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Research of intelligent reasoning
system of Arabidopsis thaliana
phenotype based on automated
multi-task machine learning

Peisen Yuan*, Shuning Xu, Zhaoyu Zhai* and Huanliang Xu

College of Artificial Intelligence, Nanjing Agricultural University, Nanjing, China
Traditional machine learning in plant phenotyping research requires the assistance

of professional data scientists and domain experts to adjust the structure and hy-

perparameters tuning of neural network models with much human intervention,

making the model training and deployment ineffective. In this paper, the

automated machine learning method is researched to construct a multi-task

learning model for Arabidopsis thaliana genotype classification, leaf number, and

leaf area regression tasks. The experimental results show that the genotype

classification task’s accuracy and recall achieved 98.78%, precision reached

98.83%, and classification F1 value reached 98.79%, as well as the R2 of leaf

number regression task and leaf area regression task reached 0.9925 and 0.9997

respectively. The experimental results demonstrated that the multi-task

automated machine learning model can combine the benefits of multi-task

learning and automated machine learning, which achieved more bias

information from related tasks and improved the overall classification and

prediction effect. Additionally, the model can be created automatically and has a

high degree of generalization for better phenotype reasoning. In addition, the

trained model and system can be deployed on cloud platforms for

convenient application.

KEYWORDS

plant phenotype reasoning, multi-task learning, automatedmachine learning, Arabidopsis
thaliana, cloud deployment
1 Introduction

Plant phenotypes are recognizable morphological, physiological, and biochemical

characteristics and attributes that result in part or entirely from the interaction of genes

with the environment (Dobrescu et al., 2020; Cheng et al., 2021; Saric et al., 2022), which is

widely used in ecological protection (Carvalho et al., 2021), plant breeding (van Dijk et al.,

2021) and so on. Currently, machine learning has rapidly evolved and is now widely applied

in science in general and in plant genotyping and phenotyping (Ubbens and Stavness, 2017;

van Dijk et al., 2021). Different phenotypic qualities of plants are connected with one another,

and this gives us the hints to leverage the benefits of multi-task learning to enhance the
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effectiveness of individual learning activity. In order to improve the

classification and prediction performance of numerous related tasks,

multi-task learning for the same plant enables better reasoning of the

link between various phenotypic variables as well as training with less

data and annotated information.

The construction of multi-task learning models requires a lot of

manual time to tune the hyperparameters of the model for making the

model have a high performance (Zhang et al., 2019; Vandenhende

et al., 2022).

Therefore, there are limitations in human thinking to consider the

model structure and parameters in all possible cases.

At the present time, machine learning has become an essential

part of daily applications (van Dijk et al., 2021), however, building

well-performing machine learning models still requires the help of

data scientists and domain experts. To solve this problem, Automated

Machine Learning (AutoML for short) (He et al., 2021) was proposed

and researched. AutoML automates the process of constructing

network structure, adjusting network structure, adjusting

hyperparameters, and model evaluation (Truong et al., 2019; Xue

et al., 2021) through its own set of algorithms, which turns the

original structure adjustment and parameter tuning into structured

and orderly adjustment through the well-designed algorithms, which

lowers the threshold of machine learning and shortens the whole

modeling process. Using automated machine learning methods

enables deep learning techniques to be applied to more fields in a

simpler way to build better network models for machine learning

tasks with high accuracy. AutoML brings a way for researchers

without AI knowledge and the help of machine learning experts to

build their AI system (Zöller and Huber, 2021).

Based on the above pros and cons, we propose the AutoML to

build a multi-task learning model for Arabidopsis thaliana phenotype

reasoning, which can combine the advantages of both approaches,

and take into account both the correlation between multiple

phenotypic variables and the diverse model structures and

parameter pairings. For multi-task learning, the use of an

automated machine learning method to construct models provides

a viable new approach for subsequent research on other multitasks.

And for AutoML, applying the knowledge of multitask learning

allows for better finding the network suitable for each task by

taking into account the correlation between tasks when searching

for neural network architectures.

