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Long- and short-term
acclimation of the
photosynthetic apparatus to
salinity in Chlamydomonas
reinhardtii. The role of Stt7
protein kinase
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Salt stress triggers an Stt7-mediated LHCII-phosphorylation signaling

mechanism similar to light-induced state transitions. However, phosphorylated

LHCII, after detaching from PSII, does not attach to PSI but self-aggregates

instead. Salt is a major stress factor in the growth of algae and plants. Here, our

study mainly focuses on the organization of the photosynthetic apparatus to the

long-term responses of Chlamydomonas reinhardtii to elevated NaCl

concentrations. We analyzed the physiological effects of salt treatment at a

cellular, membrane, and protein level by microscopy, protein profile analyses,

transcripts, circular dichroism spectroscopy, chlorophyll fluorescence transients,

and steady-state and time-resolved fluorescence spectroscopy. We have

ascertained that cells that were grown in high-salinity medium form

palmelloids sphere-shaped colonies, where daughter cells with curtailed

flagella are enclosed within the mother cell walls. Palmelloid formation

depends on the presence of a cell wall, as it was not observed in a cell-wall-

less mutant CC-503. Using the stt7mutant cells, we show Stt7 kinase-dependent

phosphorylation of light-harvesting complex II (LHCII) in both short- and long-

term treatments of various NaCl concentrations—demonstrating NaCl-induced

state transitions that are similar to light-induced state transitions. The grana

thylakoids were less appressed (with higher repeat distances), and cells grown in

150 mM NaCl showed disordered structures that formed diffuse boundaries with

the flanking stroma lamellae. PSII core proteins weremore prone to damage than

PSI. At high salt concentrations (100–150 mM), LHCII aggregates accumulated in

the thylakoid membranes. Low-temperature and time-resolved fluorescence

spectroscopy indicated that the stt7 mutant was more sensitive to salt stress,
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suggesting that LHCII phosphorylation has a role in the acclimation and

protection of the photosynthetic apparatus.
KEYWORDS

acclimation, Chlamydomas reinhardtii, macroorganization, photosystems 1 and 2, salt
stress, state transitions of photosynthetic apparatus, Stt7 kinase, thylakoid membrane
Introduction

Salinity is one of the most significant risks to the agricultural

sector. Acid rains trigger the release of sodium and bicarbonate ions

into the environment; salts dispersed through sewage, fertilizers

used on farms, and the salting of roads cause the increased salinity

of streams, rivers, and lakes (Lockwood, 2019). Approximately 20%

of the world’s cultivated land and approximately 50% of the

irrigated lands are affected by salinity (Measho et al., 2022).

Salinity imparts both ionic and osmotic stresses as primary

effects, which may further lead to secondary impacts like

oxidative damage resulting in loss of membrane integrity, enzyme

activity, reduced nutrient acquisition, and photosynthetic efficiency.

Additionally, a high concentration of salts infringes on ion

homeostasis and leads to molecular damage, growth arrest, and

ultimately death if the organism fails to adapt to the salinity stress.

It is well-known that high salt concentrations affect

photosynthesis and plant productivity. Previous reports showed

that the exposition of photosystem (PS)II particles to higher NaCl

concentrations resulted in the separation of extrinsic proteins of the

oxygen-evolving complex (OEC), leading to impaired oxygen

evolution (Murata and Miyao, 1985). Salt stress inhibited PSII

activity in mangrove trees (Tiwari et al., 1998; Parida et al., 2003).

In addition, NaCl inhibited the electron transport at the donor and

acceptor sides of PSII in cyanobacteria (Verma and Mohanty,

2000). Earlier studies reported that both PSI and PSII were

inactivated by osmotic stress (Allakhverdiev et al., 2000; Al-

Taweel et al., 2007). Reports showed that salt could affect the

protein levels in the photosynthetic apparatus (Parida et al., 2003;

Sudhir et al., 2005; Subramanyam et al., 2010; Neelam and
dtii, Chlamydomonas
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Subramanyam, 2013), but the organization of photosynthetic

complexes and the role of plastoquinone (PQ) pool are not known.

The readjustment of absorption cross-sections of PSII and PSI

can occur in both short- and long-term periods (by transcriptional

and translational regulation of light-harvesting complexes (LHC)

gene expression). In the short term (seconds–minutes), light energy

balance is sensed through, e.g., DpH changes across the membrane

and the PQ pool’s redox state, which activates non-photochemical

quenching and state transitions, respectively. On a longer timescale,

the composition of light-harvesting systems of both the

photosystems, PSII and PSI, varies.

The PQ pool is part of a complex signaling network consisting of

cytochrome (Cyt) b6/f, plastocyanin, protein kinases, and

phosphatases that all together work collectively to restore the redox

poise of the electron carriers to maintain the photosynthetic efficiency

(Cruz et al., 2001; Borisova-Mubarakshina et al., 2015). Over-

excitation of PSII relative to PSI results in the reduction in the PQ

pool and binding of PQH2 to the Qo site of Cyt b6/f, which further

activates Stt7 (state transition kinase 7) or STN7, phosphorylating a

portion of LHCII (Depège et al., 2003; Bellafiore et al., 2005;

Minagawa, 2011). This shifts the system into State II. The process

is reversed when the PQ pool is oxidized, which results in the

inactivation of the kinase, dephosphorylation of LHCII by the

PPH1/TAP38 phosphatase, and its return to PSII, reverting to State

I (Pribil et al., 2010; Shapiguzov et al., 2010). In State II conditions, C.

reinhardtii forms large PSI–LHCI–LHCII supercomplexes that

contain 9 or 10 LHCI subunits, 2 LHCII trimers, and possibly a

monomeric LHCII subunit CP29 (Drop et al., 2014; Huang

et al., 2021).

The absorption cross-section of the PSI and PSII can be

modulated by anaerobiosis (Nellaepalli et al., 2012) and elevated

temperature (Nellaepalli et al., 2011; Nellaepalli et al., 2015;

Madireddi et al., 2019). Anaerobiosis-induced state transition was

observed in Arabidopsis thaliana, which also mimics the light-

induced state transitions. Dark anaerobiosis shows a non-

photochemical reduction in the PQ pool due to respirational

deprivation and depleted ATP content. Where the reduction in

the PQ pool is proposed to be mediated by an NDH-dependent

pathway, it was reported that the absence of O2 negatively affects the

activity of PTOX, which fails to oxidize the PQ pool (Cournac et al.,

2000). This leads to the activation of LHCII kinase, which

phosphorylates LHCII—resulting in the migration of LHCII

complexes to PSI (Nellaepalli et al., 2012). Non-photochemical

reduction in the PQ pool can occur by anaerobiosis (Finazzi
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et al., 2002; Nellaepalli et al., 2012) and heat (Havaux, 1996; Bukhov

and Carpentier, 2004; Nellaepalli et al., 2011).

