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Genome size variation
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associated with the global
dispersal in arid area
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Academy of Sciences, Kunming, Yunnan, China, 2University of Chinese Academy of Sciences,
Beijing, China, 3Engineering Research Center for Selecting and Breeding New Tropical Crop Varieties,
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Background: Biologists have long debated the drivers of the genome size

evolution and variation ever since Darwin. Assumptions for the adaptive or

maladaptive consequences of the associations between genome sizes and

environmental factors have been proposed, but the significance of these

hypotheses remains controversial. Eragrostis is a large genus in the grass

family and is often used as crop or forage during the dry seasons. The wide

range and complex ploidy levels make Eragrostis an excellent model for

investigating how the genome size variation and evolution is associated with

environmental factors and how these changes can ben interpreted.

Methods: We reconstructed the Eragrostis phylogeny and estimated genome

sizes through flow cytometric analyses. Phylogenetic comparative analyses were

performed to explore how genome size variation and evolution is related to their

climatic niches and geographical ranges. The genome size evolution and

environmental factors were examined using different models to study the

phylogenetic signal, mode and tempo throughout evolutionary history.

Results: Our results support the monophyly of Eragrostis. The genome sizes in

Eragrostis ranged from ~0.66 pg to ~3.80 pg. We found that a moderate

phylogenetic conservatism existed in terms of the genome sizes but was

absent from environmental factors. In addition, phylogeny-based associations

revealed close correlations between genome sizes and precipitation-related

variables, indicating that the genome size variation mainly caused by

polyploidization may have evolved as an adaptation to various environments in

the genus Eragrostis.

Conclusion: This is the first study to take a global perspective on the genome size

variation and evolution in the genus Eragrostis. Our results suggest that the

adaptation and conservatism are manifested in the genome size variation,

allowing the arid species of Eragrostis to spread the xeric area throughout the

world.
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Introduction

Genome size is a fundamental biological characteristic for the

organism. Variation in genome size was thought to have “functional

consequences” correlated with the environmental conditions and

individual phenotypes (Knight et al., 2005; Moraes et al., 2022).

Thus, the genome size variation is an essential parameter to

understand the evolutionary models of the species. Genome sizes

are also affected by environmental factors as well (Faizullah et al.,

2021). The nuclear genome size varied among land plants with 12-

fold in mosses to 2,342-fold in angiosperms (Leitch and Leitch,

2013), evolutionary and environmental implications behind this

diversity are still largely unknown. Up to now, opinions on

increasing or decreasing genome size could be divided into two

types: (1) plants with small genomes adapted to all environmental

conditions, while those with large genomes were limited in a narrow

area and tended to be excluded from extreme habitats for the short

growing season (Knight and Ackerly, 2002) and redundant

noncoding DNA (Vinogradov, 2003; Knight et al., 2005; Pysěk

et al., 2018); and (2) species with large genomes were also found in

more seasonal or arid areas as they have chosen a mechanism of cell

expansion rather than rapid division to cope with extreme

environments (Grime and Mowforth, 1982). As Bennett (1987)

indicated, large genomes have enabled plants to generate superior

traits in adverse habitats. In addition, evolution is an efficient way to

elucidate genome size variation with the “adaptive theory” or “junk

DNA” theory (Petrov, 2001; Pellicer et al., 2018). To tackle the

questions raised above, phylogenetic comparative methods (PCMs)

are increasingly used in evolutionary biology to test evolutionary

associations between genome sizes and environmental conditions

and resolve the confusion over the consequences of additional DNA

in genome size. Moreover, the evolutionary process of bioclimatic

niches and geographical factors may reflect conservation,

diversification, and adaptation in a phylogenetic context (Butler

and King, 2004; Kozak and Wiens, 2010; Wiens et al., 2010). For

example, studies on “phylogenetic niche conservatism” (PNC)

(Wiens and Graham, 2005; Losos, 2008) have paid more attention

to the variation of environmental factors. It is a potential

explanation of the species adapted to new or changing

environments (Ackerly, 2003). However, the ecological factors

that determine evolutionary models leading to the genome size

variation are yet to be fully elucidated.

Eragrostis Wolf, the largest genus comprising more than 350

species in the subfamily Chloridoideae (Poaceae) (Van den Borre

and Watson, 1994), is widely distributed in diverse ecological

environments. Eragrostis species often grow on sandy, clay, rocky

slopes and gravel soils. The majority of Eragrostis species are

common grasses without clear use, and only a few species are

used as forage grasses. Eragrostis species can maintain high

productivity even under arid or intensive grazing conditions,

leading to some species deemed as “miracle grass” in the last

century (Cox et al., 1988). Some Eragrostis species have been used

for soil conservation and fodder crops in Africa, America and

Australia (Zeid et al., 2011). In Africa, wild grains of some species
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were used as famine food by humans (Watt and Breyer-Brandwijk,

1962; Burkill, 1995). Cereal crops that can grow under various

stresses with minimal agricultural inputs are essential (Assefa et al.,

2017). Eragrostis tef (Zucc.) Trotter, commonly known as Teff,

originated in Ethiopia, and fills this pivotal role due to nutritional

merits and tolerance to harsh environments, becoming a healthy

alternative food in the xeric areas (Alaunyte et al., 2012; Abraham,

2015; Cheng, 2018; McSteen and Kellogg, 2022). Due to the global

climate changes, the desertification zone is expanding slowly,

making it urgent to mine the untapped potential of plant species

in drylands (Brown, 2012). Thus, this genus is well suited to study

drought adaptation for its remarkable viability in dry habitats

(Colom and Vazzana, 2001; Balsamo et al., 2006; Degu et al.,

2008; Ginbot and Farrant, 2011; Buerdsell et al., 2022).

Additionally, Eragrostis species have varied ploidy levels, which

are recognized as a major driver of genomic variation. However,

there are only three species in genus Eragrostis have been measured

in previous studies. (http://data.kew.org/cvalues). Thus, the genus

Eragrostis is a good model to test the genome size variation and

evolution in a global context and to find the correlations between

genome sizes and environmental factors.

The monophyletic nature of the genus Eragrostis has been

controversial for years (Van den Borre and Watson, 1994; Ingram

and Doyle, 2007; Ingram, 2010; Girma et al., 2018). Ingram and

Doyle (2007) attributed this confusion to the large number of

species in Eragrostis and its unclear phylogenetic relationship

with closely related genera. However, some classifications in

Eragrostis have been proposed. The genus was divided into

several subgroups with various anatomical types (Ellis, 1977;

Prendergast et al., 1986; Van den Borre and Watson, 1994;

Ingram, 2010). Molecular phylogenetic analyses were recently

performed based on plastid and nuclear data using limited

samples of Eragrostis (Ingram and Doyle, 2004; Ingram and

Doyle, 2007; Somaratne et al., 2019; Liu et al., 2021). Although

Barrett et al. (2020) investigated 118 species of Eragrostidinae, they

primarily put emphasis on the phylogeny of Eragrostis in Australia.

Another contentious question in the phylogenetic relationship of

Eragrostis is the presumed progenitors of E. tef (allotetraploid; 2n =

4x = 40). Although it has been long recognized that E. tef was

originated from two diploid progenitors, the true progenitors of E.

tef were still ambiguous (Jones et al., 1978; Doyle, 1999; Ingram and

Doyle, 2003). Up to eighteen species have been reported as the

presumed ancestors of E. tef (Girma et al., 2018). Among these

presumed ancestors, E. pilosa has a close relationship with E. tef

(Costanza et al., 1979; Ketema, 1991; Ayele et al., 1999; Ayele and

Nguyen, 2000; Tefera et al., 2001; Ingram and Doyle, 2003).

However, Girma et al. (2018) proposed that E. pilosa could be an

intermediate progenitor, providing robust evidence for E.

aethiopica, a diploid species (2n = 2x =20) (Bekele and Lester,

1981; Tavassoli, 1986), being the progenitor close to E. tef and E.

pilosa. A well-resolved phylogenetic tree of this genus will greatly

help to determine the diploid ancestor of E. tef.

