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Introduction: 3D semantic segmentation of plant point clouds is an important

step towards automatic plant phenotyping and crop modeling. Since traditional

hand-designed methods for point-cloud processing face challenges in

generalisation, current methods are based on deep neural network that learn

to perform the 3D segmentation based on training data. However, these

methods require a large annotated training set to perform well. Especially for

3D semantic segmentation, the collection of training data is highly labour

intensitive and time consuming. Data augmentation has been shown to

improve training on small training sets. However, it is unclear which data-

augmentation methods are effective for 3D plant-part segmentation.

Methods: In the proposed work, five novel data-augmentation methods (global

cropping, brightness adjustment, leaf translation, leaf rotation, and leaf

crossover) were proposed and compared to five existing methods (online

down sampling, global jittering, global scaling, global rotation, and global

translation). The methods were applied to PointNet++ for 3D semantic

segmentation of the point clouds of three cultivars of tomato plants (Merlice,

Brioso, and Gardener Delight). The point clouds were segmented into soil base,

stick, stemwork, and other bio-structures.

Results and disccusion: Among the data augmentation methods being

proposed in this paper, leaf crossover indicated the most promising result

which outperformed the existing ones. Leaf rotation (around Z axis), leaf

translation, and cropping also performed well on the 3D tomato plant point

clouds, which outperformedmost of the existing work apart from global jittering.

The proposed 3D data augmentation approaches significantly improve the

overfitting caused by the limited training data. The improved plant-part

segmentation further enables a more accurate reconstruction of the

plant architecture.
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1 Introduction
Plant scientists and plant breeders try to understand the

relationship between the genotype, the environment, and the

resulting phenotype. A key to understanding this relationship is

to get large amounts of data. Genotypic data can nowadays be

acquired easily using next-generation genotyping. The bottleneck,

however, is in acquiring phenotypic data. In practice, plant

phenotyping is often still performed by hand, resulting in low

amount of data and suffering from the subjective interpretation of

the human assessor. Some automatic high-throughput plant

phenotyping systems are used, but these are often based on 2D

images, which limit the accuracy of the estimation of geometric

traits, such as internode diameter, and leaf area (Boogaard et al.,

2020). With the rapid development of 3D sensors including 3D

scanners, LiDARs and RGB-D cameras, more methods become

available for 3D plant phenotyping, e.g., Johann et al. (2015);

Golbach et al. (2016); Itakura and Hosoi (2018); Magistri et al.

(2020); Boogaard et al. (2022). This paper has a focus on methods

for 3D segmentation of plant parts as an important prerequisite to

extract geometrical plant traits (Boogaard et al., 2021). Traditional

methods for processing of 3D point clouds of plants generally

achieves the segmentation through a set of manually designed

algorithms. Itakura and Hosoi (2018), for example, projected the

3D point cloud to 2D planes, using a combination of watershed

segmentation and morphological operators to get the leaf segments,

which were then projected back to the 3D space and completed

using region growing. In Lu et al. (2017) plant stems were

segmented by calculating the local point density. Stem and leaves

of tomato seedlings were segmented in Golbach et al. (2016) using a

custom-made connected-component analysis method. More

recently, Chebrolu et al. (2021) achieved leaf and stem

segmentation using a support vector machine (SVM) based

on fast point feature histograms (FPFH). However, these methods

rely on human work to provide discriminative features for

segmentation, a process which is sensitive to natural variations of

plants even within a same cultivar, resulting in poor generalization

(Heiwolt et al., 2021).

In recent years, 3D deep neural networks became available to

extract discriminative features and perform segmentation in an

end-to-end fashion. These methods learn to segment plant parts

based on a set of training examples (van Dijk et al., 2020). Louëdec

and Cielniak (2021), for example, used the position and surface

normals of the 3D points as input, to learn to segment strawberries

among canopies using an encoder-decoder convolutional neural

network (CNN). Boogaard et al. (2021) presented a block-wise

method for plant-part segmentation of full 3D point clouds based

on PointNet++ (Qi et al., 2017b) showing enhanced performance

when including spectral information alongside the spatial

information. A stemwork segmentation methods was proposed in

Ao et al. (2021) employing PointCNN (Li et al., 2018) followed by a

refining process using random sampling consensus (RANSAC). Ma

et al. (2021) presented a SPGNet-based (Landrieu and Simonovsky,

2018) segmentation method to segment the jujube tree stemwork

into trunk and secondary branches.
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These examples of the use of 3D deep neural networks indicate a

more robust performance and better generalization compared to the

traditional point-cloud processing algorithms. However, in order to

perform well, these methods require a large number of labeled

samples for training. As the labeling process is usually conducted

manually, which is exceptionally tedious and time-consuming for

3D point clouds, there are typically only small labelled datasets

available. This increases the risk of overfitting and generalization of

the performance of the networks (Choi et al., 2021).