Currently, Zhou et al. (2021) introduced a deep learning-based

maize image analysis software that can automatically solve a variety of

image-based maize phenotyping tasks, such as internal length, stem

diameter, and leaf count, for high-throughput plant phenotyping.

Similarly, P. Hüther et al. (Hüther et al., 2020). analyze the phenotype

of Arabidopsis thaliana using transfer learning by centering our

pipeline around the well-established deep-learning model

DeepLabV3+ for batch automated plant leaf state analysis, and no

automated generation of the model was implemented.

This paper focuses on automated machine learning methods for

multi-task learning models. Taking Arabidopsis thaliana as an

example, three tasks concerning the processing and analysis of

plant phenotypic characteristics were finally realized: 1)infer the

genotype of Arabidopsis thaliana; 2) predict the total number of

leaves in Arabidopsis thaliana; and 3)predict the leaf area of

Arabidopsis thaliana. For the above analysis tasks of Arabidopsis
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thaliana dataset, AutoML based multi-task models are researched and

constructed for the three tasks mentioned above for training, and the

different metrics of each model are compared to produce the best

classification and regression results.

The main contribution of this paper is the use of an automated

machine learning approach that automatical ly adjusts

hyperparameters as well as model structure as a way to construct a

multi-task learning model for Arabidopsis thaliana phenotype

reasoning tasks. And the experiment results show that it has better

classification and regression results compared to previous state-of-

the-art models.

The rest of this paper is organized as follows. Section 2 introduces

the relevant principles and workflow of multi-task AutoML. The

details of the multi-task AutoML model used in this paper are

explained in Section 3. Experiment and comparison of the

proposed method for Arabidopsis thaliana phenotype multi-task

reasoning are presented in Section 4. System implementation and

deployment are presented in Section 5. Finally, Section 6 draws

conclusions and provides an in-depth analysis and an outlook on

future work.
2 Related works

Multi-Task Learning (MTL for short) has been proposed with

the intention of leveraging the useful information contained in

multiple related tasks to help improve the generalization

performance of all the tasks (Zhang and Yang, 2022). While the

phenotypic traits of plants are correlated to some extent, using

multi-task learning, the network can be trained with less data and

less labeled information to achieve better classification and

prediction results for multiple related tasks.

Among the two basic frameworks for multi-task learning, soft

parameter sharing does not make any assumptions about task

relevance, but the number of required parameters is large. In

contrast, hard parameter sharing is mostly applied to networks with

strong task relevance. For the study of Arabidopsis thaliana

phenotypes, there are strong correlations among phenotypes, and

thus the hard parameter sharing framework is mostly used to build

relevant models. For example, the first application of multi-task

learning to plant phenotypes was proposed by Pound et al. (2017)

with the ability to both detect and count the number of wheat ears and

to classify the presence of wheat awns, and Dobrescu et al. (2020)

present a hard parameter sharing framework of multi-task learning

for plant phenotyping to infer leaf count, projected leaf area, and

genotype classification.

With the development of multi-task learning, the simple hard

parameter sharing model can no longer satisfy the needs of

Arabidopsis thaliana phenotype multi-task reasoning applications,

and people start to add different strategies to the hard parameter

sharing framework to obtain higher performance. Jiang et al. (2021)

incorporates a migration learning approach in a hard parameter

sharing framework to achieve simultaneous recognition of leaf

diseases in rice and wheat. Keceli et al. (2022) combined CNN

features and transfer features to construct a multi-input multi-task

learning model to improve the efficiency of plant type and

disease detection.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1048016
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Yuan et al. 10.3389/fpls.2023.1048016
Automated Machine Learning is the process of automating the

end-to-end process of applying machine learning to real-world

problems, enabling models to automatically learn appropriate

parameters and models without human intervention.

Currently, the open source AutoML frameworks include Auto-

sklearn (Feurer et al., 2015), TPOT (Olson et al., 2016), Auto-Keras

(Jin et al., 2019), H2O (LeDell and Poirier, 2020), etc. Auto-sklearn

(Feurer et al., 2015) and H2O (LeDell and Poirier, 2020) are mainly

oriented to traditional machine learning for automatic modeling.