In this study, we reconstructed the phylogeny of Eragrostis

using plastid data and ITS regions based on 66 representative
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samples from the worldwide distributions. ITS region is often used

to trace the origin and evolution of allopolyploids at low taxonomic

level (Soltis et al., 2008), and plastid data can also be employed to

determine the maternal parents of E. tef assuming their maternally

inherited attribution in grasses (Mogensen, 1988). We further

estimated genome sizes of Eragrostis 66 samples based on flow

cytometric experiments, including previously identified taxa (E.

spectabilis, E. minor and E. tef) for comparisons. We investigated

genome size variation across clades, extending to the distributions,

ranges and life styles. We tried to demonstrate the evolutionary

models of genome sizes and environmental factors (such as

geographical distributions and climatic niches) based on tempo,

mode and phylogenetic signal in evolution in an attempt to select

the best model through history. We evaluated the correlations

between genome sizes and environmental factors in a

phylogenetic context, which is capable of revealing environmental

forces in shaping genome size variation. Finally, we reconstructed

the ancestral states of climatic niche correlates to see environmental

changes of Eragrostis species. Throughout the study, we reviewed

the phylogeny and environmental conditions of each Eragrostis

species, given the implications for the response of Eragrostis species

to future climate changes.
Materials and Methods

Taxon sampling and DNA sequencing

Most Eragrostis species are native to Africa, Australia and

America (Cufodontis, 1953; Costanza, 1978; Lazarides, 1997). Our

samples not only covered the above-mentioned distribution, but

also included those species from Europe and Asia. We summarized

the information of 66 individuals representing 47 species (E.

cylindriflora with 3 samples; E. tef with 18 cultivars) in this study

(see Tables 1, S1). Seeds were germinated in pots filled with sterile

soil, and placed in a naturally lit glasshouse (Kunming Institute of

Botany, Chinese Academy of Science). In order to evaluate the data

accuracy, we planted the samples in 2017 and 2020, respectively.

Total genomic DNA was isolated from fresh leaves following a

modified cetyltrimethylammonium bromide (CTAB) protocol

(Li et al., 2013). One nuclear locus (ITS) and three chloroplast

regions (rbcL, matK, trnL-trnF) were employed for DNA

sequencing. The primers used for polymerase chain reactions

(PCR) and sequencing are presented in Table S2. The PCR

experiments were performed in a 27 ml volume containing 13.5 ml
of 2 × Taq polymerase mix (Tiangen Biotech), 1.5 ml of each primer,

1.5 ml of DNA template and 9 ml sterile deionized water. The

amplification parameters for all regions according to the following

protocol: 94°C for 5 min, followed by 35 cycles of 94°C for 1min, 45°

C for 1min, 72°C for 1 min 30 s, and a final 10 min extension at 72°

C. The PCR products were cleaned using polyethylene glycol (PEG)

precipitation protocol (Wen et al., 2007). DNA sequencing was

performed with BigDye Terminator Cycle Sequencing kit (Applied

Biosystems, Foster City, CA, USA) and ABI PRISM 3730 genetic

analyzer (ABI). The program Sequencer 4.8 (Gene Code

Corporation) was employed to assemble the generated sequences.
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Phylogenetic analyses

A total of 66 individuals of Eragrostis and the four outgroup

species were included in our phylogenetic analyses. Based on the

results of Peterson et al. (2010), two species from Cotteinae (Cottea

pappophoroides, Enneapogon desvauxii) and two species from

Uniolinae (Tetrachne dregei, Uniola paniculata) were downloaded

from NCBI to act as outgroups (Table S3). Sequences of ITS, matK,

trnL-trnF and rbcL regions were aligned and combined in MUSCLE

software (version 3.8.31) (Edgar, 2004). All sequences have been

deposited in National Genomics Data Center under BioProject

number CRA007592. We used maximum likelihood (ML) and

Bayesian analyses to infer phylogenetic relationships for both

separated and combined data. All gaps were treated as missing

data. The ML analyses being conducted using RAxML software with

GTR + I + G4 model selected in Modeltest-ng (Darriba et al., 2020).

The bootstrap values (BS) were estimated with 1,000 replicates for

internal branch support. The BS values of 90-100 were a statistically

significant occurrence, while 89-90 was interpreted as a moderate

support (Peterson et al., 2010). Phylogenetic analyses were also

performed using the Bayesian analyses in MrBayes version 3.2.7 on

the XSEDE CIPRES platform (Ronquist et al., 2012). The best

model for the Bayesian analyses was selected in jModeltest 2.1.4

(Darriba et al., 2012) of TIM + I + G with a gamma shape (G) of

0.704. Each Bayesian analysis was run for 10,000,000 generations.

The analysis was run until the value of the standard deviation of

split frequencies dropped below 0.01. The percentage of the

sampled values discarded as burn-in was set at 25%, and then the

remaining trees were used to construct the consensus tree. The

posterior probabilities (PP) of 0.95-1.00 were considered as

significant probabilities (Peterson et al., 2010). The plastid and

ITS data sets were separately processed in DnaSP version 6.12.03

software (Rozas et al., 2017) for calculating the characteristics of

sequences. The final consensus trees were uploaded to iTOL (http://

itol.embl.de) for editing and visualization.
Genome size estimation

The prevalence of polyploids in the genus Eragrostis even exists

within one species (Burson and Voigt, 1996), making it complicated

to calculate the 1C DNA values, and thus, we interpreted 2C DNA

content as genome size in this study. We measured genome sizes of

all samples using two reference standards: Oryza sativa L. ssp.

japonica cv. Nipponbare (389 Mbp) (Sasaki, 2005) and Solanum

lycopersicum (900 Mbp) (Tomato Genome Consortium, 2012). The

coefficient of variation (CV) less than 5% was considered as a

reliable estimate. Nuclei suspensions were improved according to

two-step procedure using Otto I and Otto II buffers (Otto, 1990). 5

cm2 pieces of young leaves of the samples and the standards were

chopped separately, using a scalpel in a petri dish containing 1ml of

Otto I buffer (1 M citric acid and 0.5% Tween 20) on ice. Samples

were incubated at room temperature for 60 min and shaken lightly

at the same time. Suspensions were filtered through a 50-mm nylon

filter and nuclei were stained with 1 mL Otto II buffer (0.4 M

Na2HPO4.12 H20) supplemented with PI (final concentration 50
frontiersin.org
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TABLE 1 Summary of Eragrostis species included in this study.

Species 2C (pg) SD
(pg)

1C
(Mbp)

Estimated Ploidy level Annual
Precipitation

(mm)

Chromosome numbersa

2n/DNA content (2C, pg)