Data augmentation is a proven method to alleviate the problem

of overfitting on small training sets. Data augmentation consists of

small modifications of the original training data in order to enhance

its diversity. In the domain of 3D point clouds, relevant data

augmentation methods can be divided into global augmentation

approaches and local augmentation approaches (Hahner et al.,

2020). Global augmentation applies transformation on the whole

point cloud. For example, Shi et al. (2020) and Chen et al. (2020)

introduced random flipping, global scaling, global rotation, and

global translation methods to enhance the training set, resulting in

improved performance of 3D object detection in street scenes. In

the agriculture domain, Ao et al. (2021) and Schunck et al. (2021)

employed global rotation, global translation, and scaling operations

to the original point clouds of maize and tomato, achieving the

segmentation of stem and leaf parts. Li et al. (2022) proposed a

down sampling-based augmentation method called 3D edge-

preserving sampling (3DEPS) for the organ segmentation of

tobacco, tomato, and sorghum point clouds. Local augmentation

applies transformations to parts of the point cloud, typically to the

parts that are relevant for the segmentation or detection task. Choi

et al. (2021), for instance, proposed a combination of five types of

local augmentation methods (dropout, swapping, mixing, down

sampling, and noise adding), achieving good performance in 3D

object detection in street scenes. To achieve the same goal, Hahner

et al. (2020) introduced local translation, local rotation, and local

scaling to enhance the point cloud data set. Although these local

data-augmentation methods have shown their benefits in the

domain of autonomous driving, they have not been used for 3D

plant-part segmentation, possibly due to the complexity in

plant architecture.

In this paper, we conducted a deep study on 3D data

augmentation methods applied to the deep-learning-based plant

part segmentation with insufficient training data. Five novel data

augmentation methods for 3D semantic segmentation of plants

were proposed, including two global augmentations (cropping and

brightness adjustment) and three local augmentations (leaf

translation, leaf rotation, and leaf crossover). Additionally, we

also tested five commonly used augmentation methods (random

down sampling, jittering, global scaling, global rotation, and global

translation) with the same tomato plant dataset, and provided a

comprehensive comparison and discussion of different data

augmentation methods combining with their specific application

scope. The experiments were conducted on three commonly used

tomato plant cultivars (Merlice, Brioso, and Gardener Delight). We

used PointNet++ (Qi et al., 2017b) as the deep neural network for

semantic-segmentation method as this is currently one of the best

performing networks for the segmentation of plant parts in
frontiersin.org
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particular (Turgut et al., 2022) and for point-cloud segmentation in

general (Guo et al., 2021). Corresponding results and conclusions of

the presented work are also valid for other network architectures.

The remaining of the article is organized as follows. The

methodology together with the evaluation metrics are introduced

in Section 2. Results and relevant discussions of the experiment are

presented in Section 3. The proposed work is finally concluded in

Section 4.
2 Materials and methods

Aiming to improve the generalization of plant-part segmentation,

ten different augmentationmethods were investigated, as described in

Section 2.3. The methods were tested and evaluated on 3D point

clouds collected of tomato plants, as presented in Section 2.1. Section

2.2 describes the deep neural network used in this work. Finally, the

evaluation metrics are presented in Section 2.4.
2.1 Data acquisition

2.1.1 Tomato plants
To train and test the proposed methods, 3D point clouds of 40

tomato plants were collected and carefully annotated. Three

different cultivars were used: 17 Merlice plants, 19 Brioso, and 4

Gardener Delight. The plants were grown in a greenhouse

environment. 19 of the plants were scanned in the second week

of growth, and 21 plants were scanned in the third week. The 40

point clouds captured from these plants were split into 35 point

clouds for training and 5 point clouds for testing.
1 A petiole normally refers to the first main internode on a leaf, which is

directly connected to the main stem.

2 Rachis refers to all the following internodes after petiole on a leaf. The

collection of all the petioles and the rachis internodes forms the secondary

internodes of a tomato plant stemwork.

3 Petiolules refer to the tertiary internodes within a tomato plant.
2.1.2 Imaging system - Maxi-Marvin
The scanning of the tomato plants and the 3D point-cloud

reconstruction was performed using a shape-from-silhouette

method, similar to that used in Golbach et al. (2016). The setup is

illustrated in Figure 1. Fifteen color cameras with a resolution of

1920×1080 were mounted in a cylindrical shape around the plant,

on three different heights and five different angles. The fifteen

cameras were synchronized to capture images at the exact same
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moment in time. In every camera image, the plant was segmented

from the white background using color thresholds in the RGB color

space, resulting in fifteen plant masks, each from a different

viewpoint. A 3D voxel space in the center of the setup with a size

of 40cm×40cm×70cm in length, width, and height respectively and a

resolution of 1mm3was used. For each voxel, it was determined if it

was occupied or free by projecting it in the fifteen camera images

based on the known and calibrated camera poses and intrinsic

camera parameters. If a voxel projected in the plant mask for all

camera images, it was considered occupied. Otherwise, if projected

in the background of one or more camera images, it was deemed

unoccupied. This shape-from-silhouette method resulted in a 3D

voxel representation of the plant. By taking all the boundary voxels

of the plant reconstruction, a 3D point cloud was obtained. Point-

cloud data acquired with the system consists of 48 channels; three

channels with positional information and 45 channels with RGB

color information from each of the fifteen cameras. Figure 2A shows

an example of a colored point cloud captured by the imaging

setup. More details on the method can be found in Golbach et al.