The impact of moderately elevated temperature on state

transitions is well documented (Nellaepalli et al., 2011; Nellaepalli

et al., 2015; Madireddi et al., 2019). Dark, elevated temperatures up

to 40°C can induce LHCII phosphorylation; thus, state transitions

occur in these conditions. With the combination of dark and high

temperatures, the reduction in the PQ pool is driven by an increase

in thylakoid membrane fluidity and leakiness. Predominantly

PGR5-independent cyclic electron transfer is responsible for

inducing non-photochemical reduction in the PQ pool under

moderately elevated temperatures from A. thaliana. Even the PQ

pool is reduced without light, which means that the source of

electrons can be from enhanced malate and glycolytic pathway

(Bennoun, 1982; Nellaepalli et al., 2012). In Chlamydomonas (C.)

reinhardtii, thylakoid membrane dynamics could have altered

under elevated temperature due to a change in membrane

fluidity. The state transition complexes separated using sucrose

density centrifugation from C. reinhardtii under elevated

temperature have shown the presence of a PSII–LHCII–PSI

complex that can redistribute energy between two photosystems

within the same complex (Madireddi et al., 2019). In all these

reports, the dark-induced state transition may be involved in

photoprotection and balance of the excitation pressure on

both photosystems.

In this study, we investigated the long- and short-term

acclimation responses of C. reinhardtii to NaCl, specifically

clarifying the role of LHCII and the redox-activated chloroplast

protein kinase Stt7 (state transition kinase 7) in mediating the

acclimation response.
Experimental procedures

Growth conditions

In this study, we used wild-type strain of C. reinhardtii (CC-

125) and mutant state transition kinase 7 (stt7) (a kind gift from

Prof. Yuchiro Takahashi, Okayama University, Japan), Cell-wall-

deficient mutant (CC)-503 (obtained from the Chlamydomonas

resource center, University of Minnesota). Cells were grown to mid-

log phase in Tris–acetate–phosphate (TAP) medium at 25°C under

cool fluorescent light (50 mmol photons m−2 s−1) as reported earlier

(Neelam and Subramanyam, 2013). The cells grown in 50 mmol

photons m−2 s−1 always showed that the PQ pool is oxidized as

reported earlier (Depège et al., 2003; Bellafiore et al., 2005;

Takahashi et al., 2006). However, in some cases, the pbcb mutant

of C. reinhardtii can phosphorylate in low and high light, which is

different from the wt (Cariti et al., 2020).

WT CC-125, stt7, and CC-503 cells were grown in various

sodium chloride (NaCl) concentrations (50, 100, and 150 mM

NaCl). WT CC-125 cells were grown under control (NaCl-free)

and 150 mM NaCl until cells reached the mid-log phase.

Continuous growth measurements of control and salt-stressed

cells were performed daily, and Chl concentration and Chl a/b
Frontiers in Plant Science 03
ratio were determined (Porra et al., 1989). For all parameters, the

mid-log cells were used.

For short-term phosphorylation studies, we have treated the

mid-log phase cells of WT CC-125 and stt7 strains with various salt

concentrations (50, 100, 150, and 200 mM NaCl) for 20 min.
Isolation of thylakoid membranes

Cells from respective salt treatments were harvested for

isolation of thylakoid membranes as described earlier (Fischer

et al., 1997); resuspended in buffer containing 200 mM sorbitol, 5

mM Tris–HCl (pH 7.5), 2 mM NaF, proteolytic inhibitor (1 mM

benzamidine HCl and 1 mM amino caproic acid), 10 mM MgCl2,

and 5 mM CaCl2; and stored at −80°C for further experiments.
Confocal microscopy

C. reinhardtii cells of WT CC-125 and CC-503 grown in various

salts, namely, sodium chloride (NaCl), potassium acetate

(CH3COOK), and potassium chloride (KCl) with different

concentrations (0, 50, 100, and 150 mM), were immobilized with

equal amounts of molten agar at room temperature. Images were

captured using a Leica confocal microscope, and the cells were

viewed with a 63× oil immersion lens objective using the ZEN

2010 software.
Measurements of oxygen evolution
and uptake

Oxygen measurements were performed with an oxygen

electrode (Hansatech, UK) at 25°C. Oxygen evolution activity was

measured with WT CC-125 cells grown in 0 and 150 mM

conditions using phenyl-p-benzoquinone (0.5 mM) as an electron

acceptor. The Chl concentration of the samples was 10 mg Chl/ml.

PSI-mediated electron transfer from reduced dichlorophenol

indophenol (DCPIPH2) to MV was measured by light-induced O2

consumption. The reaction mixture is composed of freshly isolated

thylakoids (15 mg Chl/ml), 20 mM Tricine–KOH (pH 8.0), 0.5 mM

MV, 1 mM NaN2, 0.1 mM DCPIP, 5 mM ascorbate, and 10 mM
DCMU. Samples were incubated in the dark for 5 min

before measurement.
Transmission electron
micrograph measurement

Approximately 0.5 ml of control and salt-treated cell samples

from all groups (n = 2/group) of both WT and stt7 mutant were

immersed into a modified Karnovsky fixative solution (Darnovsky,

1965) (pH 7.4), which contained 2% paraformaldehyde (Sigma-

Aldrich; St. Louis, MO, USA) and 2.5% glutaraldehyde

(Polysciences; Warrington PA, USA) in phosphate buffer.

Samples were fixed overnight at 4°C, then briefly rinsed in
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distilled water (pH 7.4) for 10 min and fixed further in 2% osmium

tetroxide (Sigma-Aldrich, St. Louis, MO, USA) in distilled water

(pH 7.4) for 2 h. After osmification, samples were briefly rinsed in

distilled water for 10 min, then dehydrated using a graded series of

ethanol (Molar Chemicals; Halasztelek, Hungary), from 50% to

100% for 30 min in each concentration. Afterwards, cells were

processed through propylene oxide (Molar Chemicals) and

embedded in an epoxy-based resin (Durcupan ACM; Sigma-

Aldrich). After polymerization for 48 h at 56°C, resin blocks were

etched, and 50-nm thick ultrathin sections were cut using an

Ultracut UCT ultramicrotome (Leica; Wetzlar, Germany).

Sections were mounted on a single-hole, formvar-coated copper

grid (Electron Microscopy Sciences; Hatfield, PA, USA), and the

contrast of the samples was enhanced by staining with 2% uranyl

acetate in 50% ethanol (Molar Chemicals, Electron Microscopy

Sciences) and 2% lead citrate in distilled water (Electron

Microscopy Sciences) (Reynolds, 1963; Hayat, 1970).

Ultrathin sections from the cells were screened at 3,000×

magnification with a JEM‐1400 Flash transmission electron

microscope (JEOL; Tokyo, Japan) until 25–30-granum cross-

sections were identified from each sample (n = 2/group). For

quantitative measurements of the repeat distance, images of

thylakoid membrane structures were recorded at 50,000×

magnification using a 2 k × 2 k Matataki Flash scientific

complementary metal‐oxide‐semiconductor camera (JEOL).