TPOT (Olson et al., 2016) mainly applies genetic algorithms for

feature and model selection. Auto-Keras (Jin et al., 2019) is a Keras-

based AutoML system that can achieve the powerful function of

neural architecture search with only a few lines of code and is easy to

get started and use.

Nowadays, More and more advanced methods are being applied

to AutoML to improve the performance of the models. Wong et al.

(2018) proposed Transfer Neural AutoML, which reduces the

computational cost of neural AutoML by migration learning. Xue

et al. (2019) proposed a migratable AutoML method that uses

previously trained models to speed up the search process for new

tasks and datasets, accelerating the overall search time for multiple

datasets with negligible accuracy loss. Ferreira et al. (2021) conducted

a comparative study of hundreds of computational experiments based

on a total of three scenarios: general-purpose machine learning, deep

learning, and XGBoost, with GML achieving the best prediction

results and the GML AutoML tool obtaining the most competitive

results, while confirming the potential of the general-purpose

AutoML tool to fully automate machine learning algorithm

selection and tuning. Zöller et al. (2022) proposed an XAutoML for

interpreting arbitrary AutoML optimization processes and ML

pipelines constructed by AutoML. And the framework we use is

optimized for AutoML mainly in the Neural Architecture Search part.

Neural Architecture Search (NAS) (Elsken et al., 2019) aims at

automatically designing well-performing neural network

architectures for specific target tasks, which requires huge

computational resources. Ying et al. (2019) introduced NAS-Bench-

101 to ameliorate these problems. And Dong et al (Dong and Yang,

2020). proposed NAS-Bench-201 with a fixed search space, which

provides a unified benchmark for almost all the latest NAS algorithms

and is an extension of NAS-Bench-101. To overcome the efficiency

challenges of simple weight sharing in NAS, Shen et al. (2022)

introduce DASH, a differentiable NAS algorithm that achieves

better asymptotic complexity and up to 10 times faster search time

in practice. Luo et al. (2020) proposed SemiNAS, a semi-supervised

NAS approach that uses a trained accuracy predictor to predict the

accuracy of a large number of architectures, reducing computational

cost and achieving higher accuracy at the same computational cost

with the same accuracy guarantee, e.g., it achieves 94.02% test
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accuracy on NASBench-101, using the same number of

architectures outperformed all baselines. Xue et al. (Xue and Qin,

2022). proposed a partial channel connection based on channel

attention for differentiable neural architecture search. Auto-Keras

(Jin et al., 2019) uses an efficient neural architecture search method

with network morphism, combined with Bayesian optimization,

which makes the search space exploration more efficient and has

better performance for the current optimal baseline model.

In the field of plant phenotype research, Koh et al. (2021)

investigated the application of AutoML in image-based plant

phenotyping, comparing the performance of the open source

AutoML framework Auto-Keras with migration learning using a

convolutional neural network architecture. In the classification task,

migration learning with Xception (Chollet, 2017) and DenseNet-201

(Huang et al., 2017) achieved the best classification accuracy of

93.20%, while Auto-Keras achieves 92.40% accuracy. With similar

accuracy, Auto-Keras speeds up the model’s inference time by a factor

of 40 and has great potential for enhancing plant phenotyping

capabilities applicable to crop breeding and precision agriculture.

In summary, we proposed an intelligent reasoning system for

Arabidopsis thaliana phenotype based on automated Multi-task

machine learning with Auto-Keras (Jin et al., 2019), which can take

the both advantages of AutoML and multi-task learning.

3 Intelligent reasoning of Arabidopsis
thaliana phenotype based on multi-task
automated machine learning

3.1 Problem statement

In AutoML, model generation and evaluation are done by neural

network architecture search. As the backbone of deep AutoML,

Neural Architecture Search(NAS for short) (Xue and Qin, 2022)

can define and optimize the neural network architectures and tune

hyperparameters automatically, which enables people with little

expertise and knowledge to perform machine learning tasks for

obtaining highly accurate, and even discover unproposed network

architectures for some specific tasks.