(2016). During the experiments, target plants were automatically

transported to the imaging setup from the greenhouse using a

conveyor-belt system. A single point cloud of a tomato plant

contained 422,682 points on average.

2.1.3 Point cloud labeling
Semantic labels and instance labels were given to all points in

the point cloud during the manual labeling process. As shown in

Figure 2B, semantic labeling divided points into four classes; soil

base, stick, stemwork, and other bio-structures. The stemwork class

consisted of the collection of the main stem, petioles1, rachis2, and

petiolules3, while other bio-structures referred to all other plant

organs including leaflets, flowers, and fruits.
B CA

FIGURE 1

The imaging system - Maxi-Marvin - used to acquire point clouds of tomato plants in the proposed work. (A) Shows the global view of the system;
(B) Shows the inner situation of the imaging black box when an exposure took place; (C) Shows a legend of the equipment setup inside the black box.
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Since the proposed work employed multiple local augmentation

approaches, which required operations at the leaf level, instance

labeling was also conducted to enable the localization of individual

leaf instances. Different from semantic labeling, instance labeling

gave a unique label to points of individual leaves. Here, a leaf

instance consisted of the collection of leaflets, petioles, rachis, and

petiolules belonging to that leaf. In this case, the class stemwork was

reduced to a stem class, containing only the main stem. Thus,

instance labeling consisted of the classes soil base, stick, stem, and

all leaf instances as illustrated in Figure 2C. For some points, the

class label could not be determined in the manual annotation

process. These points were labeled as unclassified.
4 Leaves and stem structures commonly have colours close to green, while

soil and stick generally show a black colour in our point cloud dataset

(Figure 2A).
2.2 Network setup

PointNet++ (Qi et al., 2017b), one of the best performing deep

neural networks for semantic segmentation of 3D point clouds

(Guo et al., 2020) was used in this work to learn to segment the

point cloud of a tomato plant into its different plant parts. The

method is based on PointNet (Qi et al., 2017a), which learns to

extract local point features and one global feature vector for the

whole point cloud, which jointly enable the prediction of the class

label for every point. To take the local context information into

consideration, PointNet++ improves PointNet by adding a

hierarchical composition and applying PointNet in three set-

abstraction layers. Each abstraction layer uses a sampling and

grouping operation to cluster points locally, followed by PointNet

layers to extract features per cluster. This results in extracting local

spatial features at that scale and down-sampling of the point cloud.

The segmentation head uses feature propagation layers, which

combine the local point features with the progressively more

abstract cluster features. The resulting multi-scale feature

description per point was then used to predict the semantic class

labels. More details on PointNet++ can be found in (Qi et al.,

2017b). To prevent overfitting on our small training set, we reduced

PointNet++ to using two levels of abstraction instead of the

three levels.
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2.2.1 Input point-cloud features
PointNet++ requires the network input to have a uniform size.

By comprehensively considering the limitation of GPU memory

and the minimum resolution needed for the plant-part

segmentation task, we used n=50,000 points per point cloud in

this paper. As the original point clouds of the plants contained

nearly half a million of points, the point clouds needed to be down-

sampled. More information on this down-sampling procedure is

described in Section 2.3.

The input features per point are pi = ½xi, yi, zi, nxi , nyi , nzi , r1i , g1i ,
b1i ,…, r15i , g15i , b15i �, where ½xi, yi, zi�is the 3D position of point i,

[nxi , n
y
i , n

z
i ] is the 3D surface normal of the point and

[r1i , g
1
i , b

1
i ,…, r15i , g15i , b15i ] is the RGB color information for the

fifteen cameras. The point surface normals were included, as they

likely contain relevant spatial information to separate the different

classes. Color information was included because it mainly helps to

distinguish bio-structures and non-bio-structures4. In order to

normalize the magnitude of the input features, positional

information of points were zero-centered and scaled in order to

fit into a vertical (z axis) range of [0,1]. The surface normal had unit

length, and the RGB color information was normalized into the

range of [0,1].

Thus, a point cloud of a tomato plant is defined as P =

fp1,p2,…pn} represented by a n×51 matrix.

2.2.2 Hyper-parameter optimization
Necessary hyper parameters within the original PointNet++

include batch size, initial learning rate, and number of epoches. Due

to the limitation of GPUmemory, we employed a small batch size of

five throughout the experiments. The number of epoches was

selected as 400 for a clear observation of overfitting phenomenon

with respect to each data augmentation method. The initial learning
B CA

FIGURE 2

(A) Shows an example of a colored point cloud of Merlice, where the colour information being visualized is the median values of R, G, and B
channels from 15 cameras, (B) Shows the corresponding semantic labels, with the classes soil base, stick, stemwork, and other bio-structures,
marked by black, light blue, magenta, and green respectively, and (C) shows the leaf-instance labels.
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rate was selected with a 7-fold cross validation over the training set

without using data augmentations, resulting in an optimal initial

learning rate of 0.005.
2.3 Data-augmentation methods

The aim of this paper is to investigate the use of different data-

augmentation methods to improve the generalization of plant-part

segmentation when a small training set is used. In this section,

several global and local data-augmentation methods are described.

