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Grasping and cutting points
detection method for the
harvesting of dome-type planted
pumpkin using transformer
network-based instance
segmentation architecture

Jin Yan, Yong Liu*, Deshuai Zheng and Tao Xue

School of Computer Science and Engineering, Nanjing University of Science and Technology,
Nanjing, China
An accurate and robust keypoint detection method is vital for autonomous

harvesting systems. This paper proposed a dome-type planted pumpkin

autonomous harvesting framework with keypoint (grasping and cutting points)

detection method using instance segmentation architecture. To address the

overlapping problem in agricultural environment and improve the segmenting

precision, we proposed a pumpkin fruit and stem instance segmentation

architecture by fusing transformer and point rendering. A transformer network

is utilized as the architecture backbone to achieve a higher segmentation

precision and point rendering is applied so that finer masks can be acquired

especially at the boundary of overlapping areas. In addition, our keypoint

detection algorithm can model the relationships among the fruit and stem

instances as well as estimate grasping and cutting keypoints. To validate the

effectiveness of our method, we created a pumpkin image dataset with manually

annotated labels. Based on the dataset, we have carried out plenty of

experiments on instance segmentation and keypoint detection. Pumpkin fruit

and stem instance segmentation results show that the proposedmethod reaches

the mask mAP of 70.8% and box mAP of 72.0%, which brings 4.9% and 2.5% gains

over the state-of-the-art instance segmentation methods such as Cascade Mask

R-CNN. Ablation study proves the effectiveness of each improved module in the

instance segmentation architecture. Keypoint estimation results indicate that our

method has a promising application prospect in fruit picking tasks.

KEYWORDS

keypoint detection, stem instance segmentation, transformer, point rendering,
pumpkin harvesting
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1 Introduction

Agriculture is the foundation of people’s livelihood. To

effectively harvest crops, fruits and vegetables, researchers have

made efforts from different aspects, for instance, nutrient supply

(Sun et al., 2022), disease prevention (Yang et al., 2022), postharvest

preservation (Pan et al., 2023) and so on. Crop, fruit and vegetable

picking is often the most labor-intensive part of the entire

production chain. Therefore, intelligent picking robots have

become a research hotspot. Among them, accurate detection is a

prerequisite for intelligent picking, and many vision-based fruit and

vegetable detection works have been launched.

In recent years, deep learning applications have attracted great

attention and made great breakthroughs in image processing tasks

(Liu et al., 2021a; Bhatti et al., 2023), the research on learning-based

fruit and vegetable detection also moves forward. Liu et al. (2019a)

trained a Support Vector Machine (SVM) classifier utilizing the

Histograms of Oriented Gradients (HOG) descriptor to detect

mature tomatoes. The proposed machine learning method’s

recall, precision, and F1 scores are 90.00%, 94.41%, and 92.15%,

respectively. Sun et al. (2019) designed a GrabCut model based on

the visual attention mechanism for fruit region extraction, then

applied the Ncut algorithm to segment the extracted fruits. The

recognition method achieves the F1 score of 94.12% and an error of

7.37%. Deep learning (DL) has developed rapidly in these years, and

because of its excellent performance, DL has been applied in many

fields, including agriculture. Yuan et al. (2020) applied SSD to detect

tomatoes in the greenhouse with the backbone of Inception V2, and

the network achieves an average precision of 98.85%. Bresilla et al.

(2019) set up a fruit detection network based on YOLO. The

network can be trained to detect apples and pears without

classifying them. The architecture shows an accuracy of more

than 90% fruit detection. Fu et al. (2020) compared two Faster R-

CNN based architectures ZFNet and VGG16, employed to detect

apples in images. The results indicate that the network with VGG16

achieves the highest average precision (AP) of 0.893.

It can be seen that the accuracy and speed of fruit and vegetable

detection can meet the requirements of practical applications.

However, deep learning-based detection frameworks only

generate coarse boundaries, and many pixels irrelevant to the

detected fruit or vegetable are also included in the bounding box.

In order to obtain more abundant information, some scholars have

carried out researches on fruit or vegetable instance segmentation.

Instance segmentation combines the advantages of semantic

segmentation and object detection and identifies each object

instance of each pixel for every known object within an image.

With the help of instance segmentation, fruits or vegetables can be

assigned to different instances with pixel accuracy.