Eragrostis acutiflora 2.99 0.56 1463.32 2n=10x=100 2359 401,2

Eragrostis acutiglumis 2.78 0.40 1358.14 2n=8x=80 1281

Eragrostis aethiopica * 0.69 0.11 335.46 2n=2x=20 608 2050

Eragrostis bahiensis 2.32 0.25 1134.75 2n=8x=80 1404

Eragrostis barbinodis 2.06 0.14 1007.29 2n=6x=60 624 404,5,6, 503

Eragrostis bicolor * 1.98 0.10 968.87 2n=6x=60 356

Eragrostis cilianensis * 0.77 0.03 376.69 2n=2x=20 670 207,8,9,50, 4010

Eragrostis cylindriflora 1.93 0.16 941.88 2n=6x=60 486

Eragrostis dielsii 2.58 0.14 1263.08 2n=8x=80 259

Eragrostis echinochloidea 1.46 0.04 714.37 2n=4x=40 377 404,5,12,13, 6011

Eragrostis eriopoda 3.80 0.06 1856.36 2n=12x=120 298

Eragrostis ferruginea * 3.32 0.05 1621.19 2n=10x=100 1362 8014

Eragrostis gummiflua 2.94 0.22 1439.54 2n=10x=100 662 4015,16

Eragrostis heteromera * 1.69 0.11 826.20 2n=6x=60 720 404,5,6,12,15,16,

Eragrostis humidicola 1.70 0.03 829.97 2n=6x=60 1268

Eragrostis intermedia 3.55 0.10 1735.29 2n=12x=120 585 8017,18, c.12017,18

Eragrostis japonica 2.03 0.05 991.70 2n=6x=60 1075 2019,20, 4021,22,6023,24

Eragrostis lappula 1.94 0.19 948.71 2n=6x=60 670 406,15,16

Eragrostis lehmanniana * 1.91 0.07 932.07 2n=6x=60 417 403,7, 603

Eragrostis leptocarpa 1.88 0.06 918.11 2n=6x=60 296

Eragrostis lugens * 2.37 0.04 1157.38 2n=8x=80 944 406, 806

Eragrostis virescens 1.98 0.15 969.88 2n=6x=60 705

Eragrostis minor * 1.38 0.08 674.93 2n=4x=40 780 2045, 4025,26,8027,28/1.4646

Eragrostis neesii 0.66 0.05 320.69 2n=2x=20 1438

Eragrostis nigra 1.80 0.09 878.29 2n=6x=60 887 6020,24,29

Eragrostis nindensis 2.16 0.23 1054.11 2n=6x=60 441

Eragrostis nutans 2.00 0.01 979.92 2n=6x=60 1677 4010,22, 6023,30,31

Eragrostis obtusa * 1.53 0.15 747.31 2n=4x=40 440 204,5,12

Eragrostis papposa * 1.41 0.01 691.27 2n=4x=40 377 2032,33

Eragrostis patens 0.69 0.03 337.23 2n=2x=20 944 2034,50

Eragrostis patentipilosa 2.42 0.28 1185.4 2n=8x=80 716

Eragrostis patentissima 2.06 0.04 1008.63 2n=6x=60 862

Eragrostis pilosa * 1.97 0.11 962.67 2n=6x=60 842 2035, 4027,36,37,38,39

Eragrostis plana 2.10 0.15 1028.19 2n=6x=60 800 203

Eragrostis polytricha 2.85 0.06 1395.88 2n=8x=80 1484 c.6040

Eragrostis porosa 1.35 0.05 658.69 2n=4x=40 325

Eragrostis racemosa 1.79 0.09 877.73 2n=6x=60 838 404,5,12,19, 606

Eragrostis rotifer 1.42 0.06 696.35 2n=4x=40 444 4041

(Continued)
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ug/ml) and RNAase. Three to five replicates were analyzed for every

sample, and for each replicate, 20,000 nuclei were measured using a

BD FACSCalibur (USA) flow cytometer, which had equipped with a

15 mW, 488 nm argon ion laser. The results of flow cytometry were

further analyzed by using the Cellquest software (BD Biosciences).

To ensure reliability and repeatability of the obtained results, 3-13

replicates of genome size estimates were performed per species

(Table S4). The mean genome size per species was used in

subsequent data analyses (Tables 1, S1).
Models of trait evolution

Phylogenetic signal, evolutionary mode and tempo values of the

genome sizes and environmental traits across the phylogeny were

investigated in this study. Pagel’s lambda (l), kappa (k) and delta

(d) were estimated using the geiger (Harmon et al., 2008) and

phytools (Revell, 2012) packages in R version 4.1.0 (Team, 2013).

Pagel ’s parameters involving different branch length

transformations were used for exploring evolutionary trend of a

given trait. The parameter l indicates different effects of

phylogenetic signals of biological traits, k is related to gradualism

or punctuated evolution models, and d represents evolutionary

tempo through the history (Pagel, 1997; Pagel, 1999). We selected

l parameter to test phylogenetic signal due to its better performance

than the other indices (Münkemüller et al., 2012).

Brownian motion (BM) and Ornstein-Uhlenbeck (OU) models

were popular for the trait evolution (Blomberg et al., 2020). We

compared the fitness of six models, including BM, OU, No-signal (l
forced = 0) and Pagel’s three models (l, d and k), through ML

estimations in the R package geiger (Harmon et al., 2008). The No-

signal model forced the l value to zero, namely, the hypothesis of no

phylogenetic signal during the evolution of traits. We used log
Frontiers in Plant Science 05
likelihood and Akaike information criterion (AIC) (Akaike, 1974;

Hurvich and Tsai, 1989) values as the metrics for our model

performance. Likelihood ratio tests (LRTs) (Vuong, 1989) were

used to select the best fitting model for each variable. BayesTraits

version 3.0.5 (Pagel and Meade, 2004) was used to verify the ML

results of model testing and evaluate whether our traits were

suitable for random-walk (model A) or directional model (model

B). Bayesian MCMC approach was used to calculate the expected

and observed values in different models. In a MCMC analysis, we

estimated the log marginal likelihood using 100 stones and 10,000

iterations per stone. We selected the best fitting model depending

on Log Bayes Factors (Log BF), which were calculated from the log

marginal likelihood values between two models. In order to trace

the evolutionary histories of climatic niches in the genus Eragrostis,

we reconstructed the ancestral states of selected climatic niches

using the Mesquite 3.6 (Maddison and Maddison, 2019) with

parsimony method.
Environmental data

The occurrence of each of the Eragrostis species under study

were extracted from the Global Biodiversity Information Facility

(GBIF, https://doi.org/10.15468/dl.y3uyqm). We filtered out

erroneous data points (for example, points from the sea) using

CoordinateCleaner package in R. The resulting distribution data set

contained 99,334 localities, with records larger than 150 data points

per species. Only two species (E. humidicola and E. acutiglumis) had

narrow range, which were represented by few localities fewer than

50 records. We calculated the medium values of latitudes,

longitudes and elevations recorded in the GBIF. These data were

then used to calculate the latitudinal and longitudinal ranges.
TABLE 1 Continued

Species 2C (pg) SD
(pg)

1C
(Mbp)

Estimated Ploidy level Annual
Precipitation

(mm)

Chromosome numbersa

2n/DNA content (2C, pg)

Eragrostis rufescens 1.46 0.08 715.05 2n=4x=40 1392

Eragrostis sarmentosa 1.43 0.03 701.51 2n=4x=40 564 4042

Eragrostis spectabilis 2.17 0.44 1060.92 2n=6x=60 1050 2043, 4013/2.3047

Eragrostis superba 1.59 0.08 775.29 2n=4x=40 622 203, 403,4,5,12,15,24,29,37

Eragrostis tenella 0.71 0.04 346.31 2n=2x=20 1456 2050

Eragrostis tenuifolia 1.35 0.01 660.14 2n=4x=40 1338

Eragrostis tremula 2.11 0.09 1032.29 2n=6x=60 352 206,19,23, 4022,24

Eragrostis unioloides 1.91 0.01 936.24 2n=6x=60 1892 2020,23,30,29, 6010,22,24

Eragrostis tef 1.28 0.093 624.00 2n=4x=40 787 404,5.12,13,24,44/1.4044, 1.2848,1.5849
The genome sizes of 18 cultivars in Eragrostis tef and other 2 samples in Eragrstis cylindriflora are displayed in Table S7. Arid species: The values of annual precipitation less than 800 mm were
marked in red. *, asterisks represent presumed ancestors of Eragrostis tef in Girma et al. (2018). a chromosome numbers from references:1(Gould and Soderstrom, 1970a); 2(Davidse and Pohl,
1974); 3(Spies and Jonker, 1987); 4(Roodt and Spies, 2002); 5(Roodt and Spies, 2003a); 6(Cave, 1959a); 7(Femandes and Queiros, 1969); 8(Faruqi et al., 1987); 9(Bir, 1983); 10(Gohil, 1986); 11(Spies
and Voges, 1988); 12(Roodt and Spies, 2003b); 13(Darlington andWylie, 1956); 14(Tateoka and Löve, 1967); 15(JMJ, 1954); 16(Cave, 1959b); 17(Gould, 1968); 18(Reeder, 1971); 19(Ornduff, 1969); 20