Based on Hahner et al. (2020), we selected five types of existing

global augmentation methods (sampling, jittering, scaling, rotation,

and translation). Apart from these, we proposed two new global

augmentation methods (cropping and brightness adjustment) and

three local augmentation methods (leaf translation, leaf rotation,

and leaf crossover). These methods are described in detail in

Sections 2.3.1 and 2.3.2.
2.3.1 Global augmentation
Global augmentation employs slight alterations to the point

features of all the points in a point cloud simultaneously. In this

paper, we considered seven global augmentation methods, i.e.
Frontiers in Plant Science 05
online down sampling, jittering, scaling, rotation, translation,

cropping, and brightness adjustment.

2.3.1.1 Online down sampling

The original point clouds contained nearly half a million of

points and needed to be down-sampled to n=50,000 points. To this

end, a random subset of n points was sampled from the original

point cloud. As a data-augmentation method, this random down-

sampling was used in an online mode, meaning that a new random

sample was taken from the original point cloud after the acquisition

of each training batch. This increases the variation in the training

data, which should promote generalization. An example of a down-

sampled point clouds is shown in Figure 3A.

When online down-sampling was not activated in the

experiments, offline down-sampling was used, meaning that

random sampling was applied only at the start of the training

procedure as a pre-processing step, resulting in the same sampled

subset used throughout training.

2.3.1.2 Jittering

Jittering adds random fluctuations to the positions of individual

points in the point cloud in order to simulate sensor noise and to

create additional variation. The position of a point was changed by
B C D

E F G H

A

FIGURE 3

Examples of global augmentation operations. (A) Is the down sampling result based on the raw point cloud shown in Figure 2A. By taking the point
cloud shown in (A) as the origin, (B) shows the jittering result with sj = 0.01, (C) is the scaled point cloud with respect to y axis employing a scaling
rate of 0.75, (D, E) reveal the rotation results with respect to the x and z axes employing a=6° and g=180° respectively, (F) shows the global
translation result with d=[0.02,0.05,0.005], and (H) shows the global brightness transform result with a brightness augmentation ratio of 2.0. By
taking the raw point cloud shown in Figure 2A as the origin, (G) shows the cropping result with f=0.1. The color information shown in (A, B), and
(H) is the median values of the R, G, and B channels over all cameras. In (C–G), the original point clouds are marked by a semi-transparent color,
while the transformed point clouds are marked by blue for a better comparison of the transformed point clouds with the origin.
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½x0
i , y

0
i , z

0
i � = ½xi, yi, zi� + ½exi , eyi , ezi � (1)

where the added noise is drawn from a Gaussian distribution,

ϵi ∼ N(0,sj) for every point separately. Note that the position data

was normalized into a z-coordinate range of [0,1], the noise level

used here is proportional to the original height of a specific plant.

During the experiments, ten different values for sj were evaluated,

0.005, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, and 0.11

respectively. Figure 3B shows an example of jittering with sj = 0.01.

2.3.1.3 Scaling

The scaling operation enlarges or shrinks the original point

cloud with a certain factor to introduce variation in the plant size.

As the position data was normalized with respect to the height of

the plant, scaling was only applied to the x- and y-coordinates:

½x0
i , y

0
i , z

0
i � = ½hx · xi,  hy · yi, zi� (2)

For every point cloud in every training batch, the scaling factors

were randomly drawn from a uniform distribution: h∼U(a,b), with
a and b being the lower and upper bound of the uniform

distribution. During the experiments, different ranges were
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evaluated using U(0.9,1.1), U(0.8,1.2), U(0.7,1.3), U(0.6,1.4), and

U(0.5,1.5). Figure 3C shows an example with hy = 0.75.

2.3.1.3.1 Rotation

The global rotation operation rotates the original point cloud

with random angles for each of the three axes. A rotation around the

z-axis, Rz(g), corresponds to variation in the rotation of the plant in

the imaging system. Rotations around the x- and y-axes, Rx(a) and
Ry(b), correspond to a change in the inclination of the stem

(Figure 4). The rotation changes the position of all the points in

the point cloud according to:

½x0
i , y

0
i , z

0
i �T = R · ½xi, yi, zi�T (3)

where the rotation matrix is R = Rz(g )Ry(b)Rx(a). The

rotation around the z-axis was drawn from a uniform

distribution, g ∼ U(0°, 360°), and the rotations around the x- and

y-axes are drawn from a Gaussian distribution, a , b ∼ N(0,sr).