Ganesh et al. (2019) presented a deep learning approach, named

Deep Orange, to detect and pixel-wise segment oranges based on

Mask R-CNN. Gonzalez et al. (2019) proposed a network based on

Mask R-CNN for blueberry detection and instance segmentation.

The authors tested the performances of several backbones such as

ResNet101, ResNet50, and MobileNetV1. Jia et al. (2020) improved

Mask R-CNN through the fact as the feature extraction, RoI

acquisition, and mask generation so that the network is more
Frontiers in Plant Science 02
suitable for recognizing and segmenting overlapped apples. Also

based on the well-known Mask R-CNN network, Perez-Borrero

et al. (2020) designed a new backbone and mask network, removed

the object classifier and the bounding-box regressor and replaced

the non-maximum suppression algorithm with a new region

grouping and filtering algorithm to better segment instances of

strawberry. The same research team (Perez-Borrero et al., 2021)

proposed another strawberry instance segmentation methodology

based on the use of a fully convolutional neural network. Instance

segmentation is achieved by adding two new channels to the

network output so that each strawberry pixel predicts the

centroid of its strawberry. The final segmentation of each

strawberry is obtained by applying a grouping and filtering

algorithm. Liu et al. (2019b) improved Mask R-CNN to detect

and segment cucumbers by designing a logical green operator to

filter non-green backgrounds and adjusting the scales and aspect

ratios of anchor boxes to fit the size and shape of cucumbers.

In the actual picking applications, the key operating points are

often generated in the fruit stem area, so the detection of stems

should be taken seriously. Some scholars have focused their

attention on fruit stem detection.

Sa et al. (2017) made use of an RGB-D sensor to acquire color

and geometry information and utilized a supervised-learning

approach for the peduncle detection task. Yoshida et al. (2018)

used the support vector machine to classify the point cloud data,

clustering to obtain fruit stem pixels, and then looking for cutting

points. Luo et al. (2018) studied the detection of cutting points on

stems of overlapping grape clusters. After segmenting individual

clusters using machine learning method, a geometric constraint

method is then used to determine the cutting point in the region of

interest of each cluster’s stem. Sun et al. (2021) developed a deep

learning-based top-down framework to detect keypoint on the

bearing branch, enabling branch pruning during fruit picking.

This work only detects citrus branch keypoint without

segmentation. Kalampokas et al. (2021) applied a regression

convolutional neural network (RegCNN) for executing a stem

segmentation task and determined the cutting point on the stem

based on a geometric model. Chen et al. (2021) proposed a banana

stalk segmentation method based on a lightweight multi-feature

fusion deep neural network. The methods in both (Kalampokas

et al., 2021) and (Chen et al., 2021) can only segment the stem of a

single cluster of grape or banana. Wan et al. (2022) proposed a real-

time branch detection and reconstruction method applied to fruit

harvesting. To segment the branches separately, the authors first

detect branch region boxes using YOLOv4, then utilize image

segmentation to locate the branch boundaries. Next, the division

of precise boxes belonging to the same branch is achieved based on

the branch growth trend constraints. Rong et al. (2021) proposed a

method to localize the peduncle cutting point and estimate the

cutting pose. The authors first detect tomatoes via YOLOv4 and

then segment fruit and peduncle masks by YOLACT++. The

segmented peduncle mask is fitted to the curve using least squares

and three key points on the curve are found. Chen and Chen (2020)

proposed a methodology to identify the plucking points of tea

shoots using machine vision and deep learning. The authors first

localize the one tip with two leaves regions through Faster-RCNN,
frontiersin.org
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then identify the plucking areas using FCN. The plucking point is

determined as the centroid of the plucking area. The approaches in

(Wan et al., 2022) (Rong et al., 2021), and (Chen and Chen, 2020)

treat detection and stem instance segmentation as two

separate networks.