(Mehra, 1982); 21(Sahni and Bir, 1985); 22(Bir and Sahni, 1988); 23(Christopher and Abraham, 1974); 24(Kumar, 1987); 25(Majovsky, 1974); 26(Ghukasyan, 2004); 27(Devesa, 1990); 28(Moore,
1982); 29(Goldblatt, 1981); 30(Gould and Soderstrom, 1974); 31(Cave, 1962); 32(Löve, 1970); 33(Gould and Soderstrom, 1970b); 34(Dujardin and Tilquin, 1971); 35(Murin et al., 2000); 36(Marhold,
2006); 37(Nirmala and Rao, 1981); 38(Fernandes, 1971); 39(Chepinoga et al., 2009); 40(Gould and Soderstrom, 1967); 41(Nordenstam, 1969); 42(Spies et al., 1991); 43(Sherif et al., 1983); 44(Bennett
and Smith, 1976); 45(Moinuddin et al., 1994); 46(Šmarda et al., 2014); 47(Bai et al., 2012); 48(VanBuren et al., 2020); 49(Cannarozzi et al., 2014); 50(Tavassoli, 1986).
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We obtained 19 bioclimatic variables from the WorldClim 2.1

climate database based on the filtered records (https://

www.worldclim.org/data/worldclim21.html) (Fick and Hijmans,

2017). We chose the resolution of 5 mins according to the

Du et al. (2017). The data matrix of these 19 bioclimatic niche

variables was a summary of the medium value of several climatic

dimensions in precipitation and temperature. In addition to

climatic niches, we incorporated four climatic niche breadths (Liu

et al., 2020) as following: WLNBT, the mean value of the difference

between max temperature (warmest month) and min temperature

(coldest month) for each locality of a species; SNBT, the differences

between max temperatures (warmest month) and min temperatures

(coldest month) across all localities of a species; WLNBP, the mean

value of the difference between precipitation (wettest-quarter) and

precipitation (driest-quarter) for each locality of a species; SNBP,

the differences between precipitations (wettest-quarter) and

precipitations (driest-quarter) for all localities of a species. Arid

environments can be divided into three types based on annual

precipitation value: arid zone (< 800 mm), hyper-arid zone (<

300 mm) and semi-arid zone (300-800 mm) (Salem, 1989). In this

study, we classified species distributed in arid zones as arid species

and others as non-arid species. An overview map of arid species

distribution was generated in software ArcGIS 10.8 (ESRI,

Redlands, CA, USA).
Regression analyses

We evaluated the relationships between the genome sizes and

environmental factors using phylogenetic generalized least-squares

(PGLS) approach in R package caper (Orme et al., 2013) and ape

(Paradis and Schliep, 2019). PGLS model incorporating

phylogenetic signal (l) into matrix, making the regression models

more reliable. In PGLS model, l parameter was adjusted to the

optimized value through maximum likelihood method, while k and

d value were set to one (Revell, 2010). To investigate the issue of

whether a more restricted model is better than the less restricted

model, the AIC value and LRTs were used to compare the three

regression models: non-phylogenetic least-squares analysis (OLS,

l = 0), phylogenetic independent contrasts analyses (PIC, l = 1)

(Felsenstein, 1985; Blomberg et al., 2012) and PGLS (l = ML). The

significant related environmental factors are presented in the scatter

plots with p value and correlation coefficients.
Results

Phylogenetic relationships

We tested incongruence length differences (ILD) before we

combined ITS and plastid data. The p value for ILD was not less

than 0.01, therefore, there may be no significant incongruence

between ITS and plastid data. Additionally, we reconstructed

phylogenies using ITS and plastid data, separately (see Figures S1,

S2). The resulting average lengths of the ITS and plastid data were

757 and 3,010 characters, respectively, of which 49 and 93
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characters were variable, and 30 and 43 were informative sites.

The results showed relatively low bootstrap values for plastid and

ITS trees, respectively, and we thus combined the plastid and ITS

data for the subsequent analyses. The aligned data matrix for all

samples contained 66 sequences and 3,813 characters. Our results

showed that the Bayesian tree was identical to the ML strict

consensus tree (Figure 1).

We next compared the clades with high bootstrap values among

these three trees (ITS, plastid and ITS + plastid). These three

phylogenies revealed small discordance. Plastid and ITS trees

together supported the monophyly of Eragrostis and the basal

position of E. dielsii. Species of Clade I also formed a strongly

supported clade (BS = 100) in plastid tree. However, the two sister

clades in Clade I were separated in the ITS tree. The species of large

subclade (BS = 100, PP = 1.00) in Clade II, except for E. minor in

plastid tree, were all formed a single clade in both ITS and plastid

trees. Subclade (BS = 84, PP = 1.00) of Clade III were also formed a

monophyly in ITS and plastid trees. E. tef cultivars and E. aethiopica

were grouped together in both ITS and plastid trees, which is similar

to the Clade IV in Figure 1. The only difference is the two species of

E. heteromera and E. rotifer were nested within E. tef cultivars in

plastid tree.

The monophyly of Eragrostis was strongly supported by BS

value of 100%, and PP value of 1.00. The Australia endemic species

E. dielsii, which had a controversial position in Eragrostis

phylogeny, became the basal species in this clade. The core

Eragrostis can be further divided into the four clades, termed

Clade I-IV (Figure 1). After the divergence of E. dielsii, the Clade

I diverged at first, followed by the Clade II, and finally the Clade III

and IV appeared simultaneously. Species included in these clades

come from different continents, which were marked in different

colors to represent their concentrated area (Figure 1). These four

clades were supported with BS values more than 98% except the

Clade II (BS = 48%, PP = 0.93). Clade I comprised species from

America, Africa and Eurasia was strongly supported (BS = 100%, PP

= 1.00). The African native species E. superba was sister to the Clade

II-IV. Two well supported subclades were resolved in Clade II,

mainly from South/North Africa, comprising four suggested

ancestors (E. papposa, E. minor, E. cilianensis and E. obtusa) of E.

tef (Jones et al., 1978; Girma et al., 2018). They were found to be

polyphyletic within this clade. The Clade III consisted of two

subclades, one of which was moderately supportive (BP = 67%,

PP = 1.00). Eurasian E. ferruginea and African E. lehmanniana in

subclade (BP = 84%, PP = 1.00) of Clade III, had also been identified

as the closely relatives of E. tef (Girma et al., 2018). Clade IV (BS =

99%, PP = 1.00) diverged into three subclades (IV-A, IV-B and IV-

C), with moderate to strong BS values, comprising 18 accessions of

E. tef and its presumed ancestors (E. lugens, E. heteromera and E.

aethiopica) proposed by Jones et al. (1978); Costanza et al. (1979);

Bekele and Lester (1981) and Girma et al. (2018). Three species of E.

neesii, E. tenuifolia and E. humidicola formed a sister clade (IV-A;

BS = 78%, PP = 0.99) to the IV-B and IV-C. In subclade IV-B (BS =

99, PP = 1.00), two species of E. lugens and E. intermedia belonged

to the intermedia complex in the early taxonomic period

(Witherspoon, 1975), had close relationship in our study.

Previous studies suggested that the E. pilosa was close to E. tef
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(Ayele et al., 1999; Ayele and Nguyen, 2000; Ingram and Doyle,

2003), but E. pilosa and teff cultivars were polyphyletic in this study.

Different sampling could possibly explain this discrepancy. Our

results showed that E. aethiopica, E. heteromera and E. rotifer from

Africa were most closely related to E. tef in the subclade IV-C (BS =

98%, PP = 1.00). Among them, E. aethiopica and E. heteromera were

proposed as ancestors of E. tef (Girma et al., 2018).

The four clades were partially supported by the blade anatomy

analyses of the Eragrostis species, according to the previously

defined types of NAD-ME-like, PCK-like, and Intermediate (Ellis,

1977; Prendergast et al., 1986; Ingram, 2010). Clade I was

characterized by the PCK-like type, except E. spectabilis and E.

rufescens (without anatomy information). The anatomical type

NAD-ME-like was randomly dispersed in the other three clades.

Interestingly, the presumed progenitors of E. tef mentioned above
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were dispersed into different clades rather than forming a single

clade, whereas they shared a similar blade type of Intermediate,

except E. papposa and E. obtusa with NAD-ME-like type.
Genome size variation

The genome size estimates of 66 Eragrostis accessions

representing globally geographical origins were reported in this

study. The chromosome numbers and DNA contents formerly

reported were also collected and given in Table 1 and Table S1.