Finally, quantitative analysis of the membrane repeat distances

was performed using the built-in measurement module of

the microscope.

Repeat distances were measured from the control and salt (100

mM NaCl)-treated cells of WT and stt7 in two sets (biological

repetitions). Some 40 repeat distances were measured from each

group by choosing 10 cells (four measurements) from each group.

All the repeat distances were averaged, and the average of the

biological repetitions was averaged as indicated in Supplementary

Table S1.
RNA extraction and gene
expression studies

C. reinhardtii cultures (OD750 = 0.8) from the above conditions

were harvested by centrifugation (10 min at 4,500 rpm, 4°C). Total

RNA extraction was performed using the RNeasy Plant Mini Kit

(Sigma, St. Louis, MO, USA). Briefly, the cell pellet from the 5-ml

culture was resuspended in 400 µl lysis buffer RLT and frozen in

liquid nitrogen for 3 min. Cells were then lysed by incubating them

for 2 min at 60°C. The integrity of the RNA was checked by

electrophoresis on 2% denaturing agarose gels. RNA quality was

assessed by determining the 260 nm/280 nm absorbance ratio using

a Nanodrop ND-1000 instrument (Thermo Scientific, Germany).

DNase treatment was given using RNase-Free DNase Set (Qiagen-

79254). RNA from each sample was used for cDNA synthesis (Bio-

Rad) and amplified using the SYBR Green PCR Master Mix.

Reverse Transcriptase Reagents (Bio-Rad), following the one-step

RT-PCR protocol recommended by the manufacturer. The design

of primer pairs was based on the C. reinhardtii gene models of the
Frontiers in Plant Science 04
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(DOE/JGI; https://phytozome.jgi.doe.gov/pz/portal.html). PCRs

were performed in the Bio-Rad CFX 96 real-time system for

signal detection. A negative control without the template was

used to assess the overall specificity. Histone H3 was used as the

endogenous control for calculating the relative abundance of each

gene. Each assay was triplicated. Primer design and their

optimization regarding primer dimerization, self-priming

formation, and primer melting temperature (melting temperature

of 59°C–60°C and product sizes between 100 and 160 bp) were done

using a primer analysis software, IDT Oligo Analyzer Tool (https://

www.idtdna.com/pages/tools/oligoanalyzer). The list of primers of

each gene with their gene ID was made (Supplementary Table S2).

The relative abundance of each gene was expressed relative to the

reference and calculated as DDCT values.
2D blue-native PAGE

Thylakoids containing an equal amount of Chl (30 mg) were
resuspended in ACA buffer (750 mM ϵ-aminocaproic acid; 50 mM

Bis-Tris, pH 7.0; 0.5 mM EDTA) and solubilized by the addition of

b-dodecyl maltoside to a final concentration of 2% on ice for

20 min. The unsolubil ized material was removed by

centrifugation at 12,000 rpm for 10 min at 4°C. The supernatant

was mixed with loading dye (750 mM ϵ-aminocaproic acid and 5%

Coomassie Brilliant Blue G 250) in a 1:1 ratio and loaded onto each

lane. Blue native electrophoresis was performed as described earlier,

albeit with some modifications (Schägger and von Jagow, 1991).

For the second dimension, each lane was dissected carefully,

separated from the 1D blue native gel, and kept for solubilization in

a buffer (66 mM Na2CO3, 100 mM b-mercaptoethanol, and 2%

SDS) for 20 min and loaded onto a 12% Tricine SDS-PAGE gel

containing 2 M urea (Ossenbühl et al., 2004). The 2D-BN/SDS gels

were ran carefully until the dye front reached the end of the gel. The

gels were stained with Coomassie brilliant blue.
Western blotting

Thylakoid membranes were separated using SDS-PAGE. Equal

quantities of Chl (2 mg) or protein (20 µg) were loaded onto each lane.
To analyze and appraise quantitatively the polypeptide content in the

thylakoids, immunoblotting was performed as described by

Towbin and coworkers (Towbin et al., 1979). Proteins were

electrophoretically transferred onto polyvinylidene fluoride (PVDF)

membranes. The membrane was incubated with polyclonal

antibodies raised in rabbits. We have used the specific primary

antibodies against PSI core (PsaA, PsaB, PsaC, PsaD, PsaG, and

PsaH), Lhcb proteins (Lhcb1, Lhcb2, Lhcb4, Lhcb5, and Lhcbm5),

PSII core (PsbA, PsbC, PsbD, PsbO, and PsbP) (all purchased from

AGRISERA, Vännäs, Sweden, www.agrisera.com), and Lhca proteins

(Lhca1, Lhca2, Lhca3, Lhca4, Lhca5, Lhca6, Lhca7, and Lhca9).

Peptide tag antibodies for Lhca complexes were developed in our

laboratory (Yadavalli et al., 2012). Subsequently, secondary antibodies

ligated to horseradish peroxidase (HRP) were applied. We performed
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2D-BN-SDS-Western blotting with respective antibodies to test the

protein content changes due to salt treatment. After salt treatment, an

anti-phosphothreonine antibody was used to reveal phosphorylated

threonine residues in PSII proteins. Chemiluminescence reagents

were used to develop the PVDF membrane. The images were

recorded with a Bio-Rad CCD camera.
Fluorescence spectroscopy

Steady-state fluorescence
Low temperature (77 K) fluorescence spectra of C. reinhardtii

cells (WT, stt7) grown in various salt concentrations (0, 50, 100, and

150 mM) were recorded with a Jobin Yvon Fluorolog

spectrofluorometer. The cell suspensions equivalent to 5 µg Chl/

ml were filtered and deposited on Whatman glass fiber (GF/B)

discs. The filters were frozen in liquid nitrogen and transferred to a

liquid nitrogen-filled Dewar vessel placed into the measurement

chamber. Chl a was excited at 436 nm, and a bandwidth of 3 nm

was used for recording the emission spectra from 650 to 800 nm.

Time-resolved fluorescence
Time-correlated single-photon counting measurements were

performed at room temperature using standard protocols (Akhtar

et al., 2016). C. reinhardtii cells (WT, stt7) grown in various salt

concentrations (0, 50, 100, and 150 mM NaCl) were excited with

633-nm pulses of 6 ps at a repetition rate of 20 MHz. The

instrument response function (IRF) was obtained (40 ps) with 5%

Ludox as a scattering solution. Fluorescence emission data were

recorded between 670 and 750 nm, binned in 4 ps time channels.