As a nutritious crop, there are few studies on pumpkin

detection. Wittstruck et al. (2020) and Midtiby and Pastucha

(2022) have conducted researches on large-scale pumpkin yield

estimation. The datasets are captured by UAVs from the air. To the

best of the authors’ knowledge, there is currently no dataset

consisting of close-range pumpkin images and devoted to

autonomous pumpkin harvesting. In this paper, we established a

dataset on two varieties of pumpkin, and the instance masks of

pumpkin fruit and pumpkin stem are labeled manually. The

pumpkin stem is thick and it is hard to tear off or twist off the

pumpkin fruit with one end effector. As is illustrated in Figure 1B,

an ideal way to pick the pumpkin is utilizing two arms or one arm

with two end effectors, one to grasp and another to cut. The

detection of pumpkin stems cannot be ignored during automatic

picking. This paper presents a pumpkin autonomous picking

framework with keypoint detection and instance segmentation

method. Firstly, pumpkin fruit and stem masks can be generated

by instance segmentation method as shown in Figure 1A. Then,

through the keypoint detection algorithm, relationships among the

fruit and stem instances are determined and keypoints are localized

as marked in Figure 1, where red points are cutting points, blue

points are grasping points, and yellow lines link one stem and one

fruit that belong to one pumpkin instance. Main contributions of

our work are three folds:
Fron
1) We propose a novel pumpkin autonomous picking

framework with grasping and cutting point detection

method using instance segmentation architecture. The

keypoint detection algorithm can model the relationships

among the fruit and stem instances as well as estimate

grasping and cutting keypoints.

2) This paper presents a pumpkin fruit and stem instance

segmentation architecture based on deep learning and

applying a transformer backbone and point rendering
tiers in Plant Science 03
mask head. Compared with several state-of-the-art

instance segmentation methods, the proposed method

shows significant performance advantages in both metric

evaluation and visualization analysis.

3) To validate the effectiveness of our method, we created a

pumpkin image dataset with manually annotated labels.

Downstream tasks such as image classification, pumpkin

detection and instance segmentation can be deployed on

the database.
The remainder of this paper is arranged as follows. Section 2

introduces the dataset and our method. Section 3 presents the

results and analyses. Finally, conclusions are summarized in

Section 4.
2 Materials and methods

In this paper, we perform instance segmentation on pumpkin

fruit and stem. Then, we detect and localize the grasping points and

cutting point using the proposed keypoint detection algorithm. To

complete this research, we first collect pumpkin images to establish

the dataset.
2.1 Data acquisition

This paper establishes a pumpkin dataset containing two

varieties of pumpkin (Bebe pumpkin and Hazel pumpkin). The

dataset was collected in Tangshancuigu modern agriculture

demonstration zone, Nanjing, China. We used three different

capture devices (Intel RealSense D435i, One Plus 6T smartphone,

and Apple iPhone 13 Pro smartphone) to collect a total of 679 ripe

pumpkin images. The original image pixels are 1280×720,

4608×3456, and 4032×3024, respectively. To better train the

images, we resized the high-resolution images from 4608×3456

and 4032×3024 to 640×480. The resolutions of final images in the

dataset are 1280×720 and 640×480. The dataset collection

environment and real image examples are shown in Figure 2.
BA

FIGURE 1

Example of pumpkin keypoint detection framework output (A) and pumpkin picking illustration (B).
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Through the review above, the pixel-wise segmentation of fruits

and the labeling of fruit stems are very important. Therefore, we

manually annotated the pixel-level instances of the pumpkin fruit

and stem, as well as the pumpkin box containing one fruit and stem

(see Figure 3). The labeling software we used is Labelme. Table 1

shows the distribution of the dataset.

The data is split into a training set and a testing set with a ratio of

80:20, where 543 images belong to training set and 136 images are in

the testing set. Differing from the general structured scene, agricultural

environment is a typical unstructured scene. The key problems faced

during image collection in agricultural environment are large changes

in illumination, a lot of dust, and frequent overlaps of fruit branches

and leaves. To simulate the agriculture environment and enhance the

generalization and robustness of deep neural network, we augment

the dataset by changing brightness, blurring the image, adding noise,

and cutout operation as shown in Figure 4. In addition, the horizontal

flip is operated with a probability of 0.5 during training. After data

augmentation, the training set contains 3258 images.
2.2 Pumpkin fruit and stem instance
segmentation

The agricultural environment is a typical unstructured environment

with complex background. Due to ‘free growth’ and overlapped fruits,

stems, branches, and leaves, fine instance segmentation in fruit

harvesting environment becomes a challenging work. In this paper, we

proposed a pumpkin fruit and stem instance segmentation framework as

illustrated in Figure 5. The main feature of this framework is introducing

a transformer network to replace the commonly used convolutional
Frontiers in Plant Science 04
neural network (CNN). The transformer network helps effectively extract

image features, improve instance segmentation accuracy, and reduce

model computational complexity. In addition, to deal with the

overlapping phenomenon that often occurs in the harvesting

environment, we add a hard point selection module to the mask

branch. Coarse features are concatenated with fine features from the

output of the feature pyramid network (FPN) to classify those hard

points and then generate the final fine mask.