Our results showed that genome sizes differed up to 6-fold, ranging

from 0.66 pg in E. neesii to 3.8 pg in E. eriopoda (Figure 2A). The

five species (E. tenella, E. cilianensis, E. patens, E. neesii and E.

aethiopica) with the smallest 2C-value (0.66-0.77 pg) were half that
FIGURE 1

Phylogenetic relationships and genome sizes of Eragrostis species. Phylogram of best maximum likelihood tree reconstructed by combined plastid
and nuclear ITS data. Numbers above branches are BS values larger than 50%. Numbers below branches are PP values of the Bayesian tree. Taxon
color in Eragrostis clade corresponding to the centralized distribution area as follows: Africa = blue, America (North America and South America) =
green, Australia (or Oceania) = red, Eurasia = purple, Old World = black. “Old World” refers to Europe, Africa, and Asia. Genome sizes (2C, pg) of
Eragrostis species are presented in grey bars on the right side with small genomes indicated in light grey. *, asterisks represent presumed ancestors
of Eragrostis tef in Girma et al. (2018).
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of E. tef, indicating that they might be diploid rather than tetraploid,

supporting previous chromosome counting with 2n = 2x = 20

(Dujardin and Tilquin, 1971; Fernandes, 1971; Bir, 1983; Gohil,

1986; Tavassoli, 1986; Faruqi et al., 1987). The three species with the

largest genomes were E. ferruginea, E. intermedia and E. eriopoda

(3.32-3.80 pg), showing that they might be decaploid or with even

higher ploidy levels, confirmed by previous chromosome counting

with 2n=12x=120 (Tateoka and Löve, 1967; Gould, 1968; Reeder,

1971) (Table 1). Among the 11 presumed progenitors of E. tef

(Girma et al., 2018) (indicated by asterisks in Figure 1), genome

sizes ranged from 0.69 pg in E. aethiopica to 3.32 pg in E. ferruginea,

and their ploidy levels fluctuated from diploid to decaploid.

Although, the genome sizes varied by 4.8-fold in presumed

ancestors of E. tef, they seemed still within the range of genome

size variation of our examined samples (indicated with asterisk;

Table 1). Additionally, previous studies reported that E. cilianensis

and E. lehmanniana contained multiple cytotypes (Bekele and

Lester, 1981; Voigt et al., 1992), but we failed to observe such

results in this study. The DNA contents (2C-value) were estimated

for the three species of Eragrostis, including E. spectabilis (2.30 pg)

(Bai et al., 2012), E. minor (1.46 pg) (Šmarda et al., 2014) and E. tef

(1.40 pg) (Bennett and Smith, 1976). Our results obtained in this

study are quite consistent with the formerly reported genome sizes

for these three species (Table 1), suggesting the reliability of
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experimental methodology. Notably, we observed an average

genome size of 1.28 pg for the 18 E. tef varieties (2n = 4x = 40)

(Table S1), which was in accordance with the recently published

genome sequences of 1.27pg (VanBuren et al., 2020).

Given the morphological variability and wide range of

Eragrostis species, we analysed the genome size variation among

different clades, distribution ranges and life styles. There were no

significant differences in genome sizes among the four clades (p =

0.284; Kruskal-Wallis test). Within each clade, genome sizes varied

limitedly in Clade II (0.71-2.32 pg) and greatest in Clade IV (0.66-

3.80 pg). Interestingly, we found that at least one annual species of

each clade was small in genome size, which are indicated in light

grey colour (0.66-0.77 pg) (Figure 1; Table 1).

We then tested genome size variation among six continents, as

shown by the Kruskal-Wallis test. Our results showed that

differences were not statistically significant (p = 0.820; Figure 2B).

We first attempted to only consider the concentrated area for each

species, however, some species occurred in more than one continent.

Thus, the number of continents occupied by each species was used to

represent the ranges of species by following Wang et al. (2016).

However, Eragrostis is much more widely distributed than Betula,

and thus, we used the number of continents occupied by species to

represent the distribution range.We divided samples into six groups,

1 for one continent and 6 for six continents (Table S5). The group
A B

DC

FIGURE 2

(A) Histogram of genome sizes (2C; pg) in Eragrostis and the normal density curve. Boxplots show the genome size variation on (B) six continents
(C) range of distribution (occupied continents) and (D) life styles. The value of occupied continents corresponding to species occurred in one
continent to six continents, according to the distribution data from GBIF. OC, Oceania; AF, Africa; SA, South America; NA, North America; AS, Asia;
EU, Europe. Ns, not statistically significant; ***, p < 0.001; *, p < 0.05.
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occupied six continents had the smaller genome size than the group

occupied two continents (Wilcoxon test, p = 0.004; Figure 2C; Table

S5). The group occupied two continents also exhibited differences

with groups occupied one and three continents (Wilcoxon test,

p = 0.037, p = 0.050, respectively; Figure 2C). Moreover, perennial

species had larger genome sizes than the annual species (p < 0.001;

Wilcoxon test) (Figure 2D).
Genome size evolution

The comparisons among the six evolutionary models (see

Materials and methods) showed that the kappa model fitted best

in genome size with the lowest AIC score (Table 2). Estimates of

Pagel’s l indicated that the genome size exhibited a moderate

phylogenetic signal with a lambda value of 0.75 (Table 2) and

LRTs verified the results (Table S6). Indeed, we observed that

several species with overlapping distributions or genome sizes

tended to have close relationships in subclades. In addition,

BayesTraits results suggest that l value of genome size was

significantly greater than zero but lower than one (Table S7),

indicating that genome size failed to evolve under a pure
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Brownian motion. Environmental factors may also play an

important role in determining genome sizes of Eragrostis. The

estimates of Pagel’s d was 3.00, which was significantly different

from 1 (Table S7), referring to the occurrence of specific adaptation.

Estimates of the Pagel’s k value revealed that short branches

contributed proportionally more to the genome size evolution

(k = 0.43; Table 2). Although genome size had a strong

phylogenetic signal, the l value was still significantly different

from 1 (Table S7), indicating that genome size was not very

suitable for either pure Brownian motion (l = 1) or No-signal

model (l = 0). BM and OU are basic models used in continuous

variables, and thus, we compared the log likelihood of the basic

models through LRTs. The results indicated that the restricted

model (BM) fitted the data better than the less restricted model

(OU), because we accepted the H0 hypothesis that assumes the

restrictions are ‘true’ (p = 0.334). Hence, it is likely that the genome

size evolved towards a BM model through the history. Besides, the

Log BF of the model B was not significantly different from the

model A, confirming that the genome size fitted the random walk

better than the evolution of directional trend (Table S7).

As for geographical factors (latitude, longitude and elevation),

the model that best fitted the data was No-signal model (l forced =
TABLE 2 Selection for the best evolutionary model of genome size and environmental factors in the genus Eragrostis.

Model Parameter AICc Lh k

Genome size

BM 144.56 -70.15 2

Lambda l = 0.75 101.85 -47.66 3

Delta d = 2.99 132.04 -62.75 3

Kappa k = 0.43 98.69 -46.08 3

No-signal l forced = 0.00 106.77 -51.26 2

OU a = 2.72 145.9 -69.68 3

Annual Precipitation

BM 1028.39 -512.19 2

Lambda l = 0.00 715.89 -354.95 3

Delta d = 2.99 1019.19 -506.60 3

Kappa k = 0.00 726.75 -360.38 3

No-signal l forced = 0.00 714.17 -354.95 2

OU a = 2.72 1029.34 -511.67 3

Mean Diurnal Range

BM 536.15 -265.94 2

Lambda l = 0.00 223.97 -108.70 3

Delta d = 2.99 527.23 -260.34 3

Kappa k = 0.00 244.64 -119.04 3

No-signal l forced = 0.00 221.68 -108.70 2

OU a = 2.72 537.39 -265.42 3

(Continued)
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0.00; all p > 0.05 between the l and No-signal model; Tables 2, S6,

S8) based on the AICc criterion, indicating a lack of phylogenetic

signals in these geographical variables. The LRTs between basic

models did not achieve significance at the 0.05 level, suggesting that

BM models performed better than OU models in all geographical

factors (p = 0.307-0.320; Table S6). The Log BF provided strong

evidence that the d values for geographical factors were all greater

than 1 (d = 2.89-2.99; Tables 2, S7, S8), indicating that there was

either a temporally latter trait evolution or an accelerated evolution

over time. These three geographical variables were consistent with

the punctuated evolution (k = 0.00; Tables 2, S8), which was

supported by both ML and MCMC methods (Table S7).

