating a decrease

with the restoration treatment mesocosms. N: P, ammonia nitrogen

and nitrite nitrogen had negative scores (Figure 2B), meaning

treatment-related increases. At the end of the experiment, addition

of filter-feeding bivalves and restoration of submerged macrophyte

significantly decreased the concentrations of total phosphorus and

total nitrogen (supplementary Table S1).
3.2 Treatment effects on total
phytoplankton

The two-way repeated measures ANOVA results revealed that

bivalves (F1, 3 = 118.6, p < 0.001), macrophytes (F1, 3 = 39.7, p =

0.008), and their interactions (F1, 3 = 31.2, p = 0.011) had significant

effects on phytoplankton biomass. We found a significant decline in

chlorophyll a concentrations in the bivalve treatment after day 12 (p <

0.05), in addition, a significant decline in the bivalve + macrophyte

treatment after day 8 (p < 0.05). Chlorophyll a concentrations
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markedly increased in the control treatment but decreased in the

bivalve, and bivalve + macrophyte treatments (Figure 3). Chlorophyll

a concentrations remained at a relatively stable level in macrophyte

treatment (p > 0.05). At the end of the experiment, restoration

mesocosms contained 63.7-91.8% less phytoplankton than those of the

control treatment. Our analysis indicated a time-by-bivalve interaction

(F1, 3 = 12.8, p = 0.037). After day 16, chlorophyll a concentrations were

significantly lower in both bivalve and bivalve + macrophyte treatments

than those in macrophyte treatment (Figure S2).

We found a total of 68 phytoplankton genera throughout the

experiment, with representatives from the following classes:

Cyanophyceae (14), Bacillariophyceae (14), Chlorophyceae (34),

Cryptophyceae (2) and Euglenophyceae (4) (supplementary Table

S2). The principal coordinate analysis (PCoA) explained 44.36% of

the species composition distribution through the first two axes

(Figure 4). Initially (day 0), no treatments differed significantly in

phytoplankton composition (P > 0.05; Table 1), and chlorophytes

dominated the phytoplankton assemblage. By the end of the

experiment (day 32), the phytoplankton compositions of the

restoration treatments were significantly distinguishable from

the controls (Figure 4). Addition of bivalves and/or macrophytes

induced significant changes in phytoplankton assemblage structure

(Table 1). Specifically, filamentous cyanobacteria, such as

Anabaenopsis, Aphanizomenon, and Phormidium, and colonial

cyanobacteria, such as Aphanocapsa, became abundant and

dominant in the control treatment., while symmetrical desmids (e.g.

Cosmarium, Micrasterias) tended to increase over time in the

macrophyte treatment, and the large diatoms (e.g. Cymbella,

Fragilaria, Thalassiosira) became dominant in the treatments with

the addition of filter-feeding bivalves.
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3.3 Treatment effects on cyanobacteria

By the end of the experiment, the total biomass of cyanobacteria

was explained by a positive interaction between bivalve and

macrophyte addition. Bivalve and macrophyte addition, as single

restoration approaches, resulted in statistically significantly lower

cyanobacteria biomass than in the control mesocosms (Figure S3).

However, in combination, the effects of bivalves and macrophytes

partly counterbalanced each other, resulting in a weak antagonistic

interaction, where the total biomass of cyanobacteria was higher than

the linearly combined (additive) effects of bivalve and macrophyte

additions as single restoration techniques. Decreases in filamentous

cyanobacteria and colonial cyanobacteria in response to the addition

of bivalves and macrophytes as single restoration approaches were

similar (Table 2). Filamentous cyanobacteria were more sensitive to

macrophytes than colonial cyanobacteria, that is, filamentous

cyanobacteria biomass decreased more in response to the addition

of macrophytes, as single restoration techniques, than the addition of

bivalves, while colonial cyanobacteria were more sensitive to bivalves.
4 Discussion