Data analysis was performed by a global lifetime fitting routine

using a kinetic model and iterative re-convolution of the simulated

decays with the measured IRF. The fitting algorithm, written in

MATLAB, minimized the square sum of residuals weighted by the

Poisson distribution.
Chlorophyll a fluorescence
induction kinetics

Chl a fluorescence (O–J–I–P) transients were recorded at room

temperature with a PEA fluorometer (Hansatech, UK). All samples

(both long- and short-term NaCl treated) were dark adapted for

10 min before measurement. The actinic light intensity reaching the

cells was 1,500 mmol photons m−2 s−1. Biolyzer HP3 (Fluoromatics,

Switzerland) software was used to calculate and visualize O–J–I–P

parameters quantifying the energy through PSII.
Circular dichroism spectroscopy

Circular dichroism (CD) spectra of cells from C. reinhardtii

(control and salt grown) WT and stt7 strains were recorded using a

JASCO-815 spectropolarimeter at room temperature. The cells were

diluted to a Chl concentration of 20 µg/ml for each sample. For
Frontiers in Plant Science 05
measurements in the visible region (400–800 nm), a standard glass

cuvette with a path length of 1 cm was used. Three scans were

accumulated with continuous scan mode and a scan speed of 100

nm min−1, with data collected every nanometer. Spectra were

baseline corrected using a TAP medium.
Determination of protein aggregates in the
insoluble fraction

To determine the aggregated proteins in the pellet, thylakoids

were isolated from the salt-treated cells, and the isolated thylakoid

membranes were solubilized in 1% n-dodecyl b-D-maltoside (b-
DM). The reaction mixture was incubated in the dark for 10 min

and centrifuged at 10,000×g for 10 min at 4°C. The final Chl

concentration of 0.8 mg ml−1 Chl was maintained in both control

and salt-treated samples. The flow-through was discarded, and the

pellet was dissolved in a solubilization buffer containing 2% b-
mercaptoethanol. We took 10 ml of protein and loaded it onto the

gel. After running the electrophoresis, the gel was transferred to a

nitrocellulose membrane using a semi-dry transfer blot. We have

immunoblotted the Lhcb2 and Lhcbm5 antibodies to see the protein

abundance in the aggregation part.
Results

Salt-induced palmelloid formation

We have previously reported the formation of palmelloids in C.

reinhardtii cells grown in high-salt conditions (Neelam and

Subramanyam, 2013). Cells, generally free-living, enter a transient

colony-like stage called a “palmelloid,” during which they exhibit

distinctive physiological and morphological characteristics.

Palmelloid formation is associated with abnormal cell wall

production and loss or impairment of flagellar function; hence,

we hypothesized that palmelloid formation under salt stress

resulted from cell wall abnormality. To verify our hypothesis, we

chose a CC-503 class III cell wall mutant, which releases its cell wall

into the medium. We imaged the Chl fluorescence of CC-503 cells

grown in different salts (potassium chloride) along with sodium

chloride (NaCl) containing media (0, 50, 100, and 150 mM) by

confocal microscopy. The images showed CC-503 mutant cells

growing individually, without aggregating, in contrast to WT

control cells (Figure 1). The salt-tolerant CC-503 strain grows

two times faster than the WT CC-125 (data not shown). We also

checked the palmelloid-inducing ability of other salts, potassium

acetate (CH3COOK) and potassium chloride (KCl). As expected,

these salts also induced palmelloid formation in C. reinhardtii

(Figure 1). However, with increasing NaCl concentration (50, 100,

and 150 mM), the total Chl content was strongly reduced after 4

days, compared to the 0-day control inWT and stt7 (state transition

kinase 7), particularly in cells grown in 100 and 150 mM NaCl

(Supplementary Figure S1A).
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PSII and PSI activity

The PSII activity, oxygen evolution, was drastically reduced in

cells grown in media containing 150 mM NaCl (Supplementary

Figure S1B). Furthermore, PSI activity was monitored by measuring

the oxygen uptake in the presence of methyl viologen (MV),

showing a significant increase in PSI activity (Supplementary

Figure S1C). The growth rate is following the rate of oxygen

evolution (Supplementary Figure S1D). In line with the oxygen

evolution results, fast chlorophyll a fluorescence induction curves

(OJIP transients, Supplementary Figure S2A) showed an increase in

the initial fluorescence level (Fo). The normalized spectra of Chl a

fluorescence at “O” and “P” levels were similar under high salt than

the control in WT; however, both these levels were severely declined

in stt7 in the control condition (Supplementary Figure S2B). In the

cells grown in 150 mM NaCl, the maximum fluorescence level (Fm)

and the photosynthetic activity (Fv/Fm) were decreased

(Supplementary Figure S2C), which correlated with the decrease

in growth rate (Supplementary Figure S1D). However, the WT is

less affected by salt than stt7. Short-term (20 min) treatment of cells

with NaCl also led to a noticeably lower Fm (and Fv/Fm), showing

the rapid inactivation of PSII.
Frontiers in Plant Science 06
Steady-state fluorescence spectra

To evaluate the excitation energy distribution and changes in

the absorption cross-section of the two photosystems during salt

stress, fluorescence emission spectra were recorded at 77 K from C.

reinhardtii cells WT (Figure 2A) and stt7 (Figure 2B) grown at

different salt concentrations (0, 50, 100, and 150 mM NaCl)

(Figure 2). Averaged spectra normalized to their intensity at 710

nm are plotted in Figure 2. The emission bands at 685 and 694 nm

originate from the PSII reaction center (RC) and PSII core antenna

(CP43 and CP47), respectively, whereas the 715-nm band arises

from PSI (Murata et al., 1966). In all C. reinhardtii strains grown in

high-salinity media, the relative intensity of the PSII emission bands

was significantly reduced. In addition, at 100 mM NaCl or higher,

the spectra showed an apparent blue shift of the far-red maximum,

which could be attributed to a relative diminishment of the PSI

emission band and the appearance of an additional band around

700 nm. The latter could be interpreted as originating from

aggregated LHCII trimers (Andreeva et al., 2003; Kirchhoff et al.,

2003). In parallel, a shoulder in the 670–680-nm range indicated the

presence of uncoupled LHCs, and, in some cases, increased

emission below 670 nm signified the presence of Chls that were
A

B

D

C

FIGURE 1

Confocal microscopy images of C. reinhardtii strains: WT, cell-wall mutant CC-503 grown in media with different NaCl concentrations (50, 100, and 150
mM; control, no addition). (A) WT strain showing palmelloid formation under all NaCl concentrations, (B) cell-wall-mutant (CC)-503 strain; palmelloid
formation was absent under all NaCl concentrations. Palmelloid formation in the WT strain was noticed in (C) from 50 to 150 mM potassium acetate
(CH3COOK), and (D) from 50–150 mM potassium chloride (KCl) concentrations. A scale bar of 10 µm was maintained for all the images.
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not bound to the protein complexes. These effects appeared more

clearly in stt7 cells grown in 150 mM NaCl condition (Figure 3).