During the experiments, different values for a and b were evaluated:

1°, 2°, 2.25°, 3°, and 4°. Figures 3D, E show two examples of global

rotation around the x and z axes.
2.3.1.3.2 Translation

The translation operation shifts the complete point cloud with a

random offset:

½x0
i , y

0
i , z

0
i � = ½xi, yi, zi� + ½d x , d y , d z� (4)

where the random offset is drawn from a uniform distribution,

d∼U(a,b), with lower and upper bounds a and b. This introduces

some variation in the position of the plant in the point clouds, with

the aim to train the network to be robust to changes in position.

Note that the position data was normalized to have z in the range of

[0,1], hence the offset is proportional to the height of the plant.

During the experiments, the use of different ranges of the uniform

distribution were evaluated, for U(−0.03,0.03), U(−0.05,0.05), U

(−0.10,0.10), U(−0.15,0.15), and U(−0.40,0.40). An example with d=
[0.02,0.05,0.005] can be shown in Figure 3F.
2.3.1.3.3 Cropping

The imaging system (Section 2.1.2) has a limited working range,

which is sometimes smaller than the plant. This results in parts of

the plant being cut-off at the boundaries of the working space at the

left, right, front, back, and top. To train the model to be more robust

to such incomplete point clouds, a random crop was applied as

data-augmentation method. The size of the crop was parameterized

with the factor f, drawn from a uniform distribution, f∼U(a,b). A
point, i, remained in the point cloud if:

xi ∈ ½(1  −  f) ·min(x), (1  −  f) ·max(x)�∧
yi ∈ ½(1  −  f) ·min(y), (1  −  f) ·max(y)�∧
zi ∈ ½0, (1  −  f) ·max(z)�

(5)

where the operators min(…) and max(…) give the minimum and

maximum value along the respective axis. Mind that the x- and y-

coordinates were zero-centered and the z-coordinates were in the
FIGURE 4

The inclination of stem internodes at the top part of a plant. Here,
the growing trend of the top part is marked with red lines while the
perpendicular orientation is marked by green lines for a comparison.
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range [0,1] as a result of the normalization process. As the cropping

operation results in fewer points in the point cloud, the online down

sampling process Section 2.3.1.1 was applied after cropping, to

ensure that the resulting point cloud after data augmentation

contains n=50,000 points. During the experiments, the following

ranges of the uniform distribution were evaluated: U(0,0.05), U

(0,0.10), U(0,0.15), and U(0,0.20). Figure 3G shows an example of a

cropped point cloud using f =0.1.

2.3.1.3.4 Brightness adjustment

This data-augmentation methods introduces variation in the

brightness of the colors in the point clouds to become more robust

to changes in illumination. The brightness is altered with a random

factor drawn from a uniform distribution, h∼U(a,b). All color

channels are then altered by multiplying with this factor:

½r0i1, g
0
i
1, b

0
i
1,…, r

0
i
15, g

0
i
15, b

0
i
15�

= ½h · r1i ,h · g1i ,h · b1i ,…,h · r15i ,h · g15i ,h · b15i � (6)

In the experiments, different ranges of the uniform distribution

were evaluated for U(0.4,3.5), U(0.5,3.0), U(0.6,2.5), and U(0.7,2.0).

Figure 3H shows an example of the modified brightness for h=2.0.

2.3.1.4 Local augmentation

Different from the global augmentation methods, the local

augmentation methods alter a subset of the point cloud. In the

proposed work, three types of local augmentation approaches have

been proposed that operate on the leaf level: leaf translation, leaf

rotation, and leaf crossover. This enhances the diversity of the plant

architectures in the training set.

As a basis of the local augmentation methods, we need to know

the position and the orientation of every leaf in the point clouds in

the training set. A method was developed to automatically

calculated these features based on Tree Quantitative Structural

Modeling (TreeQSM) (Raumonen et al., 2013). TreeQSM is a

method to model the 3D architecture of a tree or plant by fitting

a set of connected cylinders to point-cloud data of the stemwork

(main stem and all side branches). TreeQSM requires a clean point

cloud of the stemwork as input (see Figure 5A), which we can obtain
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from the annotated point clouds within the training set. TreeQSM

then fits a series of connected cylinders to the points in order to get

an hierarchical reconstruction of the architecture with the main

stem and second- and higher-order branches. An example is given

in Figure 5B, where points marked by blue refer to the main stem,

points marked by green refer to second-order branches (petioles

and rachis of individual leaves), while points marked by red stand

for third-order branches (petiolules of individual leaves). The

cylinder-based 3D reconstruction can be observed in Figure 5C.

To obtain the position of the leaf, the method determined the

base points of the leaves by taking the starting point of the first-

order branches reconstructed by TreeQSM, as illustrated in

Figure 5D by black dots.

The orientation of each leaf is determined by the first principle

component calculated from a principle component analysis (PCA)

of all points belonging to the stemwork of that leaf, as illustrated in

Figure 6. The resulting leaf principle axis is a 3D vector representing

the orientation of the leaf. The phyllotactic orientation of the leaf is

then approached by taking the projection of this 3D vector onto the

xoy-plane. The angle between the phyllotactic orientation vectors of

two adjacent leaves is defined as the phyllotactic angle.