Compared with the literature in the previous review, our

framework achieves the end-to-end fruit and stem instance

segmentation. The specific implementation is as follows. First, we

introduce the Swin Transformer (Liu et al., 2021b) to the task of

pumpkin fruit and stem instance segmentation and replace CNN

(such as ResNet) to extract features. The feature extraction structure

of this transformer network combined with a feature pyramid

network (FPN) (Lin et al. (2017)). Hierarchical transformer and

FPN are applied to generate a pyramid of feature maps with

different sizes of a fixed number of channels (set to 256).

Specially, we use four levels of feature maps denoted as {P2,P3,P4,

P5}. P2, P3, P4 and P5 are generated by four transformer feature

maps T2, T3, T4 and T5, convolving with 1×1 kernel via top-down

connection mechanism. As a result, P2, P3, P4 and P5 have strides 4,

8, 16 and 32 respectively. Then a region proposal network (RPN)

(Ren et al., 2015) is deployed to generate the feature map with

anchors. Via RoIAlign (He et al., 2017) operation, fixed-size feature

maps can be obtained. After fully connected (FC) layers, prediction

results of the bounding box and classification are output. In a

general way, fixed-size feature maps can generate mask predictions

after several convolution operations. However, since the fixed size

of the feature map is generally 7*7, it is tough to generate an
B

CA

FIGURE 2

Image collection environment and pumpkin images. (A) Image capture scene. (B) Original Bebe pumpkin image. (C) Original Hazel pumpkin image.
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accurate mask, especially at the fruit boundary. Therefore, we select

the hard points in the edge area and combine the coarse features

from the fixed-size feature map and the fine features from high-

resolution feature map output by FPN to generate more refined

point-wise label predictions. Details of transformer network and

mask branch will be introduced in subsections.

2.2.1 Transformer network
Transformer has a great impact on the field of natural language

processing (NLP) before. The proposal of vision transformer (ViT)

(Dosovitskiy et al., 2020) breaks the gap between NLP and vision, and

replaces the convolutional neural network with a pure transformation

module to perform image classification tasks. Liu et al. (2021b)

proposed a new visual transformer, called Swin Transformer,

whose multi-scale and computationally inexpensive properties

make it compatible with a wide range of vision tasks (image

classification, object detection, semantic segmentation, etc.). An

overview of the transformer architecture and transformer blocks we
Frontiers in Plant Science 05
applied are presented in Figure 6. It first splits an input RGB image

into non-overlapping patches (raw-valued features) by a patch

partition operation. Then a linear embedding layer is applied to the

raw-valued features to project them to an arbitrary dimension (set to

96). Several transformer blocks are applied to these patch tokens. To

produce a hierarchical representation, the number of tokens is

reduced by patch merging layers as the network gets deeper.

Specific implementations are demonstrated in (Liu et al., 2021b).

2.2.2 Mask branch
In the instance segmentation task of agricultural environment,

due to the large-scale overlapping problem, fine segmentation of the

target edges and overlapping edges is challenging. Research in (Li

et al. 2017) shows that in the segmentation task, most of the hard

pixels (about 70%) are at the edge of the object. Point rendering

method (Kirillov et al., 2020) we applied is devoted to segmenting

these blurry pixels finely. Figure 7 depicts the main idea of point

rendering. Point rendering includes three steps:
TABLE 1 Distribution of the dataset.

Images Fruit instances Stem instances Pumpkin bounding boxes

Bebe 354 608 552 608

Hazel 325 676 516 676

Total 679 1284 1068 1284
B

C D

A

FIGURE 3

Illustration of the image annotation process. (A) Original image. (B) Polygonal annotation and extraction of the pumpkin fruit mask. (C) Polygonal
annotation and extraction of the pumpkin stem mask. (D) Annotated images, red polygons are pumpkin fruits, green polygons are pumpkin stems,
yellow boxes are pumpkins.
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2.2.2.1 Candidate point selection

First, via upsampling, the low-resolution segmentation map is

converted to high-resolution, and N hard points with low

confidence are filtrated in the high-resolution segmentation map.