For a quantitative description of the observed spectral changes,

the fluorescence spectra were subjected to Gaussian decomposition
Frontiers in Plant Science 07
by non-linear least-squares fitting. The spectra of WT cells grown in

the control medium were modeled with four Gaussian bands

centered at 678, 685, 694, and 710 nm (Supplementary Figure

S3A). An additional band peaking at 700 nm, ascribed to
A B

FIGURE 2

77 K fluorescence emission spectra of (A) wild type (WT), (B) state transition kinase 7 (stt7) strains of C. reinhardtii cells grown in media containing
different concentrations of NaCl as indicated. The spectra are averages from at least three measurements on different batches and are normalized at
710 nm. For further details, see experimental procedures.
A B

DC

FIGURE 3

Dependence of different 77 K fluorescence emission parameters of wild-type (WT) and state transition kinase 7 (stt7) cells on the sodium chloride
(NaCl) concentration of growth medium, relative to the salt-free control group. (A) Sum of F685 and F694; (B) sum of F700 and F710; (C) F676
relative to F686; (D) F700 relative to F710. The values are calculated from the areas of the corresponding Gaussian components normalized to the
total area under the fluorescence curves (except for F676, which is normalized to F685) and plotted relative to the corresponding value in the
control. Symbols and bars indicate mean and standard error, n = 3–6. The closed symbols represent statistically significant differences (p < 0.05)
with the respective control (0 mM), based on multiple comparison ANOVA.
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aggregated LHCII, was present in salt-treated cells (Supplementary

Figure S3B). The relative areas of the fluorescence components

associated with PSII (F685 + F694) and with PSI and aggregates

(F700 + F710) are plotted in Figures 3A, B, respectively, in terms of

mean values and standard errors from independent experiments.

Figure 3 also shows the fluorescence intensity ratios F676/F686,

representing the amount of free LHCs (Figure 3C), and F700/F710,

reflecting aggregated LHCs (Figure 3D). Analysis of variance (one-

way ANOVA) showed that high salinity significantly affected all four

fluorescence parameters (Supplementary Table S3). In WT cells, the

relative PSII emission intensity gradually decreased with increasing

salinity, and a significant reduction, even at moderate NaCl

concentrations (50 mM), was noticed. Conversely, the relative

emission from PSI increased, and emission from uncoupled LHCs

appeared in high-salt (≥100 mMNaCl) conditions. In the case of stt7

cells, PSII emission was not reduced to the same extent as in WT, but

stt7 showed more significant amounts of LHCII aggregates in high-

salinity media. These results suggest that (1) LHCII phosphorylation

was the primary cause for the decreased PSII antenna size under salt

stress, and (2) the phosphorylation-induced changes (in WT) protect

against salt-induced degradation of the photosynthetic pigment–

protein complexes.
Time-resolved fluorescence

Fluorescence decays of dark-adapted WT and stt7 cell

suspensions were recorded with picosecond time resolution at

emission wavelengths from 670 to 740 nm. The fluorescence decay

kinetics can be described with several lifetimes—60 ps, primarily

associated with PSI, and 0.2–1 ns that can be attributed to PSII

(Supplementary Figures S4A–D). The slowest lifetime component

(1.5–2 ns) reflects a small number of closed PSII RCs (Unlu et al.,

2014). The PSII decay lifetimes in salt-grown cells were longer

compared to the control, and a decay component with a 3–4-ns

lifetime can be associated with the presence of energetically

uncoupled pigments—in agreement with the emission spectra at

77 K (Supplementary Figure S3). As a result of these changes, the

average fluorescence lifetimes in salt-treated cells increased

(Figure 4), which indicates a reduced photochemical quantum yield

of PSII. Based on this parameter, the stt7mutant also appeared more

sensitive to high salinity than WT.
Circular dichroism spectra

Circular dichroism (CD) in the visible region originates

primarily from electronic couplings (excitonic interactions)

between pigments (Chls and carotenoids) in the thylakoid

membranes and is very sensitive to changes in the structure and

composition of the pigment–protein complexes and in the

membrane macro-organization (Garab and van Amerongen,

2009). The highest-intensity bands in the CD spectra of intact

cells (Figure 5), at (+) 510, (−) 676, and (+) 690 nm, termed as “psi-

type” CD, originate from long-range interactions between many

chromophores in chirally ordered macrodomains. The major psi-
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type bands diminished by 50%–70% in all strains grown even at

moderate salt concentrations (50 mM), indicating that salinity

induced significant alterations in the macro-organization of the

thylakoid membranes (Figure 5). The magnitude of the salt effect on

the psi-type CD was approximately equal in stt7 as in WT

(Figures 5A, B). At severe salt stress (150 mM), changes in psi-

type CD bands were also accompanied by distortions of some

excitonic bands in the Soret (430–490 nm) region, suggesting

changes in the composition or molecular architecture of the

pigment–protein complexes (Supplementary Table S4).
Protein phosphorylation

The effect of NaCl on the phosphorylation status of thylakoid

membrane proteins was studied in C. reinhardtii cells after long-

term (4 days) and short-term (20 min) salt treatment. Figure 6

shows immunoblot analysis of thylakoid proteins from cells grown

in different NaCl concentrations (long- and short-term), probed

with an anti-phosphothreonine antibody. Differential

phosphorylation of CP43, D2, and LHCII subunits was observed

in WT cells in both long- and short-term conditions. Surprisingly,

LHCII subunits were phosphorylated in both types of treatment

(Figure 6A). However, in short-term tests, the maximum

phosphorylation level was attained at 50 mM NaCl and decreased

with the increasing salt concentration. No LHCII phosphorylation

was detected at 200 mM NaCl (Figure 6B). Phosphorylation of the

PSII core proteins, CP43 and D2, also seemed to be maximal at 50

mM NaCl and further decreased at higher concentrations.

To confirm that LHCII phosphorylation in high-salt conditions

was mediated by the Stt7 kinase involved in light-induced state

transitions, we used the stt7 mutant, which lacks the kinase. As

expected, neither cells grown for 4 days in high salinity media nor

after short-term salt treatment showed any LHCII phosphorylation

(Figure 6C). Thus, we infer that the significant LHCII

phosphorylation is due to NaCl-treatment-related Stt7 kinase

activation. Hence, moderate (50 mM) salinity triggers the LHCII
FIGURE 4

Average fluorescence decay lifetimes at 680 nm determined from
the fluorescence kinetics of C. reinhardtii WT and state transition
kinase 7 (stt7) cells grown in media of different salinity.
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phosphorylation via the Stt7 kinase activation observed in light-

induced state transitions (Subramanyam et al., 2006).
Thylakoid membrane ultrastructure

Transmission electron microscopy (TEM) showed that the

typical stacked grana thylakoid membrane ultrastructure was
Frontiers in Plant Science 09
retained in salt-grown cells (100 mM NaCl) (Figure 7). The

repeat distance, i.e., the distance between two neighboring granal

membranes or stromal gaps, reflects the degree of stacking or the

level of appression of the granal thylakoid membranes. The repeat

distances between thylakoid membrane layers increased by

approximately 2 nm in salt-grown WT cells (Supplementary

Table S1). To some extent, these ultrastructural changes are

reminiscent of light-induced state transitions—swelling of the

lumen, loosening of the grana stacks, and fragmentation of the

granum bodies have been observed upon transition to State II in A.