2.3.1.4.1 Leaf translation

This local augmentation method applies a random translation

along the z-axis to the position of individual leafs, with a different

offset for every leaf. In this manner, leaf translation is able to

simulate the potential fluctuations of leaf positions on the stem,

from which enhance the diversity of stem internode lengths. The set

of points, Lj, belonging to a specific leaf j is selected based on the

annotated leaf-instance labels (see Section 2.1.3), where Lj ⊂ P.

Then, for every point Ii ∈ Lj, the position is updated by

½x0
i , y

0
i , z

0
i � = ½xi, yi, zi� + ½0, 0,yz� (7)

where yz is drawn from a Gaussian distribution, yz ∼ N(0,sl).

During the experiment, evaluations were performed for different

values of sl : 0.10, 0.15, 0.20, 0.25, 0.30, 0.40, 0.50, 0.60, and 0.70.

Note that the position data was normalized to have z in the range of

[0,1], hence the offset is proportional to the height of the plant. An

example of leaf translation operation is shown in Figure 7A. Here,
B C DA

FIGURE 5

Leaf base point detection achieved with TreeQSM. (A) Reveals a clean stemwork point cloud of tomato plant, which is taken as the input of
TreeQSM; (B) is the result of hierarchical analysis; (C) is the reconstruction result generated by TreeQSM pipeline; (D) reveals the positions of leaf
base points over the stemwork reconstruction model. Here, the first internodes of individual second order branches (petioles) are marked by orange.
The black dots refer to the base points of leaves, which is defined as the connection part between leaves and their parent stem internodes.
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the original position of the leaf is marked as a semi-transparent

color, the leaf after translation is marked as blue, and all parts that

remain the same are marked as yellow.

2.3.1.4.2 Leaf rotation

The leaf-rotation method applies two types of random rotations

for every leaf on the plant. One rotation is around the vertical axis to

change the phyllotactic angle of the leaf. The other one is a rotation

around the leaf principle axis, which aims to simulate the situation that

a leaf may slightly alter its orientation according to the space utilization

and the sunshine direction. For both rotations, necessary translation

operations are applied to the target leaf point cloud Lj in order to

assure the rotations to be conducted around the base point of the

target leaf.

For the change in phyllotactic angle, the points are rotated

around the vertical axis (z-axis) over a randomly picked angle, g:

½x0
i , y

0
i , z

0
i �T = Rz(g) · ½xi, yi, zi�T (8)

where Rz(g) is a 3×3 rotation matrix corresponding to the

rotation around the z-axis with an angle of g. The random angle was

drawn from a uniform distribution, g∼U(−a,a). During the

experiments, different values of a were evaluated: a=30°, a=90°,

a=135°, a=180°. An example of leaf rotation of with respect to z axis

can be seen in Figure 7B.

The leaf rotation with respect to the principle axis is achieved by

½x0
i , y

0
i , z

0
i �T = Rv(v,  q)  ·  ½xi, yi, zi�T (9)

where Rv(v,q) is a rotation matrix corresponding to the rotation

angle q around the axis v5, which here was the leaf principle axis.
5 The function get_rotation_matrix_from_axis_angle() in the Python library

open3d was used: http://www.open3d.org/docs/latest/python_api/

open3d.geometry.OrientedBoundingBox.html
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The random angle was drawn from a uniform distribution, q∼U
(−b,b). During the experiments, different values of b were evaluated:

b=30°, b=40°, b=50°, b=60°, and b=70°. An example of leaf rotation

around the leaf principle axis can be seen in Figure 7C.

2.3.1.4.3 Leaf crossover

Leaf crossover aims to exchange leaf instances among different

plant samples in order to enhance the diversity of plant

appearances. To create meaningful transformations, leaves were

only crossed-over within one cultivar. Figure 8 shows the entire

crossover process of two plant candidates. The leaf crossover

operation contained the following steps:

Step 1: Selection of all plants in the training set of cultivar A,

creating the set PA
0 = fPA

1 ,…PA
mg.

Step 2: Random selection of a morphological rank r, which is

based on the order of the leaf on the stem, from bottom (rank 1) to

top (rank nleaf). Knowing that the size and shape of the leaf relate to

the leaf age, we only swapped leaves with the same rank in the

crossover process in order to prevent unrealistic appearance.

Step 3: Cutting-off the leaf with rank r of all plants in PA
0 . Based

on the annotated leaf instances, all points of the leaf with rank r on

plant i are selected to form the leaf point cloud, LA,ri . This leaf is then

cut-off to form a new point cloud of the plant without the selected

leaf: P̂A
i = PA

i ⦵LA,ri . Figures 8B, G show two examples of the point

clouds without the selected leaves, and Figures 8C, H show the leaf

point clouds being removed.