Most of these points are concentrated near the edge. This process

iterates step by step to obtain a segmentation map of the desired

resolution. In the implementation of this paper, the N value we

choose is 28*28.

2.2.2.2 Point feature extraction

Coarse and fine features for each candidate point are extracted.

The coarse features are extracted from the low-resolution

segmentation map, and the fine features are taken from the P2

layer of the FPN. The two sets of features are concatenated to obtain

the feature expression of the candidate points.
Frontiers in Plant Science 06
2.2.2.3 Point prediction

After obtaining the features of the candidate points, through a

set of multi-layer perceptions (MLP), the final segmentation

prediction results of the candidate points are obtained. More

implementation details can be seen in Kirillov et al. (2020).

2.2.3 Training and inference
2.2.3.1 Training

In our implementation, we apply amulti-scale training mechanism

(He et al. 2015). To address the issue of varying image sizes in training.

In each epoch, a scale is randomly selected for training.

In the proposed pumpkin fruit and stem instance segmentation

network, we define the training loss function as Equation (1):

L = Lclassification + lLbox + g Lmask (1)
FIGURE 5

Pumpkin fruit and stem instance segmentation framework.
B C D

E F G

A

FIGURE 4

Data augmentation. (A) Original image; (B) Brightness enhancement; (C) Brightness reduction; (D) Gaussian blur; (E) Noise; (F) Cutout; (G) horizontal
flip.
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where Lclassification is the loss for fruit or stem classification, Lbox
is the loss for the bounding box coordinates prediction, and Lmask is

the loss for mask prediction.

In our implementation, we apply cross entropy loss to calculate

Lclassificationand Lmask, L1 loss to calculate Lbox. We set l to 1 and g to
2 because mask is more difficult to train and is more important in

our implementation.

2.2.3.2 Inference

The inference of the pumpkin fruit and stem instance

segmentation network is a straightforward process. We forward

input images through the transformer backbone and FPN. We select

the points from the 224×224 resolution feature map refined by the

coarse 7×7 prediction in 5 steps. We select the N=282 most uncertain

points based on the absolute difference between the predictions and 0.5.

2.3 Cutting and grasping point estimation

The proposed pumpkin keypoint detection framework is illustrated

in Figure 8. Firstly, fruit and stem masks are generated via instance

segmentation method as shown in Figure 8B. After obtaining the

instance segmentation result, the fruit instances and the stem instances

can be separated as depicted in Figure 8C. Among these instances, there

are corresponding relationships among the fruits and the stems, and only
Frontiers in Plant Science 07
one-to-one fruit and stem can be labeled as the pumpkin picking target.

Then, we apply a geometric model to determine the cutting and grasping

points. Finally, by modeling the robot and its coordinate systems,

calibrating the camera parameters, the target pixel in 2D image can be

transformed a position in 3D space. In practical operations, Birrell et al.

(2020);Wang et al. (2022) andKang et al. (2020) proposed approaches to

tackle the coordinate transformation problem. Two pivotal steps of the

keypoint estimation algorithm are fruit and stem correspondence

determination and keypoint determination.
2.3.1 Fruit and stem correspondence
determination

To determine the corresponding relationships among the fruit

and stem instances, we take advantage of the apriori knowledge.

Three requirements should be satisfied. 1) The masks of fruit and

stem are adjacent. 2) Under the force of gravity, the center point of the

stem is above the center point of the fruit. 3) One fruit corresponds to

at most one stem. Algorithm 1 shows the matching process.

2.3.2 Keypoint determination
After obtaining the mask of a whole pumpkin includes a fruit

and a corresponding stem by the proposed correspondence

determination algorithm, a geometric model is employed to
FIGURE 7

Scheme of point rendering mask head.
FIGURE 6

The architecture of transformer network.
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estimate the exact location of the grasping points and

cutting point.