The basic process of NAS is shown in Figure 1. First, a specific

structure a is selected from the predefined search space A according to

the search strategy, and the specific structure is evaluated by the

performance evaluation module, which returns the performance

estimate to the search strategy and guides the next structure

selection, and so on until a model a∗ satisfying the predefined

performance requirements is produced as the output of the problem.

The optimization strategy used by NAS to obtain the optimal

network configuration is shown in Equation 1.
FIGURE 1

Basic processing procedure of neural architecture search for auto machine learning.
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a* =  arg max O ðL a,  dt),  dv  =  arg max f  (a)ð
               a ∈ A                                           a ∈ A

(1)

where O represents the target function for training network structure

parameters, dt represents training data, and dv represents validation data.

Among them, the calculation formula of L(a, d) is shown in

Equation 2.

L(a,  d)  =  arg min Lðma,q, dtÞ + RðqÞ
                     ma,q ∈ Ma

(2)

where,M is the model space, L represents the loss parameter used

for the training network, q represents the network parameter, and R

represents the loss function part used for regularization.
3.2 Workflow of Arabidopsis thaliana
phenotype analysis based on automated
multitask machine learning

AutoML can be divided into two types: traditional AutoML and

deep AutoML. Traditional AutoML combines the three steps of

feature engineering, model selection, and optimization algorithm

selection into a single pipeline for automatic learning. Deep

AutoML uses neural architecture search (Elsken et al., 2019) to

optimize the three problems and thus learn the optimal network

structure automatically. The deep AutoML for neural network

modeling in deep learning compose of four processes: data

preparation, feature engineering, model generation and evaluation,

and the workflow of Arabidopsis thaliana phenotype with auto multi-

task reasoning is shown in Figure 2.

3.2.1 Data preparation
The preparation of Arabidopsis thaliana phenotype data mainly

includes data collection and data cleaning.

1. Data collection consists mainly of data collection, data tagging,

and data improvement (Roh et al., 2019), which tunes the completed

raw data into the storage systems.

Data collection includes the following two steps. The main

purpose is to convert the Ara2013-Canon dataset (Minervini et al.,

2016) to Visual Object Class (VOC) format to obtain direct

information about leaf area.
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In the first step, the RGB segmentation annotation image data set

in CVPPP is converted into JSON files in Common Objects in

Context(COCO) format. A separate black and white image of each

leaf is generated from the color annotated leaf images provided in the

dataset, and Figure 3 gives an example of the completed conversion of

a particular image, and a JavaScript Object Notation (JSON) file

containing all the image information is generated.

In the second step, a tag file in XML format unique to each image is

generated from the JSON file. In this tag file, the location of the image,

the genotype, and the bounding box where each leaf is located are

included, so all information such as the genotype, number of leaves, and

leaf area of the image can be directly obtained through this tag file.

2. Data cleaning is mainly to remove irrelevant data and duplicate

data from the original data set, smooth out noisy data, filter out data

irrelevant to the mining topic, and deal with missing values, abnormal

values, etc (Brownlee, 2020). Data cleaning in this paper focuses on

comparing the number of leaves in each image obtained according to

the data collection step with the number of leaves given in the original

dataset and eliminating the parts with different numbers of leaves.

3.2.2 Feature engineering
Feature engineering extracts features from the processed data in the

data preparation phase and transforms them into formats that are

suitable for the machine learning model (Zheng and Casari, 2018). It

mainly includes three parts: feature selection, feature extraction, and

feature construction. Feature selection reduces feature redundancy

by selecting important features, feature extraction reduces the

dimensionality of features by applying a specific mapping function, and

feature construction extends the original feature space. In addition, it also

includes feature improvement, feature dimensionality reduction, and

other contents. Feature engineering maximizes the extraction of features

for use in subsequent NAS processes.
3.3 Model architecture search

Neural architecture search is a sophisticated and systematic work,

which is mainly based on the key components of NAS: search space,

search strategy, and evaluation strategy (Ren et al., 2021).