Step 4: Crossover of the leaves. Every cut-off leaf of plant i is

added to a randomly selected other plant j: �PA
j = P̂A

j ⊕ LA,ri · Ti!j,

where i≠j and Ti!j is the transformation matrix to align leaf i with

the position and phyllotactic angle of the original leaf j. Note that

this matrix multiplication applies only to the position data of the

point cloud. Figures 8D, I show the registration of the selected leaf

to match the orientation of the original leaf. And Figures 8E, J

contain the new point clouds resulting from the crossover process.

Step 5: Steps 2-4 are repeated NC times, that is NC leaves are

crossed-over per plant.

Step 6: Steps 1-5 are repeated for all cultivars.

Due to the fact that the leaf crossover operation changed the

number of points within the point cloud, the down sampling of the

resulting point clouds was performed after the operation to

maintain a fixed size of the point cloud. The numbers of leaves

NC being exchanged per plant during the crossover process was

evaluated for 1, 2, 4, 6, and 8 in the experiment.
2.3.2 Evaluation
In the experiments, the network was trained and tested on a

work station with an Intel Xeon E-2276M (2.8GHz) CPU and a

NVIDIA Quadro RTX 5000 Max-Q (16GB) GPU.

The point clouds in the test set were down-sampled in an offline

mode to uniform number of points (n=50,000). To evaluate the

improvement of individual data-augmentation methods on the

performance of semantic segmentation, the F1-score was used.

This is calculated as the harmonic mean of the precision, TP
TP+FP,

and recall TP
TP+FN , which are based on the number of true positives

(TP), false positives (FP), and false negatives (FN) per semantic
FIGURE 6

A legend of leaf principle axis and estimated phyllotactic orientation.
Blue dots refer to the point cloud of leaf stemwork.
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class(soil, stick, stemwork, and other bio-structure). The F1-score

ranges from 0 (bad) to 1 (perfect). The F1-score was calculated per

semantic class and averaged over the classes.

Considering that the randomness in the network initialization may

give rise to certain fluctuation in the segmentation F1 score, totally five

runs of training and testingwere conducted for each data augmentation

method. The final performance of the data augmentation method was

described by the average performance over the five runs.
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As a baseline, the PointNet++ model was trained without

the use of data augmentation and compared to training using

the presented augmentation methods, one at a time. For

every data-augmentation method, different settings for the

associated parameters were tested. In the results section, we

selected the optimal parameter setting using the F1-score for

stemwork. The reason for this was twofold: (1) the stemwork

is the most challenging class and (2) the stemwork is very
B C D E

F G H I J

A

FIGURE 8

A demonstration of leaf crossover process. Suppose that there are two tomato plant point clouds as shown in (A, F), this example is going to reveal the
crossover process of leaves at rank four in details. For a better visualisation, plant parts coming from (A, F) are marked by pale green and cyan
respectively through out the process. (B, G) Reveal the incomplete point clouds after leaves selected for further crossover operation are removed. (C, H)
show the cut-off leaf candidates. To maintain the original phyllotactic angle of leaves, the leaf orientation is calibrated as shown in (D, I), where the
original orientation is marked by a semi-transparent colour. The final results after crossover are shown in (E, J) for respective plants.
B CA

FIGURE 7

A demonstration of local data augmentation by taking the point cloud in Figure 3A as origin. (A) Shows the leaf translation result of the leaf at rank
five with a relative translation distance of 0.1. (B) Shows a leaf rotation around the vertical axis with g =60°, and (C) shows the leaf rotation around
the leaf principle axis with q = 60◦.
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important to extract phenotypic traits like internode length and

leaf orientation.
3 Results and discussion

The baseline result revealed average F1 scores of 0.97, 0.76, 0.47, and

0.94 for classes of soil base, stick, stemwork, and other bio-structures

respectively. The baseline result sets the basis for the following

comparison and evaluation. The content of this section is organized as

follows. The results of the individual data augmentation methods are

presented and discussed together with the optimal parameter selections

in Section 3.1. In Section 3.2, we provide general discussions regarding

the data augmentation methods being used in this paper.
3.1 Specific augmentation methods

In this sub-section, the segmentation performance achieved

with the different data augmentation methods is presented together

with corresponding optimal parameter selections. The optimal

parameter selection was based on the metric of average stemwork

F1 score. This is mainly because the segmentation of stemwork is

much more difficult than that of other classes due to the low

separability. Further discussion on this point is provided in

Section 3.2. For the convenience of comparison, an integrated

table is presented by combining the stemwork F1 scores and

class-average F1 scores of all the data augmentation methods and

parameter selections (Table 1).

3.1.1 Online down sampling
The segmentation with online down sampling data

augmentation resulted in an average stemwork F1 score of 0.58,

which was 0.11 higher than the baseline result (Table 1). Knowing

that the test point clouds were also down sampled in an offline

mode (Section 2.4), the online down sampling augmentation

properly simulated the diversity and randomness of the test set,

which makes the improvement easy to understand. Online down

sampling did not include any parameters to be selected. Therefore,

no information on optimal parameter selection is provided. As

mentioned in Section 2.3.1.1, we used a uniform down sampling

strategy to augment the dataset diversity in the experiment.