Denote fruit mask as F :  f(xFi , yFi )gNF
i=1, stem mask as S :  f(xSi , ySi

)gNS
i=1, where NF and NS represents number of fruit pixels and stem

pixels respectively. As illustrated in Figure 9, first, the center of mass

of the 2D fruit and stem is calculated as Equation (2), labeled as
Frontiers in Plant Science 08
fCF : (xcf , ycf )g and fCS : (xcs, ycs)g respectively.

xcf =
oNF

i=1x
F
i

NF
,  ycf =

oNF
i=1y

F
i

NF
,  xcs =

oNS
i=1x

S
i

NS
,  ycs =

oNS
i=1y

S
i

NS
(2)

A straight line denoted as lp passes through CF and CS.

Considering two conditions:
B

C

D

E

A

FIGURE 8

Block diagram of cutting and grasping point estimation method along with example images. (A) Pumpkin RGB image. (B) Pumpkin fruit and stem
instance segmentation result. (C) Visualization of pumpkin fruit and stem instances. The left column instances are fruits, and the right column
instances are stems. (D) The separate pumpkins with keypoints. The red points between the stem and the fruit are adjacent points. The red dot in
the stem is the cutting point, and the blue points in the fruit are the grasping points. (E) Pumpkin depth image. Best viewed zoom in.
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Fron
Input:
Fruiti ∈ NH�W: The i-th fruit mask in the image;

Stemj ∈ NH�W: The j-th stem mask in the image;

M: Number of fruits detected in the image;

N: Number of stems detected in the image;

Output:
K matched pairs, each pair has a fruit mask and a

stem mask,

K ≤ minfM,Ng
1: for i=0 to M do
2: Calculate center point of Fruiti :CFi = (xi, yi)

3: for j=0 to N do
4: Calculate center point of Stemj :CSj = (xj, yj)

5: if xj > xi (To ensure the center point of stem

is above the center point of fruit) then

6: count adjacent mask point: num(dis < dis _ thr)

7: if num(dis < dis _ thr) > num _ thr (To ensure the

masks of fruit and stem are adjacent) then
8: Fruiti and Stemj is a matching candidate

9: end if
10: end if

11: for i=0 to M do

12: if There is one or more than one match

candidates with stem then
13: Calculate the degree of pumpkin matching

candidate: D ¼ arctan
jxi−xj j
jyi−yjj

14: The matching candidate with the minimum D

value is determined as the match pair.(To

ensure one fruit corresponds to at most one

stem)

15: end if

16: end for
17: end for

18:end for
ALGORITHM 1
Matching pumpkin fruit masks with their corresponding stem masks.

Case 1: lp is a vertical line (slope of lp is ∞).

Denote lp as x=c. Index of grasping points G1 and G2 from fruit

mask F can be calculated as Equation (3):

G1 = arg  max
i
      xFi − c

�� ��,    x ≤ c

G2 = arg  max
i
      xFi − c

�� ��,    x > c

8><
>:

(3)

Case 2: lp is not a vertical line (slope of lp is not ∞).

Assume line equation as lp : y = kx + b. Denote Di as the

distance from ith point in F to lp. G1 and G2 can be calculated as

Equation (4):

G1 = arg  max
i
    Di,    y

F
i ≤ kxFi + b

G2 = arg  max
i
     Di,    y

F
i > kxFi + b

8><
>:

(4)

F i na l l y , keypointG1
: xFG1

, yFG1
a nd keypointG2

: xFG2
, yFG2

a r e

determined as two grasping points that distribute in two sides of
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lp. Cutting point keypointC is the center point of stem mask, that is

fCS : (xcs , ycs )g.
3 Results and discussion

3.1 Evaluation metrics

3.1.1 Average precision
According to whether the true sample and the predicted result

match, the prediction results can be divided into four types: true

positive (TP), false positive (FP), true negative (TN), and false

negative (FN). Precision and recall are defined as follows:

Precision =
TP

(TP + FP)

Recall =
TP

(TP + FN)

The average precision metric is used to measure the quality of

the detections and the segmentations obtained by the models.

Average precision computes the average precision value for recall

values over 0 to 1. Specifically, mean average precision (mAP) is

defined as the primary metric. As in (Lin et al. (2014)), mAP is

calculated using 10 intersection over union (IoU) thresholds from

0.50 to 0.95. The IoU measures the overlap between two boundaries

or masks and measures how much the box boundary or mask

predicted by the algorithm overlaps with the ground truth (the real

object boundary or real object mask).