Evolutionary patterns of all climatic niches were similar to

geographical variables to fit a No-signal model (Tables 2, S8) and a

high value of d (d = 2.99) (Tables 2, S8). Estimated values of k were

generally low and significantly different from one in all climatic

niches (Tables 2, S7, S8). The lambda, kappa, and delta models

clearly outperformed the BM models except that four variables

(temperature annual range, latitude, SNBP and WLNBT) showed

no significant differences between the delta and BM models

(Tables 2, S6, S8). The OU models had never shown any

significant differences from the BM models based on the LRTs in

all climatic niches (Table S6).
Correlations between genome sizes and
environmental factors

Exploring the correlations between genome sizes and

environmental factors was one way to offer evidence for the

evolutionary adaptation of plants (Petrov, 2001; Šmarda et al.,

2014; Bilinski et al., 2018). The results of regression analyses
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between genome sizes and environmental factors used in three

models are presented (Tables 3, S9; Figure S3). Overall, there were

no correlations between the genome sizes and the environmental

factors (with the exception of eastern longitude) in ordinary

regression models, whereas after phylogeny correction, significant

genome size variation in Eragrostis could be explained by eight factors

in the PGLS models (Table 3). In fact, trait evolution usually depends

on phylogeny, and the PGLS approach incorporates the value of

phylogenetic signal as covariance into the regression analyses, giving

a better way to handle our data. Indeed, LRTs in all variables showed

that the PGLSmodels fitted our data better than OLS significantly (all

p < 0.001; Tables 3, S9). The PIC model assumed that the traits of

closely related species evolved independently under the Brownian

motion. Although some correlations were not as strong as expected in

a strict Brownian model, LRTs chose PGLS regression as the best

fitting model, i.e. precipitation of wettest month showed high

correlation with genome size in PIC model, but LRTs chose PGLS

model with no correlation (Table S9).

There were significant negative relationships between genome sizes

and the three climatic niches associated with precipitation, including

annual precipitation, precipitation of warmest quarter and

precipitation of coldest quarter (R2 = 0.541, R2 = 0.565 and R2 =

0.562, respectively; p < 0.001; Table 3). For temperature niches, genome

size was significantly positively associated with the mean diurnal range

(R2 = 0.546, p < 0.001), and negatively correlated with SNBT

(R2 = 0.503, p < 0.001) and the mean temperature of driest quarter

(R2 = 0.105, p < 0.05) (Table 3). The relationships between genome

sizes and geographical distributions were also investigated. There was a

slightly significant positive relationship between the genome size and

eastern longitude (R2 = 0.166, p < 0.05; Table 3), which was the only

exception when the OLS model fitted the data better than the PIC

model. In contrast, a significant negative relationship was observed
TABLE 2 Continued

Model Parameter AICc Lh k

SNBT

BM 575.62 -285.67 2

Lambda l = 0.00 380.94 -187.19 3

Delta d = 2.99 569.34 -281.39 3

Kappa k = 0.00 390.58 -192.01 3

No-signal l forced = 0.00 378.66 -187.19 2

OU a = 2.72 576.86 -285.15 3

Latitude

BM 660.84 -328.29 2

Lambda l = 0.00 450.93 -222.19 3

Delta d = 2.89 659.99 -326.72 3

Kappa k = 0.00 469.51 -231.47 3

No-signal l forced = 0.00 448.65 -222.19 2

OU a = 2.72 662.09 -327.77 3
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between genome size and northern latitude in the PGLS model

(R2 = 0.834, p < 0.001; Table 3). However, the correlation coefficient

in the northern latitude was probably unreliable due to the small

sample distributions in the northern hemisphere. In these eight

correlated variables, the PIC regression models gave similar results to

those of the PGLS, except for the mean temperature of driest quarter

and the eastern longitude, showing that the assumed Brownian motion

in the PIC models was correct (Blomberg et al., 2012).
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Climatic niches, ancestral states and
global distribution

We reconstructed ancestral character states only for SNBT,

mean diurnal range and annual precipitation, all of which had

strong evolutionary associations with genome sizes. Ancestral states

were inferred using the maximum parsimony method for all nodes

of the phylogenetic tree, but only some key nodes are presented in
TABLE 3 Summary of associations between Eragrostis genome sizes (2C, pg) and environmental factors tested by three regression models.

Model R2 b p AIC Lh LRTs

Mean Diurnal Range-genome size

PGLS 0.546 0.065 <0.001 43.72 -19.86

OLS 0.022 0.298 0.318 52.40 -24.20 <0.001

PIC 0.546 0.065 <0.001 43.72 -19.86 −

Mean Temperature of Driest Quarter-genome size

PGLS 0.105 -0.211 0.026* 43.11 -19.55

OLS 0.029 -0.124 0.253 52.07 -24.04 <0.001

PIC 0.003 -0.005 0.697 80.63 -38.32 <0.001

Annual Precipitation-genome size

PGLS 0.541 -0.027 <0.001 44.17 -20.09

OLS ~0.000 -0.018 0.877 53.43 -24.72 <0.001

PIC 0.541 -0.027 <0.001 44.17 -20.09 −

Precipitation of Warmest Quarter-genome size

PGLS 0.565 -0.023 <0.001 41.66 -18.83

OLS 0.003 0.04 0.697 53.30 -24.65 <0.001

PIC 0.565 -0.023 <0.001 41.66 -18.83 −

Precipitation of Coldest Quarter-genome size

PGLS 0.562 -0.015 <0.001 41.96 -18.98

OLS ~0.000 0.006 0.916 53.44 -24.72 <0.001

PIC 0.562 -0.015 <0.001 41.96 -18.98 −

Northern Latitude-genome size

PGLS 0.834 -0.111 <0.001 13.14 -4.57

OLS 0.050 -0.172 0.409 22.29 -9.14 <0.001

PIC 0.834 -0.111 < 0.001 13.14 -4.57 −

Eastern Longitude-genome size

PGLS 0.166 0.130 0.014 31.60 -13.80

OLS 0.166 0.130 0.014 31.60 -13.80 −

PIC 0.293 -0.023 <0.001 44.71 -20.35 <0.001

SNBT-genome size

PGLS 0.503 -0.172 <0.001 47.94 -21.97

OLS 0.027 -0.255 0.267 52.16 -24.08 <0.001

PIC 0.503 -0.172 <0.001 47.94 -21.97 −
frontie
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Figure S4 (labeled with numbers). The results of ancestral

reconstruction showed that the common ancestors of the

Eragrostis clade came from semi-arid areas (~648 mm of annual

precipitation) with the mean diurnal range of approximately 13°C.

Climatic niche values of ancestral nodes were estimated between

596 mm to 928 mm for precipitation, and between 12°C to 15°C for

the mean diurnal range. In the terminal taxa, E. dielsii, the most

basal species in the clade Eragrostis showed the lowest annual

precipitation at only 259 mm, and E. acutiflora in Clade IV

showed a maximum value of 2,359 mm. The diurnal range value

varied from 7°C in E. nutans to 16°C in E. lehmanniana (Figures 3,

S4). Thus, the climatic conditions in the reconstructed ancestral

nodes were much more stable than the extant species. Besides,

approximately 50% of extant species with annual precipitation

lower than 800 mm were distributed across the phylogenetic tree

for each clade (Figure 3). Indeed, the Wilcoxon tests showed that

there was no difference in annual precipitation between the clades

(p > 0.05), except for the Clade II (p = 0.039), by comparing each

group with the base value. Within a particular Clade II, all species

had low precipitation and remained relatively stable to basal nodes

(Figures 3, S4). Interestingly, most of the key nodes corresponding
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to the ancestors of two clades had intermediate values between

them. This can be observed, for example, the Node-1 value was

estimated at 701 mm of annual precipitation, which was between

660 mm (Node-9) and 764 mm (Node-5). For SNBT, the ancestral

status of this genus was estimated to be 49°C (Node-1), with a slow

increase during the evolution towards Clade II (Node-9, 56°C) and

a gradual decrease during the evolution towards Clade IV (Node-6,

43°C). The annual species E. pilosa had the greatest niche breadth,

from -36°C to 45°C (SNBT = 81°C). Conversely, a perennial species

of E. humidicola, narrowly inhabited in Central Africa (Senzota,

1982), had the smallest habitat temperature breadth from 9°C to 32°

C (SNBT = 23°C) (Figure S4). Notably, our estimates of these three

ancestral climatic niches revealed signs of both increase and

decrease in the four clades (Clade I-IV).