The development of SMs is considered as an important

restoration strategy in eutrophic shallow lakes. Often restoration

experiments do not capture the intricacies related to increased

nutrient loading and the amount of filter-feeding animals, instead

they primarily focus on assessing the effects of SMs (e.g. Bakker et al.,

2013). The use of an experimental mesocosm approach is important

for investigating the complexity observed in the field and to gain a
A B

FIGURE 2

Principal response curves resulting from the analysis of water physicochemical variables. Panel (A) represents overall deviation from the control
treatment mesocosms (control), for the other restoration treatment mesocosms (bivalve, macrophyte, and bivalve + macrophyte). This is expressed as a
canonical coefficient of the first principal component axis (PC1), in comparison with the reference control mesocosms, represented by the zero line.
Panel (B) shows canonical coefficients for the water physicochemical variables interpreted.
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mechanistic understanding about the single and interactive effects of

multiple restoration measures (Amorim and Moura, 2020; Zhang

et al., 2021; Boucher-Carrier et al., 2022). During the loading

experiments we noticed that restoration of eutrophic waterbodies

by manipulation, i.e., addition of filter-feeding bivalves and SMs, had

a marked influence on water quality and algal biomass and

community composition.

Our results of TP and TN reduction in the restoration treatments

demonstrated that the addition of the filter-feeding bivalve C. plicata and

the recovery of submerged macrophyte can significantly alleviate

eutrophication. Although some species of rooted SMs are sensitive to

relatively high nutrients and consequently get suppressed under eutrophic

conditions (Søndergaard et al., 2010), in our study, the use ofH. verticillata

reduced the nutrient levels. As a rooted submerged macrophyte, H.

verticillata can obtain nutrients from sediments via root uptake and from

the water column via foliar uptake (Barko, 1982), thus acting as a major

nutrient sink.Moreover,filter-feedingbivalves transfernutrients (especially

P) from the water column to the bottom, through excretion as well as

biodeposition of faeces and pseudofaeces (Vaughn and Hoellein, 2018).

As expected, changes in nutrient concentrations and stoichiometry,

whichwere influencedbyfilter-feedingbivalves andSMs,mayhave altered

the phytoplankton assemblage composition during the mesocosm

experiment. In agreement, a previous study observed suppressed

Cyanobacterial taxa in lakes under P limitation (Havens et al., 2003). At

the end of the experiment, the relatively high TN: TP ratios in the

macrophyte (average of 37: 1) and the bivalve + macrophyte (average of

42: 1) treatments likely led to the competitive exclusion of cyanobacteria.

These results concur with a previous study by Smith (1983) who noticed
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suppressed cyanobacterial bloomswhen theTN:TP ratio exceeded29 to 1.

Algae that are incapable of nitrogen fixation are reported to dominate

under P-limited conditions (Schindler, 1977; Amano et al., 2010).

High aquatic N: P ratios in lakes are reported in agricultural regions

(Arbuckle and Downing, 2001), suggesting that P is the principal

production-limiting nutrient. In our study, relatively high TN: TP

ratios (≈29) at the beginning indicated a phosphorus-limitation

situation. During the loading experiments addition of N and P close

to the Redfield ratio (N: P of 16: 1), relieves nutrient limitation, and

promotes a much higher phytoplankton biomass development.

Phytoplankton biomass showed a gradual increase under nutrient

enrichment (the control treatment). Previous studies have reported a

linear relationship between chlorophyll a concentration and TP for the

lower nutrient ranges (TP < 5–100µgL-1) and asymptotic behavior at

higher ranges (TP >100 µgL-1) (Canfield et al., 1984; Phillips et al., 2008;

Borics et al., 2013). Noticeably, at the end of the experiment, TP

concentration exceeded 100 µgL-1, we noticed an increase in

phytoplankton biomass with nutrient enrichment, suggesting

nutrients control phytoplankton biomass in nutrient‐rich waters

(Richardson et al., 2019).