thaliana (Chuartzman et al., 2008). Correspondingly, there was no

significant change in the repeat distances in salt-treated cells of the

stt7 mutant.
Protein composition of PSI and
PSII supercomplexes

To characterize the organizational changes in PSI and PSII

supercomplexes from cells grown under salt stress, we analyzed the

protein composition of isolated thylakoid membranes by two-

dimensional PAGE. Protein complexes were first separated by

blue-native (BN) PAGE (Figure 8), followed by SDS-PAGE as a

second dimension (Supplementary Figure S5A). We identified a

significant increase in the content of LHCII trimers in cells grown in

high-salinity media, particularly 150 mM salt (Figure 8A). In

contrast, no increase in the intensity of the LHCII trimer band

was visible in stt7 (Figure 8A). We used the Lhcb2 antibody to

confirm the increased accumulation of LHCII trimers under salt

stress in WT (Figure 8B and Supplementary Figure S5A).

On the other hand, the relative abundance of PSI and PSII core

complexes was slightly lower (Figure 8A). Furthermore, we did not

observe any significant changes in the pigment–protein complexes

or protein levels in the second dimension except for a slight increase

in the content of LHCII trimers (Supplementary Figure S5B). Thus,

the detected changes are presumably part of the long-term

adaptation mechanism.

Previous reports on nutrient stress and other reports on high-

light stress have shown irreversible aggregation of light-harvesting

complexes in higher plants (Yamamoto, 2001; Devadasu et al.,

2021). To determine if the protein aggregation also occurred under

salt stress, we did mild digitonin treatment and low-speed

centrifugation of the thylakoid membranes, as suggested earlier

(Yamamoto et al., 2008). Western blots showed that Lhcb2 and type

II LHCII proteins accumulated in the pellet after salt treatment,

whereas their concentration in the soluble fraction diminished

(Figure 8B). These results support that LHCII aggregated under

salt stress in C. reinhardtii.
The protein content of the
thylakoid membranes

The thylakoid protein profile of cells grown in different salt

concentrations (0–150 mM) was quantitatively determined by

immunoblotting with specific antibodies against PSII-LHCII
A

B

C

FIGURE 5

Circular dichroism spectra of (A) wild type (WT) and (B) state
transition kinase 7 (stt7) C. reinhardtii cells grown under different
salinity concentrations, as indicated, and (C) dependence of the total
amplitude of the psi-type circular dichroism (CD) bands in the red
spectral region (CD690-CD676) on the salinity of the growth medium.
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(Figure 9) and PSI-LHCI (Figure 10) subunits. All tested PSII core

complex proteins were significantly reduced in high-salinity media.

The abundance of the PSII core complex polypeptides (D1, D2, and

CP43) and the oxygen-evolving complex proteins (PsbO and PsbP)

was reduced by 30%–50% in the control (at 150 mM NaCl). In

contrast to the PSII core proteins, the abundance of LHCII proteins

increased in high-salinity media, corroborating the native

PAGE data.

Long-term salt stress led to a significant increase (more than

twofold) in the levels of the PSI proteins PsaB, PsaG, and PsaH

(Figure 10). We further checked the protein levels of PsaH and

PsaG in stt7. PsaG levels were stable (no increase) in control and

stt7 in150 mM NaCl. LHCI protein levels increased in WT cells

grown in 150 mMNaCl (Figure 10). Similar results were obtained in

both cases by loading equal amounts of protein on the gels

(Supplementary Figure S5B).
Gene expression levels

We tested the levels of expression of the psbA gene, which

encodes the D1 subunit of the PSII core complex, and several genes

encoding light-harvesting complexes (LHCII genes—lhcb2, lhcb4,

lhcb5, and lhcbm5; LHCI genes—lhca1–2, lhca4–9) in salt-grown

WT and stt7 cells (Figure 11). The transcript levels of LHCII and

LHCI genes were reduced about twofold under salt stress in both

WT and stt7. A similar trend was observed with the psbA gene

under salt stress with WT (Figure 11A). In contrast, no reduction in

psbA gene expression was found in the stt7mutant, suggesting a link

between the salt-induced phosphorylation and downregulation of

the PSII core complex content (Figure 11B). The transcript levels
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indicate an overall reduction in photosynthetic proteins in the cells

and do not reflect their relative content on a Chl basis.
Discussion

Palmelloid formation as a stress response

Our previous studies showed that high salt concentrations

affected the PSI and PSII proteins and their functions; however,

the organization and acclimation have not been studied. Several

studies have shown that C. reinhardtii transforms into small,

somewhat ordered clumps termed palmelloids. The gradual loss

of synchrony in cell division was visible from the palmelloids

(Figure 1A), growth curves, and cell division time (6–8 h)

(Neelam and Subramanyam, 2013). Palmelloid phenotype is a

plastic response that certain stimuli can trigger. Various reasons

have been described for the formation of these palmelloids in C.

reinhardtii, as a defense mechanism in biotic stress (Lurling and

Beekman, 2006), nutrient deprivation (Moulton and Bell, 2013),

flagellar malfunction, cell wall abnormality, and pH changes in the

environment (Neelam and Subramanyam, 2013)—all being the

adaptive mechanisms of the organism to survive unfavorable

conditions. There could be several reasons for the multicellular

response in palmelloids: 1) cells might have increased the duration/

frequency of cell division, 2) cells are stickier and tend to cohere, or

3) individuals exist in a paired or multicellular state (Moulton and

Bell, 2013). We can eliminate the latter two possibilities, as C.

reinhardtii is a unicellular organism and cells do not stick to each

other. We presume that the cell wall is the main reason for these
A B

C

FIGURE 6

Immunoblotting analysis of thylakoid membranes probed with anti-phosphothreonine antibody (A) C. reinhardtii WT cells grown in various sodium
chloride (NaCl) concentrations (0, 50, 100, and 150 mM for 96 hours (long-term). (B) C. reinhardtii WT control cells from the mid-log phase were
treated with different NaCl concentrations (0, 50, 100, 150, and 200 mM) for 20 min (short-term). (C) C. reinhardtii stt7 cells were grown in long-
term (96 h) and short-term (20 min) conditions with the indicated NaCl concentrations. In order to compare the loading control, the wild-type
samples were loaded with different dilutions (25, 50, and 100%).
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palmelloid formations and have chosen cell-wall-deficient (CC)-

503, a class III cell wall mutant. The absence of palmelloids in the

CC-503 mutant corroborated our hypothesis that palmelloid

formation under salt stress is due to alterations in the cell wall. In

addition, this mutant exhibits the normal flagellar motility. Hence,

it appears that in the WT after cell division, daughter cells are

locked inside the mother cell wall. Apart from NaCl, other salts like
Frontiers in Plant Science 11
KCl and CH3COOK also induced palmelloid formation in C.