A global distribution map is presented to review the dispersal of

Eragrostis species (Figure 4). Unexpectedly, the arid species (red

dots) showed a similar distribution area when compared to the

published map of “Arid Lands of the World” (http://pubs.usgs.gov/

gip/deserts/what/world.html). South Africa, North America and

Australia showed the greatest coincidence with the Eragrostis

species in the arid areas (areas surrounded by green dashed lines).
FIGURE 3

Parsimony reconstruction of ancestral annual precipitation (mm) on Eragrostis consensus tree (balls & sticks). Different values of precipitation were
marked as different colors.
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Arid species inhabited almost all of these three continents and were

partially dispersed in North Africa, South America and Eurasia. Of

these arid species, E. aethiopica endemic to South Africa had the

smallest genome size of 0.69 pg, while E. eriopoda native to

Australia had the largest genome size of 3.80 pg. The four species

of E. tef, E. cilianensis, E. minor, and E. virescens, had relatively small

C-values (0.77-1.98 pg), mainly distributed in semi-arid zones

around the world (Northam et al., 1993; Ketema, 1997; Martini

and Scholz, 1998; Rajbhandari et al., 2016). In contrast, the three

species of E. dielsii, E. leptocarpa and E. eriopoda had relatively large

C-values (1.88-3.80 pg), which were endemic to Australia with

annual precipitation less than 300 mm.

We finally investigated the genome size variation in 27 arid

species across Africa, America and Australia. Perennial species had

a higher percentage in the arid zones of these three continents

(Figure S5A). However, genome sizes of arid species showed no

differences between these three fully occupied arid areas (p = 0.610;

Figure S5B). When we divided all species into arid and non-arid

groups, the significance of the differences was not confirmed by the

Wilcoxon test (Figure S5C), even among different life style groups

(Figure S5D).
Discussion

Phylogenetic relationships and genome
size variation

Previous studies have put efforts to investigate the monophyly

of Eragrostis, but until recently, it is still a controversial issue. Our

results strongly support the monophyletic origin of Eragrostis,

which is in accordance with the phylogeny analyses of combined

rps16 and trnL-F (Ingram, 2010) and complete chloroplast genomes

(Somaratne et al., 2019). Nevertheless, other researchers proposed

opposing opinions that they have reintegrated some previously
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separated species into Eragrostis (Hilu and Alice, 2001; Ingram and

Doyle, 2004; Ingram and Doyle, 2007; Peterson et al., 2010).

Different and limited sampling may be responsible for these

discrepancies, and thus the origin of this large genus still needs

further investigation.

The infrageneric classification of Eragrostis has been

complicated due to the occurrence of polyploids, and only a few

studies have resolved some close relationships (Ingram and Doyle,

2007; Ingram, 2010; Girma et al., 2018; Barrett et al., 2020; Liu et al.,

2021). The E. dielsii growing in a drier area of Australia with

precipitation less than 300 mm annual year was the basal species of

the Eragrostis clade in this study. This finding is consistent with

former results by Ingram and Doyle (2007), in their waxy and rps16

tree, by Girma et al. (2018), in their new waxy gene tree, by Peterson

et al. (2010), in their nuclear ITS sequence analyses, and by Barrett

et al. (2020), in their combined plastid (rpl32-trnL, rps16, rps16-

trnK) and ITS analyses. A revision of Eragrostis in Australia

mentioned that E. dielsii was also a salt-tolerant plant (Lazarides,

1997). Thus, due to its taxonomic status and its tolerance to aridity,

further efforts are required to explore its important role in

Eragrostis. Additionally, another important species of Eragrostis

was E. tef, whose ancestors are still unknown. The combined data

and plastid data alone (Figure S1) together support that E.

aethiopica, E. heteromera and E. rotifer were closely related to E.

tef. To identify the diploid teff donors (Ingram and Doyle, 2003;

Girma et al., 2018; VanBuren et al., 2020), however, a well-resolved

phylogeny based on high-quality sequences is still needed, which is

critical in exploring the complex evolutionary history of this

allopolyploid crop.

Genome size variation has long been linked to life styles and

ranges, while we are still wondering whether this link is stable. If so,

it could be possible to choose the area in which a plant would grow

best (Bennett, 1987). It is well known that genome size variation has

effects on distribution ranges of species (Knight and Ackerly, 2002;

Knight et al., 2005). This was observed in the genus Eragrostis,
FIGURE 4

Map of locations and distributions of Eragrostis species used in this study. The regions surrounded by the green dashed lines represent the
overlapping arid areas according to the arid species and the survey of International Arid Lands Consortium (http://pubs.usgs.gov/gip/deserts/what/
world.html). Red dots, arid species; Dark blue dots, Non-arid species. The pie charts indicate the proportion of four major Clade I-IV in each
continent. Blue, Clade I; Orange, Clade II; Grey, Clade III; Yellow, Clade IV.
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supporting the hypothesis that species with smaller genomes

occupy a wider area than the species with larger genomes

(Grotkopp et al., 2004; Lavergne et al., 2010; Pandit et al., 2014).

Invasive ability of the species with small genomes, such as E. tenella,

E. minor and E. curvula, which were reported as invasive plant

species (Guido et al., 2019; Roberts et al., 2021; Wróbel et al., 2021;

Buerdsell et al., 2022), could explain their global dispersal (Bennett

et al., 1998; Grotkopp et al., 2004). Overall, our study suggests that

genome size variation in Eragrostis is one of important drivers

affecting global distribution, and species with smaller genome sizes

tend to have a more extensive distribution than those of larger sizes.

The genome size of land plants has generally shown a non-

normal or skewed distribution (Leitch and Leitch, 2013). In contrast,

the genome size of Eragrostis in this study was subjected to normal

distribution with large and small genomes in equivalent numbers

(Figure 2A). Normal distribution of genome size was also found in six

continents, and species with the small genome size occurred in each

clade and continent. Besides, genome size variation showed no

difference among continents and clades. Hence, most continents or

phylogenetic clades might follow a similar pattern of genome size

variation. It is interesting to note that this kind of trend, without

differences between continents, has also been documented in other

worldwide species like Chenopodium (Mandak et al., 2016),

duckweeds (Wang et al., 2011) and Carex (Chung et al., 2011). Our

results indicate that small genome size favored annual species. This is

consistent with previous studies, which claimed that annuals or

ephemerals were either rare or absent from those very large

amounts of DNA (Price and Bachmann, 1975; Bennett, 1987; Enke

et al., 2011; Qiu et al., 2019).
Evolutionary dynamics

The genome size variation in Eragrostis was found to have a

moderate phylogenetic signal, indicating that the genome size

evolution may be associated with the phylogenetic relationships.

Many species have shown strong phylogenetic signals, which may

be related to the heritable characteristic of genome size (de Ricqlès

et al., 2008). The presence of a complete phylogenetic signal, a value

l approaching one, suggests that genome size did not evolve in an

adaptive fashion (Blomberg et al., 2003; Pandit et al., 2014).

However, the LRTs results showed that the phylogenetic signal

was significantly different from 1, indicating the occurrence of

adaptive evolution in Eragrostis species (Gregory, 2005; Gregory

and Johnston, 2008). This observation was also supported by the

results of our PGLS analyses, showing that genome size was

significantly related to climatic variables. Furthermore, climatic

niches and geographical factors showed similar l model with

lacking of phylogenetic signal, indicating that PNC did not exist

(Losos, 2008). The likely explanation is that existing species were

less likely to maintain their ancestral environmental features and

adapted to new niches (Wiens and Graham, 2005). These

evolutionary models were further confirmed by the ancestral

states of the climatic niches. Annual precipitation showed that the

ancestral states for Eragrostis has undergone several reductions and

increases along different clades, as well as the expansions of SNBT
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and mean diurnal range, indicating that existing species had a larger

area than their ancestors did.