3.1.2 Model complexity and inference speed
The model complexity usually relates to parameter number and

calculation amount, two metrics that describe how many

parameters the model defines and how many floating point
FIGURE 9

Estimation of pumpkin grasping and cutting points.
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operations(FLOPs) are required when running the model.

1GFLOPs = 109FLOPs. The metric to define the model inference

speed is the average number of frames per second (FPS). Model

complexity and FPS are vital indicators to evaluate the performance

of the model.
3.2 Instance segmentation result

3.2.1 Experiment setup
In this paper, the training and evaluation of the proposed

network are conducted on a server, which consists of an Intel i9-

10900X CPU with 20 cores, 32G RAM, and an RTX 3090 GPU with

24G memory. The network implementation was carried out using

Pytorch 1.7.0.

3.2.2 Performance comparison with state-of-the-
art methods

We performed a series of experiments to compare our method

with the state-of-the-art methods, namely YOLACT (Bolya et al.,

(2019), QueryInst (Fang et al., 2021), Mask R-CNN (He et al.,

(2017) and Cascade Mask R-CNN (Cai and Vasconcelos, 2019). All

algorithms are trained for 100 epochs, and when every training

epoch ends, the mAP values of mask segmentation and box

detection are calculated as shown in Figures 10, 11. The detection

mAP of our proposed method outperforms these state-of-the-art

methods, and the segmentation mAP is significantly superior to the

existing methods. Fortunately, in this application, segmentation

precision is more important than detection precision.

The evaluation results are listed in Table 2. Our architecture

achieves a high instance segmentation accuracy of 0.708 mask mAP

and 0.720 box mAP, which brings 4.9% and 2.5% gains over the

second-best results. From the parameter comparison, except

QueryInst (the model is too large) and YOLACT (the accuracy is

not satisfactory), the margin among parameter numbers of Mask R-

CNN, Cascade Mask R-CNN and the method we proposed is

narrow. It’s worth noting that although the parameter size of our

method is larger than Mask R-CNN (59.27M Vs 43.76M), the

computational complexity is lower than Mask R-CNN (213.01

GFLOPs Vs 258.19 GFLOPs). Our method achieves 13.5 FPS on

a single RTX 3090 GPU, which can meet the requirements of

agricultural applications.

3.2.3 Visualization result analysis
To highlight the superiority of the proposed architecture

more intuitively, the visual analysis of the outstanding networks

and our network is conducted. As can be seen in Figure 12, all

methods can detect the majority of pumpkin instances, whereas

our method achieves higher confidence. As is shown in the third

column, YOLACT and QueryInst fail to detect the pumpkin in

red circle covered by the leave, while Mask R-CNN, Cascade

Mask R-CNN and our method detect the pumpkin with the

confidence of 0.38, 0.97 and 1.0, respectively. It is obvious that

our method generates finer masks compared with other methods.

To emphasize the contribution of point rendering mask branch,

we compared the visualization results of our method and our
Frontiers in Plant Science 10
method without point rendering as shown in the last two rows,

where can be seen that the finer masks benefit more from the

point rendering mechanism.

3.2.4 Ablation study of improved models
In order to prove the effectiveness of the improved modules in

the proposed pumpkin fruit and stem instance segmentation

method, the ablation study on different modules is performed in

this section. The comparisons are conducted on seven cases, as

shown in Table 3. As can be seen from the table, replacing the

original CNN module with the transformer network and the

mechanism of multi-scale training have greatly improved the

results, and the mask mAP and box mAP have increased by 2.5%,

2.4% and 1.7%, 3.3% respectively. Although the improvement of

replacing the original mask branch with the point rendering mask

branch takes no remarkable superiority in mAP results, it only

increases by 0.6% in mask mAP, and the box mAP has a slight
FIGURE 10

Mask segmentation mAP of the model.
FIGURE 11

Box detection mAP of the model.
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increase of 0.3%, but from the visualization results, point rendering

mask branch greatly optimizes the boundary masks, which cannot

be ignored. Finally, the architecture with transformer network,

point rendering mask branch, and the multi-scale training

network improves 5.3% mask mAP and 5.1% box mAP over the

Mask R-CNN Baseline network. The inference speed decreased

from 16.4 FPS to 13.5 FPS, but this is acceptable.
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3.3 Keypoint estimation results