reinhardtii (Figures 1A–D). Furthermore, we performed

biochemical characterizations in both strains to identify the

reasons behind this salt tolerance. No remarkable changes in the

OJIP transients (Supplementary Figure S6A), absorption spectra, or

protein profile of WT CC-125 and CC-503 were noticed

(Supplementary Figure S6B).
FIGURE 7

Transmission electron micrograph images of C. reinhardtii strains: (A) WT cells control, (B) WT cells grown in 100 mM sodium chloride (NaCl)
containing media, (C) state transition kinase (stt7) cells control, and (D) stt7 cells grown in 100 mM NaCl containing media (bars: 100 nm).
A

B

FIGURE 8

Blue native PAGE and Western blot from 0, 100, and 150 mM salt-treated conditions. (A) Blue-native gel electrophoresis of thylakoid membranes
solubilized with 0.8% b-DM isolated from C. reinhardtii WT (CC125) and stt7 cells grown in media with 0, 50, 100, and 150 mM NaCl. 8 µg of Chl was
loaded into each lane. (B) Thylakoids isolated from 0-, 50-, 100-, and 150-mM sodium chloride treated cells solubilized with mild detergent 0.3% of
a-DM + 0.5% of Digitonin based on equal Chl (30 µg). The soluble form (20 µl) was collected for SDS gel electrophoresis. The remaining insoluble
pellet was solubilized with SDS sample buffer containing 0.1 M dithiothreitol (DTT), 10% SDS, 0.5M Tris in control as well as (50, 100, and 150) mM
salt-treated samples which were fractionated by SDS-PAGE to demonstrate the appearance of Lhcb2 and Lhcbm5.
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Inhibition of photosynthesis

C. reinhardtii displayed a shock response when treated with 150

mM NaCl for 1 h (Mastrobuoni et al., 2012). In addition, electron

transport inhibition at donor and acceptor sides of PSII, with a shift

in excitation energy distribution in favor of PSI, has been reported

in cyanobacterial Arhtrospira platensis cells grown in 0.8 M NaCl

for 12 h (Lu and Vonshak, 2002). In another report, incubation of

Synechococcus sp. PCC7942 treated with NaCl reduced oxygen

evolution activity in 1.5 h and led to a loss of PSI activity

(Allakhverdiev et al., 2000).

The photosynthetic performance of salt-treated cells in our

experiments was also impaired. We observed a decrease in electron

transport and PSII photochemical efficiency (as evidenced by

reduced oxygen evolution activity) and reduced levels of PSII core

proteins, including the extrinsic subunits of the oxygen-evolving

machinery (PsbO, PsbP), paralleled by reduced oxygen-evolution

activity (Neelam and Subramanyam, 2013). Interestingly, the

efficiency of photosynthesis in stt7 was reduced drastically

compared to the WT due to the absence of Stt7 kinase; hence,

stt7 cannot acclimate to the salt stress (Supplementary Figure S2C).
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Salt stress triggers Stt7-mediated
LHCII phosphorylation

From the phosphorylation data, it was evident that NaCl

triggered LHCII phosphorylation in both long-term (salt-grown

cells) and short-term NaCl-exposed cells of C. reinhardtii. It is

interesting to confirm that NaCl triggers state transitions as a stress

response reminiscent of light-induced state transitions in terms of

LHCII phosphorylation (Figure 6). Similar temperature-induced-

state transitions have been reported in A. thaliana (Nellaepalli et al.,

2011; Nellaepalli et al., 2015) and C. reinhardtii (Madireddi et al.,

2019). Surprisingly, LHCII phosphorylation was also observed in

long-term salt treatments (cells grown in 100 mM and 150 mM salt

concentrations). State transitions have been regarded as a short-

term response to balance the energy between photosystems, PSII

and PSI. Several publications reported that the PQ pool becomes

reduced under low light exposure for a short duration, and LHCII

gets phosphorylated by the Stt7 kinase enzyme in C. reinhardtii.

Furthermore, the P-LHCII migrates to PSI and makes PSI–LHCI–

LHCII complexes (Subramanyam et al., 2006; Nagy et al., 2014). A

comparison with the stt7 mutant confirmed that LHCII
frontiersin.or
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FIGURE 9

Protein profile analysis of thylakoid membranes isolated from 0 and 150 mM sodium chloride (NaCl) grown C. reinhardtii cells, probed with (A)
photosystem (PS)II core antibodies (PsbD—D2, PsbC—CP43, PsbO, and PsbP) and with (B) LHCII antibodies (Lhcb1, Lhcb2, Lhcb4, Lhcb5, and
Lhcbm5) (C) the relative density of proteins were quantified using ImageJ software. In order to compare the loading control, the wild-type samples
were loaded with different dilutions (25, 50, and 100%).
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phosphorylation under short- and long-term salt stress was

mediated by the same Stt7 kinase involved in light-induced state

transitions. It was reported that stress factors light and temperature

could trigger STN7 kinase activation in A. thaliana (Nellaepalli

et al., 2011; Nellaepalli et al., 2012; Ghysels et al., 2013). The

phosphorylation of LHCII could be involved in the reorganization

of supercomplexes to protect against salt stress.

Long-term salt treatment of cells resulted in significant changes in

the protein composition of PSI and PSII. Salt-treated cells contained

substantially higher amounts of LHCII and LHCI at the expense of

PSII and PSI core proteins, respectively (Figures 9, 10). These
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changes, together with the Stt7-dependent LHCII phosphorylation,

could be triggered by persistently reduced PQ pool under high

salinity conditions. A reduced state of the PQ pools can also

explain the increase in Fo fluorescence level in high salt conditions.

A reduced PQ pool activates the Stt7 kinase in the short term and

promotes a shift in photosystem stoichiometry in the longer term to

restore the balanced energy flow (Anderson et al., 1995; Montané

et al., 1998).
Moderate salt treatment disrupts the
membrane macro-organization

From the circular dichroism data, it was evident that even

moderate salt stress (50 mM NaCl) had a significant effect on the

macro-organization of protein complexes in the thylakoid

membranes. In addition, severe salt stress was further accompanied

by changes in the composition of the pigment–protein complexes. As

part of acclimatization responses to the changing environmental

conditions, photosynthetic supercomplexes undergo supramolecular

reorganizations like state transitions and non-photochemical

quenching (Minagawa, 2013). Phosphorylation of LHCII can

interfere with protein packing, specifically with the ordered
A B

C

FIGURE 10

Protein profile analysis of thylakoid membranes isolated from
control and 150 mM sodium chloride (NaCl) treated C. reinhardtii
cells, (A) probed with photosystem (PS)I core antibodies (PsaA, PsaB,
PsaC, PsaD, PsaG, and PsaH) and (B) LHCI complex proteins, (Lhca1,
Lhca2, Lhca3, Lhca4, Lhca5, Lhca6, Lhca7, and Lhca9). Two
micrograms of Chl was loaded on to each well. (C) Relative band
density from each lane was calculated by ImageJ software. In order
to compare the loading control, the wild-type samples were loaded
with different dilutions (25, 50, and 100%).
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FIGURE 11