Evolution often breaks down or bursts out under punctuated

model (Eldredge, 1993; Gregory, 2004; Pagel et al., 2006). Our results

suggest punctuated environmental changes, and the genome size of

Eragrostis evolved in more punctuated than graduated behaviors.

This finding is in good agreement with Elena et al. (1996), who

claimed that evolution went punctuated when environmental

changes became erratic. Punctuated evolution of genome size has

been reported in some other plants, such as Melanocrommyum

(Gurushidze et al., 2012), Liliaceae (Leitch et al., 2007), Orobanche

(Weiss-Schneeweiss et al., 2006), and bromeliads (Müller et al., 2019).

However, the drastic genome size variation of Eragrostismay also be a

result of whole genome duplication, as multiple ploidy levels have

been reported in this genus (Tavassoli, 1986).

Tempo estimates of all variables, including genome sizes and

environmental factors, gave consistent results with d values from

2.69 to 2.99. All variables may have experienced species-specific

adaptation or accelerated evolution over time, with more

diversification during recent evolutionary history, as seen in other

taxa (Kang et al., 2014; Müller et al., 2019; Martıńez-Méndez et al.,

2019). In Eragrostis, most arid species from the recently diversified

clades could explain the latter evolution model. However, the cause

of this tendency still remains unsolved.
Environmental correlation
and global dispersal

Genome size variation associated with diverse environmental

factors have often been interpreted as a kind of adaptation in

response to the precipitation or temperature changes (Bennett,

1987; Wakamiya et al., 1993; Petrov, 2001; Whitney et al., 2010;

Kang et al., 2014; Jordan et al., 2015; Trávnıč́ek et al., 2019). Previous

opinions about plant species with large genome sizes remain

controversial. It was suggested that the extra DNA content would

have maladaptive consequences and tend to be excluded from the

extreme environments (e.g. high temperature, low precipitation)

(Knight and Ackerly, 2002; Knight et al., 2005). In this study,

however, we found the contrary evidence. Our PGLS results suggest

that genome sizes appeared to have strong correlations to

precipitation related niches but nothing was related to precipitation

seasonality. Specifically, species with larger genomes preferred less

precipitation than the species with smaller genomes. Not

coincidentally, similar trends of larger genomes in arid areas were

also reported (Kalendar et al., 2000; Torrell and Vallès, 2001; Bures ̌
et al., 2004; Grotkopp et al., 2004; Souza et al., 2019). Considering that

ploidy levels are great drivers of genome sizes in the genus Eragrostis,

one likely interpretation is that large genomes indeed represent plant

species with higher ploidy levels, which possess superior phenotypes,

may be better adapted to extreme environmental conditions. In

addition, plant species with large genomes have been proposed to

survive in extreme habitats through cell inflation instead of cell

division (Grime and Mowforth, 1982).

Although the correlation coefficients in the temperature niches

were smaller than the precipitation-related niches, the mean diurnal
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range also showed a close relationship with genome size in

Eragrostis. The mean diurnal range was considered as a climatic

risk factor because a major change in diurnal temperature could

increase plant mortality (Kan et al., 2007; Briga and Verhulst, 2015).

In this study, genome size was positively correlated with the mean

diurnal range, indicating that Eragrostis species with large genomes,

in other words, higher levels of polyploids may be more permissible

in habitats where diurnal temperatures vary greatly. Correlations

between genome sizes and mean diurnal ranges were also found in

wild wheat, Primulina and Ranunculus auricomu (Özkan et al.,

2010; Kang et al., 2014; Paule et al., 2018). It is well known that the

climatic niche variables are interdependent, and thus, the

relationships among them were further considered in a context of

association with genome size variation. An intimate relationship

was established between annual precipitation and mean diurnal

range with negative significance in the OLS and PGLS models (R2

=0.530, p < 0.001), suggesting that the genome size variation in

Eragrostismay result from the combined effects of precipitation and

temperature. Additionally, previous studies suggested that genome

size variation along geographic gradients was often regarded as

adaptive signatures (Rayburn and Auger, 1990; Bottini et al., 2000;

Kang et al., 2014; Bilinski et al., 2018; van Boheemen et al., 2019).

We observed a positive relationship between genome size and

eastern longitude, telling that adaptive evolution may occur in

Eragrostis. Not surprisingly, this kind of phenomenon has already

been reported in Hieracium, Allium and Bituminaria bituminosa

(Walker et al., 2006; Chrtek et al., 2009; Duchoslav et al., 2013).

Overall, our global analyses highlight a likely role of climatic niches

in shaping the genome size evolution of Eragrostis. The association

of precipitation with the genome size variation may be indicative of

the widespread occurrence of Eragrostis species in arid area.

However, the global dispersal of Eragrostis species is probably

more complicated than we thought. Other factors such as human

activities may have influenced the dispersal of Eragrostis.

The ancestors of the extant Eragrostis species originated in arid

areas, indicating that drought tolerance may already be apparent in

ancestral states. While large genomes were correlated with low

precipitation, some species with small genomes also occurred in

arid zones (e.g. E. tef, E. cilianensis, E. minor, and E. virescens). It

was reported that species with small seeds and genomes had

advantages in terms of plant invasion (Grotkopp et al., 2004;

Lavergne et al., 2010). Indeed, E. cilianensis, E. minor and E.

virescens have been used as introduced species in the livestock

industry in many countries (Martini and Scholz, 1998; Peterson and

Giraldo-Canas, 2012). This may be one of the explanations for the

global spread of Eragrostis species, and their increasing drought

tolerance ability on other lands. Furthermore, the absence of PNC

in the precipitation niche variables implied that the species departed

from the original habitats. The ancestral reconstruction indicated

that the existing niches may come from a decrease or increase of the

ancestral states in each clade. We thus hypothesize that Eragrostis

species with large genome sizes or high polyploidy levels may have

dispersed into new niches with even drier or wetter conditions in
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each clade. Repeated adaptation to similar climatic gradients has

resulted in the rapid spread of invasive plants (van Boheemen et al.,

2019). Therefore, species-specific adaptations to environmental

changes might occur several times in Eragrostis because of

complicated polyploidy history across the global area. This may

explain why each clade had a similar pattern of variation for both

large and small genomes from different areas. Such results were also

observed in the large subfamily Bromelioideae, the most diverse

clade of Bromeliaceae (Silvestro et al., 2014; Müller et al., 2019).

Considering a large number of Eragrostis species are still missing in

this study, more sampling is necessary to understand the

environmental correlation and the global dispersal in a context of

genome size evolution in Eragrostis.

To our knowledge, this is the first study to investigate the

genome size variation and evolution in the genus Eragrostis. Our

results suggest that an evolutionary adaptation of genome sizes,

which mainly originated from complicated polyploidization history,

were associated with precipitation in the genus Eragrostis across

their global distribution. The significant negative correlation

between the genome sizes and precipitations seemingly supports

an adaptive consequence of the genome size evolution in Eragrostis.

The expansion of climatic niches throughout the history and the

species-specific adaptation model in genome size further confirm

that the large genomes of Eragrostis species have evolved as

evolutionary products in various environments. In fact,

adaptations to the drought climate and other extreme

environments have been proven in the cultivated species of E. tef

(Assefa et al., 2015), and indeed, the slime cells around seeds were a

possible explanation for Eragrostis species growing in arid habitats

(Kreitschitz et al., 2009).

In summary, conservatism and adaptation seem paradoxical on

the surface. Our results strongly support the view that adaptation and

conservatism of genome sizes, which mainly resulted from a large

number of polyploidization events, play important roles in the

evolution in the genus Eragrostis. To cope with the environmental

changes, as an evolutionary consequence of polyploidization, genome

sizes have varied largely and evolved adaptively on one hand. On the

other hand, phylogenetic conservatism of the genus may have

provided a certain degree of gene flow, accelerated the drought

resistance genes to be transferred across species, and finally led to a

worldwide distribution of Eragrostis species in the arid area. Indeed,

the mechanisms of genome size variation and evolution in Eragrostis

remain largely unsolved, awaiting for the availability of several high-

quality reference genomes. We hope that this study will help to

understand the adaptive potentials of Eragrostis in the exploitation of

arid areas, thereby promoting the crop and livestock in the future.
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