Bayesian optimization(BO) (Shahriari et al., 2015) is an effective

way for hyperparameter optimization, and has recently emerged as a
FIGURE 2

Workflow of Arabidopsis thaliana phenotype analysis based on automated multi-task machine learning (He et al., 2021).
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very promising strategy for NAS. Bayesian optimization puts the

optimization issue into a probabilistic framework by representing the

agent function as a probability distribution, and then updating this

distribution with new information. The acquisition function is used to

evaluate the probability of obtaining a better result at a particular

point in the exploitation space based on a known prior. The key to

this is the balance between exploration and exploitation.

Auto-Keras (Jin et al., 2019) is guided by a Bayesian optimization

algorithm to explore the search space by changing the neural structure.

The range of fluctuations of the true target function values (i.e., mean

and variance) is first estimated based on the function values of the

already searched points, usually implemented with Gaussian process

regression. Afterward, the acquisition function can be constructed from

the mean and variance, i.e., an estimate of the probability that each

point is the extreme point of the function, reflecting the degree to which

each point is worth searching, and the extreme point of this function is

the next search point. Finally, the newly sampled data is added to the set

of observations and then recursive execution is performed until

convergence or exhaustion of budgetary resources.

For the search algorithm, Auto-Keras uses A∗ algorithm (Yao

et al., 2010) for searching and simulated annealing, inspired by

various heuristic search algorithms that explore tree-like search

spaces and optimization methods that explore and exploit tradeoffs.

Whenever NAS generates a new neural network, it is first

evaluated for performance. If the network is trained until

convergence and then its performance is evaluated, it will consume

a lot of time and computational resources. So the early stopping, low

fidelity, surrogate, and parameter sharing skills are selected to speed

up the evaluation. Auto-Keras uses network morphisms for the

purpose of network weight parameter sharing. The sub-models

share weights with each other, so there is no need to re-train the
Frontiers in Plant Science 05
sub-models each time. It also uses the early stop method to stop the

computation of configuration models that are expected to perform

poorly on the validation set.
3.4 Execution process

In this paper, we construct amdeep AutoML model for

Arabidopsis thaliana phenotype reasoning based on Auto-Keras (Jin

et al., 2019). The execution process of automatic parameter tuning

and network structure selection for generating the optimal model is

shown in Figure 4.

There are 5 steps for optimizing multi-task phenotype reasoning:
(1) Put the network module into the generator as a seed to

initialize the model. Three models including CNN, ResNet,

and DenseNet can be selected. The number of initial network

models constructed during initialization can be set by itself

when calling the API;

(2) After the initialization, all the generated models will be put

into the training queue, and the models from the queue head

are taken out in turn for training;

(3) When training, the model is evaluated and put into the search

queue, because the best model will eventually be trained again,

so full training is not required at this time, and thus the neural

network architecture search can be performed while training.

The performance of the model is used as feedback to the Best

Model Searcher to update the Gaussian Process;

(4) The model is removed from the search queue, the Bayesian

Optimizer in the Searcher would generate a new architecture
FIGURE 3

Illustration of converting color image of Arabidopsis thaliana to black and white images for each leaf.
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Fron
and the annealing algorithm is used to determine whether to

perform network morphism. The following types of morphism

are provided in Auto-Keras: depth, width, and connection

between layers. Morphism is random, e.g. the choice of which

morph is random, or when choosing to increase the width, the

choice of which layer to widen is also random. If a new network

architecture is generated by network morphism and that

network architecture is not in the existing model, a Gaussian

Process Regression is used to predict the better network

structure, and the best-performing network is recorded and

added to the model search queue and training queue;

(5) The search and training process in steps 3 and 4 is repeated

continuously according to the predetermined number of

network models to obtain the model with the best results.
After setting the number of training models, the number of

iteration rounds, and the system resources available for training by

Auto-Keras, the program will automatically adjust the model

structure and each parameter according to the process shown in

Figure 4, and using the visualization component, the final model

structure after training can be obtained.
4 Experiments and analysis

4.1 Experimental environment

The experimental platform is Windows 10 with Intel(R) Xeon(R)