Even in a nutrient-enrichment scenario, as expected, responses to the

addition of filter-feeding bivalves (Cristaria plicata) alone contributed to

the decline in cyanobacterial and total phytoplanktonbiomass. The overall

decline in cyanobacterial and phytoplankton biomass in these mesocosm

can be explained by the direct grazing impacts of thefilter-feeding bivalves

(Gulati et al., 2008). The direct effects of grazing by C. plicata led to

statistically significant decrease in filamentous or colonial taxa such as the

genera Dolichospermum (formerly Anabaena), Microcystis, and
FIGURE 3

Mean values (± standard error) of temporal variations of chlorophyll a concentrations throughout the experiment for the different treatments.
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FIGURE 4

Two-dimensional ordination plots resulting from the principal coordinate analysis on the phytoplankton assemblage composition (A) comparing the
control and restoration treatments on day 0 (B) and day 32 (C).
TABLE 1 Pseudo F-statistics (above diagonal) and p values (below diagonal) for pairwise PERMANOVA tests between the control and restoration
treatments on two sampling days (day 0 and day 32). .

Day 0 Day 32

Control Bivalve Macrophyte Bivalve +
macrophyte

Control Bivalve Macrophyte Bivalve +
macrophyte

Day 0-control 1.073 1.614 0.787 5.284 3.793 3.141 3.015

Day 0-bivalve 0.365 1.547 2.297 4.716 3.694 4.568 4.582

Day 0-macrophyte 0.214 0.098 1.228 6.404 6.029 3.763 2.835

Day 0-bivalve + macrophyte 0.683 0.053 0.317 5.463 3.677 2.98 2.225

Day 32-control 0.029 0.037 0.033 0.034 2.952 8.021 6.204

Day 32-bivalve 0.024 0.041 0.027 0.023 0.026 6.926 6.471

Day 32-macrophyte 0.021 0.038 0.026 0.030 0.039 0.033 4.265

Day 32-bivalve + macrophyte 0.027 0.039 0.029 0.029 0.036 0.031 0.033
F
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Planktothrix (Bastviken et al., 1998; Dionisio Pires et al., 2005) which

usually form harmful algal blooms. These results are in line with previous

studies indicating that cyanobacteria are directly grazed by filter-feeding

bivalves (Hwang et al., 2004; Gao et al., 2017), and support the possibility

that addition of filter-feeding bivalves will alleviate algal blooms that are

associated with eutrophication. Further, several studies have also shown

that filter-feeding bivalves are selective feeders and the filtering rate can

vary depending on food particle size and bivalve species. Some functional

traits of cyanobacteria, including cell size, life form (e.g. single celled,

colonial, orfilamentous), nutritional deficiency, and toxin production, can

prevent them from being grazed by mussels (White and Sarnelle, 2014;

Boegehold et al., 2019). For example,Corbiculafluminea selectivelyfiltered

particles in the rangeof0.2–2µm(Rongetal., 2021),DreissenaPolymorpha

preferred food particles from 5 to 40 mm (Sprung & Rose, 1988), and

Venerupis corrugatus filtered out particles of 5 to 13 mm (Stenton-Dozey

andBrown, 1992).Althoughwedidnot consider selective grazing effects of

C. plicata on phytoplankton the composition of phytoplankton

assemblages significantly differed between the control and the bivalve

treatments at the end of the experiment. This result indicates that once

nutrient limitation is alleviated, selective grazing would likely be the main

factor affecting the structure of the phytoplankton assemblage.

Additionally, the phytoplankton assemblages in the filter-feeding bivalve

addition treatments appear to have adaptive responses to selective grazing

pressure by C. plicata, as larger diatoms (e.g. Cymbella, Fragilaria,

Thalassiosira) dominated the phytoplankton assemblages.