(A) The relative abundance of mRNA levels of genes from C.
reinhardtii (CC125) and (B) state transition kinase mutant, (stt7) cells
grown under 0, 50, 100, and 150 mM sodium chloride (NaCl)
conditions., PSII gene (psbA), LHCII genes (lhcb2, lhcb4, lhcb5, and
lhcbm5) and LHCI genes, (lhca1, lhca2, lhca4, lhca5, lhca6, lhca7,
lhca8, and lhca9) were monitored under same salt stress condition. All
the genes were normalized with the housekeeping gene, Histone H3.
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arrangement of PSII–LHCII supercomplexes in the membrane

(Boekema et al., 2000; Allen and Forsberg, 2001), and interrupt the

close packing of grana stacks—both of these phenomena are sensed

by the psi-type CD (Garab and van Amerongen, 2009). However, the

observed decrease in the psi-type CD signal appears to be a direct

effect of the NaCl treatment, irrespective of LHCII phosphorylation.

The phosphorylation of LHCII in salt-grown cells (but not in

stt7mutant) can be correlated with the thickening or swelling of the

grana thylakoids. We can postulate that the changes in the thylakoid

stacking are mediated by P-LHCII, similarly to the significant

structural rearrangements associated with light-induced state

transitions in higher plants (Chuartzman et al., 2008), where P-

LHCII alters the grana stacking, grana-stroma interconnections,

and the composition of grana and stroma lamellae, in which lhcb1

and lhcb2 were involved in phosphorylation (Chuartzman

et al., 2008).

Cruz et al. (2001) reported significant changes in the thylakoid

membrane ultrastructure when C. reinhardtii cells were subjected to

hyperosmotic shock—severe disruption of the grana stacking and

shrinkage of the lumen, which was correlated with a slowdown of

intersystem electron transfer, presumably because of the hampered

diffusion of plastocyanin. In our experimental conditions, the

changes in the thylakoid macro-organization are comparatively

milder, and we did not observe significant lumen shrinkage in the

electron micrographs (Figure 7). Nevertheless, the salt-induced

functional changes detected by fluorescence might be partly

caused by the changes in membrane macro-organization.
Changes in the photosystem antenna size

In light-induced state transitions, the fluorescence emission

spectra of salt-treated C. reinhardtii cells showed a pronounced

decrease in PSII emission in favor of PSI emission even at moderate

NaCl concentrations (50 mM). This effect was not observed in the

stt7 mutant unable to phosphorylate LHCII. However, in high-salt

conditions, the emission spectra indicated the formation of LHCII

aggregates (Supplementary Figure S3). Mild solubilization of the

thylakoid membranes further indicated that LHCII proteins were

aggregated under high-salt conditions (Figure 8B). Furthermore,

the enhanced 678 nm intensity in the low-temperature emission

spectra and the appearance of long (nanoseconds) decay

components in the fluorescence decay at high salinity likely

originate from a small fraction of energetically detached LHCs

(Supplementary Figure S7). This also corroborates the more

reduced PQ pool, higher Fo level observed in the fluorescence

induction transients, and the reduced maximal variable

fluorescence (Fv/Fm, Supplementary Figure S2). Uncoupling of

LHCs also occurs in the absence of phosphorylation (in the stt7

mutant)—even more so than in WT at high salt concentration. The

more severe salt-induced effects (on the fluorescence kinetics and

77 K emission spectra, Figure 2) hint that LHCII phosphorylation,

in this case, is an acclimatory stress response stabilizing the

photosynthetic apparatus.
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The differential response of PSI and PSII core protein subunit

composition indicates that salt stress may change the photosystem

supercomplexes. The H subunit of PSI is known to be involved in

docking phosphorylated LHCII in state transitions (Lunde et al.,

2000). It can be speculated that the salt-induced increase in the

PsaH level, a subunit of PSI, observed in WT but not in the stt7

mutant, is part of the Stt7-dependent adaptation mechanism. The

levels of the PsaG protein were increased in salt-grown (150 mM)

cells in the WT strain; however, unaltered levels of this protein in

the mutants could explain its role in tuning the PSI activity. A study

of Arabidopsis mutants (DPsaG) has shown the high amounts of

poorly connected LHCI and increased NADP+ photoreduction rate

compared with the wild type (Jensen et al., 2002; Varotto et al.,

2002). Our previous reports show that salt also affects PsaE

(Subramanyam et al., 2010). It is known that the PsaE protein is

located at the reducing side of PSI and stabilizes the stromal hump,

which is involved in docking soluble electron acceptors like

ferredoxin/flavodoxin (Lelong et al., 1996).

We assume that salt-grown C. reinhardtii cells acclimatize to

remodeling the PSI and PSII proteins through the Stt7 kinase. It was

reported that LHCI composition/stoichiometry varies in response

to changing environmental conditions; moreover, LHCI in C.

reinhardtii is larger than plant LHCI and helps in light-harvesting

along with photoprotection (Bailey et al., 2001; Ben-Shem et al.,

2003). Another report indicated that Lhca3 played a significant role

when LHCI was remodeled and demonstrated the upregulation of

Lhca4 and 9 in Fe-deficiency cells from C. reinhardtii (Naumann

et al., 2005). In addition, a recent report from C. merolae grown

under a broad range of temperatures revealed that remodeling

processes of photosynthetic proteins tuned photosynthesis

according to the demands placed on the system (Nikolova et al.,

2017). However, the lower levels of transcripts and increased

content of LHC proteins suggested changes in cellular physiology

and metabolism to acclimatize to high-salt conditions. Thus, the

short- and long-term salt response in C. reinhardtii is related to

Stt7-dependent LHCII phosphorylation, which facilitates the

acclimation process by remodeling the photosynthetic proteins.
Concluding remarks

The results show that moderate salt stress (50 mM NaCl) elicits

various structural and functional responses in C. reinhardtii at the level

of the thylakoid membranes and photosynthetic proteins. The most

significant observation is the induced accumulation of LHCII, the Stt7-

dependent LHCII phosphorylation, and the resulting changes in the

membrane ultrastructure, photosystem composition, and excitation

energy distribution. Several lines of evidence point to a higher

sensitivity of the photosynthetic apparatus to high salinity in the stt7

mutants. These data suggest that the salt-induced “state transition,” i.e.,

Stt7-kinase-dependent LHCII phosphorylation, could be an

acclimatory response; however, further experiments would be needed
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to evaluate the extent of protection that it may endow against high-

salinity damage to the photosynthetic apparatus.
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