Gold 5218 CPU, 32G RAM, GeForce RTX 2080 Ti GPU, and 11G
tiers in Plant Science 06
video memory. Models are implemented with Tensorflow 2.0.0+,

autokeras 1.0. 18, Python 3.7+, and CUDA 10.0+.
4.2 Dataset details

This experiment uses the Ara2013-Canon dataset (Minervini

et al., 2016), a publicly available dataset obtained from the CVPPP

leaf segmentation and counting challenge, for training. First, color

segmentation of annotated images in CVPPP is used to generate

JSON files in COCO format from the original data set. Then, the

COCO format data set is converted to a VOC format data set, and the

genotype, leaf count, and leaf area information of Arabidopsis

thaliana are obtained directly from the XML label file.

There are five Arabidopsis thaliana genotypes in this dataset: col-0,

ein2, ctr, adh1, and pgm. Each Arabidopsis thaliana image has label

information of genotype, leaf number, leaf position box images, as shown

in Table 1, with a total of 165 Arabidopsis thaliana phenotype images.
4.3 Evaluation metric

4.3.1 Classification evaluation metrics
In classification tasks, Accuracy A is a frequently used evaluation

metric, and it measures the proportion of correctly predicted samples to

all samples. The formula is displayed in Equation 3. The prediction effect

of the model is better in terms of accuracy the closer its value is near 1.

A =
TP + TN

TP + TN + FP + FN
(3)
FIGURE 4

The parameters tuning and network structure selection process for Arabidopsis thaliana multi- task phenotype reasoning based on Auto-Keras.
TABLE 1 Sample image of the Ara2013-Canon dataset.

Genotype Col-0 ein2 pgm ctr adh 1

Original Image

Leaf Segmentation Image
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where TP represents the positive sample predicted by the model

as a positive class, TN represents the negative sample predicted by the

model as a negative class, FP represents the negative sample predicted

by the model as a positive class, and FN represents the positive sample

predicted by the model as a negative class.

4.3.2 Regression evaluation metrics
The reliability of the change in the dependent variable in the

regression task is indicated by the coefficient of determination, R2,

which is defined as Equation 4. R2 is a numerical feature used to

illustrate the link between a random variable and many other random

variables. The coefficient of determination might have a maximum

value of 1. The regression line fits the predicted value better and

becomes closer to the true value as the value gets closer to 1.

R2 = o
n
i=1(ŷ i − �y)2

on
i=1(yi − �y)2

(4)

The extreme errors caused by the squaring amplify the mean

squared error(MSE), which is determined as the mean of the squared

difference between the anticipated and actual observed values.

Predicted values that deviate more from the genuine value are

penalized more harshly than those that vary less. The prediction

effect is more closely related to the true value the lower the MSE value,

which is defined in Equation 5.

MSE =
1
no

n

i=1
(yi − ŷ i)

2 (5)

In the formula given above, n stands for the quantity of samples, yi
for the sample’s true value, ŷ i for its predicted value, and �y for the

average of the true values of all the samples.
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4.4 Experimental results

4.4.1 Auto network generation
A multi-task model for automated machine learning was built

using Auto-Keras (Jin et al., 2019), setting the maximum number of

trials to 10 and the number of iteration rounds to 300, and training

the model with an input image of 28 × 28 × 3.

Auto-Keras applies the Early Stop model evaluation criteria and

does not fully train all the searched models. Thus only the best-

performing models in the evaluation process will be fully trained.

After training 10 models using the neural network architecture to

search and automatically tune the models as well as the parameters,

the model with the best predictions from the 10 trials was selected for

the 11th full training. The final structure of the automated machine

learning model generated by Auto-Keras’model visualization tool for

accomplishing multi-task learning is shown in Figure 5.