SMs can also suppress algal growth via allelopathic controls and

nutrient competition (van Donk and van de Bund, 2002; Mohamed,

2017; Zhu et al., 2021). However, in our experiments, at the end of the

experiment a slight, but not significant increase in overall

phytoplankton assemblage biomass (chlorophyll a) was noticed in

the Macrophyte treatment. The phytoplankton blooms occurred

when SMs were absent over the course of the nutrient loading

experiment (the control treatment). While phytoplankton biomass

initially decreased from day 0 to day 4, it then began to slightly

increase until day 32, suggesting that SMs did cause a reduction in

phytoplankton biomass. The submerged macrophyte H. verticillate,

has been reported to produce and release allelochemicals that has

inhibitory effects on Chlorella cell membrane (Zhang et al., 2012) and

cyanobacteria (Wang et al., 2006; Gao et al., 2011). Over 32 days, SMs

suppressed overall cyanobacteria biomass (Table 2), concurring with

findings from other experimental studies (Lürling et al., 2006; Barrow

et al., 2019; Amorim and Moura, 2020). Further, factors such as light

and nutrient competition likely interacted with allelopathic controls

in the mesocosms and led to the competitive exclusion

of cyanobacteria.
Frontiers in Plant Science 08
Although unexpected, we found that filter-feeding bivalves in

combination with SMs reduced the biomass of cyanobacteria, and

noticeably the effect size of this interaction was less than the sum of their

individual effects (i.e., anantagonistic interaction).This result is in linewith

the widely observed antagonistic interactions in freshwater ecosystems

(Jacksonet al., 2016; Segurado et al., 2018;He et al., 2021), suchasnutrient-

pesticide effects onbenthic invertebrate richness (Chará-Serna et al., 2019),

and fish-shrimp effects on zooplankton biomass (He et al., 2021). The

mechanism for the antagonistic interactions is largely unknown, however,

a possible explanation could be the asymmetry of mean effect size. In our

study, the largermagnitudeof the submergedmacrophyte restorationmay

have overridden the effect of stockfilter-feeding bivalves (Table 2), thereby

negating its contribution to their net impact on the overall biomass of

cyanobacteria (Sala et al., 2000; Barrow et al., 2019). An antagonism

between filter-feeding bivalves and SMs was only detected for total

cyanobacteria. For filamentous or colonial taxa, there was no significant

interactive effects; rather filamentous cyanobacteria weremore sensitive to

macrophytes and colonial cyanobacteria to bivalves. The differential

sensitivity of cyanobacterial taxa to different biomanipulation

approaches has been noticed previously (Gazulha et al., 2012; Amorim

and Moura, 2020), the reason being that cyanobacteria are a diverse and

morphologically complex group of prokaryotes with different key

ecological traits thus eliciting disparate responses (Mantzouki et al.,

2016; Rangel et al., 2020).
5 Conclusions

Our first hypothesis that manipulation via addition of filter-

feeding bivalves and restoration of submerged macrophyte will

likely affect phytoplankton assemblages was confirmed, as this

manipulation efficiently decreased water nutrient concentrations

and the overall phytoplankton biomass. Since, phytoplankton were

dominated by symmetrical desmids (e.g., Cosmarium, Micrasterias)

and the large diatoms (e.g., Cymbella, Fragilaria, Thalassiosira) in the

restoration treatments, with the competitive exclusion of

cyanobacteria, our results also supported that manipulation could

control the growth of cyanobacteria. Contrary to the second

hypothesis, an antagonism between filter-feeding bivalves and SMs

was detected but only for total cyanobacteria, demonstrating that the

larger magnitude of the submerged macrophyte restoration may

override the effect of stock filter-feeding bivalves. However, we

should also noticed that the addition of bivalves combined with

SMs was more efficient at decreasing nutrient concentrations than

the isolated addition of bivalves, and at controlling total algal biomass
TABLE 2 Summary (coefficients and SE) of a generalized linear mixed-effects model to explain variations in cyanobacteria taxa biomass as a function of
bivalve (presence and absence) and macrophyte (presence and absence).

Biomass (µg/L) Intercept Bivalve Macrophyte Bivalve ×Macrophyte R2 m R2 C

ln total cyanobacteria 2.20 -1.34 -2.08 1.04 0.82 0.87

ln filamentous cyanobacteria 2.18 -1.38 -1.92 0.84 0.88

ln colonial cyanobacteria 1.65 -1.42 -1.09 0.65 0.79
frontie
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than the isolated restoration of SMs. Overall, our results suggest that

manipulation, through introduction of the stock of bivalves as grazers,

associated with the restoration of SMs, is an efficient approach for

reducing cyanobacterial blooms and alleviating eutrophication.
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