3.3.1 Pumpkin fruit and stem correspondence
determination result

Figure 13 shows some example results of fruit and stem

matching algorithm. It can be seen that in most conditions,

including one image with single or multiple pumpkins, existing
TABLE 2 Performance comparison with state-of-the-art methods.

mask mAP box mAP #param. GFLOPs FPS

YOLACT (Bolya et al. (2019)) 0.596 0.572 34.74M 186.57 21.3

QueryInst (Fang et al. (2021)) 0.559 0.554 172.23M 464.29 6.2

Mask R-CNN (He et al. (2017)) 0.656 0.669 43.76M 258.19 16.4

Cascade Mask R-CNN (Cai and Vasconcelos (2019)) 0.659 0.695 76.8M 389.03 13.6

Ours 0.708 0.720 59.27M 213.01 13.5
frontiers
The best performances of each metrics are in bold format.
FIGURE 12

Example of pumpkin fruit and stem instance segmentation results.
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fruit, leave, or branch overlaps, our algorithm can match the fruits

and stems successfully. To analyze the results accurately, we count

all the matched pumpkin instances in the test images, the number of

TP is 215, FP is 4, and TN is 2. The precision and recall reach 98.2%

and 99.1% respectively. Some negative matched examples are listed

in Figure 14. The reason for the faults is that in the instance

segmentation step, missing and erroneous detections happen

sometimes. The pumpkin is too small or interference of branches

may cause false detection.
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3.3.2 Keypoint determination result

Figure 15 presents the visualized results of grasping and cutting

keypoint detection. In the figure, red points are the cutting points,

blue points are the grasping points. Yellow lines linking the cutting

points and grasping points signify that the 3 points attach to one

pumpkin instance. Specially, the occlusion problem is usually not

negligible in fruit picking task. One of the advantages of this

approach is that if a pumpkin is occluded seriously, for instance,
TABLE 3 Ablation study on the pumpkin fruit and stem instance segmentation method.

Model transformer network multi-scale training point rendering mask mask mAP box mAP FPS

Baseline model 0.656 0.669 16.4

Model-A √ 0.681 0.686 15.4

Model-B √ 0.680 0.702 16.5

Model-C √ 0.665 0.672 14.3

Model-D √ √ 0.705 0.718 15.1

Model-E √ √ 0.701 0.709 13.7

Model-F (Ours) √ √ √ 0.708 0.720 13.5
fro
The best performances of each metrics are in bold format.
FIGURE 13

Pumpkin fruit and stem matching result.
ntiersin.org

https://doi.org/10.3389/fpls.2023.1063996
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Yan et al. 10.3389/fpls.2023.1063996
if we can only see the fruit part or the stem part in the image, our

algorithm can filter this pumpkin autonomous as shown in the first

image from the second row in Figure 15. If the pumpkin is only

occluded part of the fruit or stem by leaves, branched or other fruits,

our algorithm also determines the grasping point and cutting point

reasonably as shown in the right three columns from Figure 15. The

results show that our algorithm is promising for the pumpkin

picking task.
4 Conclusion

In this paper, we presented a pumpkin autonomous picking

framework with keypoint detection and instance segmentation

method. A transformer network is utilized as the architecture
Frontiers in Plant Science 13
backbone to replace CNN, which helps achieve a higher detection

and segmentation precision. To tackle the overlapping problem,

point rendering is applied so that finer masks can be acquired.

Sufficient experimental results indicate that our method

significantly outperforms several state-of-the-art instance

segmentation methods. In addition, a novel keypoint detection

algorithm is proposed to model the relationships among the fruit

and stem instances as well as estimate grasping and cutting

keypoints. The effectiveness and applicability of the proposed

method are verified through plenty experiments on pumpkin

image dataset we created. In this work, we applied traditional

geometric method to model the fruit-stem relationships and

estimating the keypoints. Our future work will expand into

learning-based method to detect the fruit-stem pairs and directly

generate the keypoints using deep neural networks.
FIGURE 14

Wrong examples of pumpkin fruit and stem matching result.
FIGURE 15

Visualized results of grasping and cutting keypoint detection.
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