As can be seen in Figure 5, the multi-task learning model generated

with the automated machine learning approach is a hard parameter

sharing model, and the optimal network structure and parameters are

automatically selected based on the neural network architecture search

algorithm with flexible addition of network layers such as random

deactivation. The total number of parameters that have been trained for

the model is 118,247, and the specific parameters are shown in Table 2.
4.4.2 Training loss
The last complete model training process of the loss value curve is

shown in Figure 6, the loss decreases quickly with epoch, and when

the epoch is lower than 15. Figure 6 shows that our model performs

well during training without oscillation and can eventually

reach convergence.
FIGURE 5

Network structure of the optimal multi-task learning model generated by Auto-Keras for Arabidopsis thaliana phenotype reasoning tasks.
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4.4.3 Results reasoning and comparison
For the genotype classification task, the confusion matrix of the

final model obtained by the aforementioned automated machine

learning approach is shown in Figure 7. As shown in Figure 7, only

two Arabidopsis thaliana samples belonging to Col0 type were

mistakenly classified as other genotypes, which indicates the great

accuracy of our model in the task of genotype classification.

Results comparison with Dobrescu et al. (2020) of the in terms of

classification accuracy metrics is shown in Figure 8. From Figure 8, it can

be seen that the model trained using the auto multi-task outperforms the

model of Dobrescu et al. (2020) in the genotype classification task, with

an improvement in classification accuracy of 7.68%.

Figure 9 compares the two models according to R2 on the task of

leaf number regression. It can be seen that the multi-task learning

model built by the AutoML not only makes more accurate prediction

of the leaf number, but also improves its R2 value by 4.25% over the

previous model.
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In the leaf area regression task, the comparison of the two models

in terms of MSE value is presented in Figure 10. The multi-task

learning model developed using AutoML had the smallest MSE error

value for leaf area prediction and also reduced by 1.02% compared to

the previous model.

Combining the experimental results of the two tasks, it can be

seen that automated machine learning can automatically adjust the

structure and hyperparameters of the model to obtain a higher model

classification accuracy and a lower prediction error without a lot of

human intervention. It not only makes up for the shortcomings of

manually constructed models, but also improves classification

accuracy and prediction accuracy compared with the previous model.

Although it takes longer to train the model than other methods,

the stochastic nature of model construction makes it difficult for the

best model obtained to be reproduced by others. Automated machine

learning facilitates the model building process and can be used by a

wide range of people, making it easy for almost anyone to build a

model suitable for their task, and allowing experts and scholars to

focus their research on more important goals rather than spending a

lot of time in tweaking the model.
4.5 Complexity discussion

For the model training of the Arabidopsis thaliana phenotype

reasoning system, the time complexity depends primarily on NAS as

O(nt + tbest), where n is the number of network architectures to be

searched, and t is the average training time for all networks. Auto-

Keras reduces t by generating a new network structure on top of the

original network through network morphism, which allows the new

network to perform better with fewer iterations. And tbest is the time

for one complete training of the final selected optimal model. When

the model training is completed, our system simply feeds the image to

be analyzed into the already trained model to obtain the information
TABLE 2 Network parameters of the trained and selected model shown in Figure 5 generated by AutoML for Arabidopsis thaliana phenotype reasoning.

No. Layer Output Shape Parameters Connected to

1 input_1 (None,28,28,3) 0 –

2 cast_to_float32 (None,28,28,3) 0 input_1

3 conv2d (None,26,26,32) 896 cast_to_float32

4 conv2d_1 (None,24,24,32) 9248 con2d

5 conv2d_2 (None,22,22,32) 9248 con2d_1

6 conv2d_3 (None,20,20,32) 9248 con2d_2

7 flatten (None,12800) 0 con2d_3

8 dropout (None,20,20,32) 0 con2d_3

9 dense (None,5) 64005 flatten

10 flatten_1 (None,12800) 0 dropout

11 flatten_2 (None,12800) 0 cov2d_3

12 classification_head_1 (None,5) 0 dense

13 regression_head_1 (None,1) 12801 flatten_1

14 regression_head_2 (None,1) 12801 flatten_2
FIGURE 6

Total loss curve of the optimal model during training.
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on genotype, leaf number, and leaf area with time complexity of O(1).

Thus, the time complexity of the system depends on the efficiency of

the NAS and the size of the search space.

Therefore, we can draw the conclusion that the strength of using

AutoML to construct multi-task learning for Arabidopsis thaliana

phenotype reasoning not only considering the correlation between

tasks, but also achieves a joint improvement of multiple objectives of

tasks through parameter sharing and joint training. Furthermore, it

also takes advantage of the points of automatic machine learning to

select the best models and adjust hyperparameters tuning, and finally

obtain better performance.
5 System implementation
and deployment

5.1 System workflow

The system includes two components of the user and the server,

such as AWS of Amazon, or Alibaba Cloud, which can be deployed on

the cloud. The server deploys the trained AutoML multi-task model
Frontiers in Plant Science 09
and leverages GPU or CPU for inference while the user primarily

handles the action of picking the recognized images for the user.

Figure 11 depicts the unique workflow when using the system to

analyze plant photos.

As shown in Figure 11, There are 5 steps in all: 1) A recognition

request is submitted after the user chooses the image to be

recognized using the system at their end; 2) The front-end system

sends the back-end server the data it has been asked for; 3) Based on

the requested input, the server reads in photos and feeds them into a

model that has been trained using the AutoML approach; 4) Obtain

the expected data following the conclusion of the model processing

and deliver the analysis findings; and 5) The user interface shows the

image processing outcomes so that users may see the

data graphically.
5.2 Main functions

Based on its server’s URL address, the server will generate a

hyperlink address for users to access. The home page of the online

Arabidopsis thaliana phenotypic reasoning system based on AutoML

can be accessed by this address, as shown in Figure 12.

After choosing the image that needs to be processed and analyzed,

click “click here to upload your file” in the main interface. The image’s

file name will then be presented in the main interface, as shown

in Figure 13.
FIGURE 7

Confusion matrix of the optimal model on genotype classification task.
FIGURE 8

Comparative histogram of the two models in terms of
classification accuracy.
FIGURE 9

Comparative histogram of R2 for the two models in the leaf number
regression task.
FIGURE 10

Comparative histogram of MSE for the two models in the leaf area
regression task.
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The user will create the request data and send it to the back-end

server by clicking the “Identify” button. To perform inference and

retrieve the Arabidopsis thaliana results of genotype classification, leaf

number regression, and leaf area regression, the server will read in the

images and input them into the trained model based on the request

Arabidopsis thaliana data. The outcomes of the three jobs will be

returned to the user client by the model on the server, and these will

be illustrated on the user client as illustrated in Figure 14.
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6 Conclusions and future work

In this paper, we propose AutoML based multi-task intelligent

reasoning system for the Arabidopsis thaliana phenotype. Our method

can select the best model and perform parameter tuning automatically

for multi-task learning for Arabidopsis thaliana phenotype analysis.

The optimal genotypic classification, leaf number, and leaf area

prediction results of the present Arabidopsis thaliana data set were

obtained by training the multi-task learning model with AutoML. The

conclusions are summarized as the following.
(1) The multi-task learning model trained by AutoML of Auto-

Keras achieved 98.78% accuracy in Arabidopsis thaliana

genotype classification task, and 7.68% higher than

Dobrescu’s model. In the leaf counting regression task, the

value of R2 is 0.9925, and 4.25% higher than the previous

model. In leaf area regression task, the MSE value is 0.0108,
FIGURE 11

Workflow of Arabidopsis thaliana phenotype reasoning system based on AutoML.
FIGURE 12

User’s client of Arabidopsis thaliana phenotype reasoning system.
FIGURE 13

Upload Arabidopsis thaliana phenotype image for multi-task reasoning.

FIGURE 14

Illustration of Arabidopsis thaliana phenotype multi-task reasoning results.
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Fron
which is 1.02% lower than Dobrescu’s work (Dobrescu et al.,

2020).

(2) Our method can train and adjust model structure and

parameter tuning automatically for plant phenotype multi-

task reasoning, and improve the classification and regression

ability of models automatically without human intervention.
The dataset used in this paper is relatively small and can be expanded

in subsequent studies. In future research, various different AutoML

frameworks can be used to build the model and compare which

method can obtain better overall performance with this dataset. More

phenotypic classification or regression tasks can be added to themultitask

learning model, and a system dedicated to analyzing plant phenotypes

can be built, which can be extended to other plant phenotypic studies.
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