However, the point clouds obtained from imaging systems usually

have different densities depending on the distances between the

plant parts and the imaging equipment. When that is the case, it is

also possible to apply a non-uniform down sampling strategy to

enhance the diversity of local areas, which lays a foundation for

further improvements.
3.1.2 Global jittering
The performance of jittering augmentation revealed a gradually

increasing performance as the sj value becomes larger, as shown in

Table 1. This is because a larger sj value enables larger variations of

each training point cloud, which was more likely to generalize the
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actual diversity of the test set. However, as the value of sj becoming

larger, the fluctuation of point positions was becoming larger as

well, which gave rise to a serious deformation of the original point

cloud. For example, Figure 9A reveals an example of jittering

operation with sj = 0:05, where most of the organs are no longer

distinguishable purely based on the position of points. In this case,

the positional information of points was no longer a representative

feature when conducting the identification of certain classes, for

example, the segmentation between stemwork and stick.

Consequently, the network focused on other information types,

for instance, color information, instead of the positional

information in order to make a correct identification. In this

circumstance, the fluctuation of positional information controlled

by jittering sj was not able to influence the segmentation

performance anymore. Therefore, the segmentation performance

was no longer sensitive towards sj changes when sj > 0:04.

3.1.3 Global scaling
According to Table 1, global scaling augmentation did not show

a remarkable improvement compared to the baseline result, and

different scaling ranges did not lead to significant variations in the

stemwork segmentation performance. Global scaling augmentation

aims to simulate the diversity of plant width, but the plant widths of

the test point clouds after point cloud normalization did not show a

large variation. As a result, the global scaling operation was not able

to properly generalize the diversity of the test set.

3.1.4 Global rotation
Global rotation augmentation with respect to the Z axis resulted

in an average stemwork segmentation F1 score of 0.58, which was

0.11 higher than the baseline result. This is a further confirmation

on the hypothesis that point cloud orientation was one of the main

factors contributing to the diversity of the dataset.

Global rotation augmentation with respect to the X or Y axis did

not indicate a significant improvement compared to the baseline

result according to Table 1. The purpose of employing the global

rotation augmentation with respect to X or Y axis is to simulate the

stem inclination, but the result shows that this was not a good

method to simulate the stem inclination variation. As shown in

Figure 4, only the top part of the stem shows inclination in most

occasions. However, the rotation along the X or Y axis made the

complete plant point cloud to be leaning, which was not matching

the real conditions and drove the enhancement of the training data

diversity into a wrong direction. Another reason why global

rotation around the X or Y axis did not improve the model is

that there was only one point cloud within the test set that had a

significant inclination of the stem. Therefore, the increase of

training data diversity with respect to stem inclination could not

generalize the diversity in the test set, which obstructed the

augmentation method to work as intended.

3.1.5 Global translation
According to Table 1, global translation augmentation did not

indicated significant increment on the segmentation performance.
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This suggested that the positional variations of point clouds actually

was not the main issue contributing to the dataset diversity.
3.1.6 Cropping
As for the global cropping augmentation, the segmentation

performance demonstrated a large improvement comparing to

the baseline result, as shown in Table 1. However, it was

insufficient to conclude that the cropping augmentation itself
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contributed to the improvement because the cropping operation

was always followed by an online down sampling process.

Knowing that the online down sampling improved the

stemwork segmentation F1 score by 0.11, the cropping

operation actually did not provide an outstanding improvement

over that. Moreover, there was not a significant difference in

segmentation performance with different cropping ratios, which

suggests that the limitation of imaging scope was not a major

sources of the dataset diversity.
TABLE 1 Performance of data augmentation methods with different parameter selections.

Augmentation
Methods

Parameters Stemwork F1
Scores

Class-ave F1
Scores

Augmentation
Methods

Parameters Stemwork F1
Scores

Class-ave F1
Scores

Baseline - - 0.47 0.79 Cropping U (0,0.10) 0.57 (+0.10) 0.83 (+0.04)

Down Sampling - -* 0.58 (+0.11) 0.83 (+0.04) U (0,0.15)* 0.59 (+0.12) 0.84 (+0.05)

Jittering sj = 0.005 0.47 (+0.00) 0.79 (+0.00) U (0,0.20) 0.57 (+0.10) 0.83 (+0.04)

sj = 0.01 0.48 (+0.01) 0.79 (+0.00) Brightness
Adjustment

U (0.7.2.0) 0.52 (+0.05) 0.81 (+0.02)

sj = 0.02 0.52 (+0.05) 0.81 (+0.02) U (0.6,2.5) 0.55 (+0.08) 0.82 (+0.03)

sj = 0.03 0.56 (+0.09) 0.83 (+0.04) U (0.5.3.0)* 0.56 (+0.09) 0.81 (+0.02)

sj = 0.04 0.61 (+0.14) 0.84 (+0.05) U (0.4,3.5) 0.55 (+0.08) 0.81 (+0.02)

sj = 0.05 0.60 (+0.13) 0.84 (+0.05) Leaf Translation sl = 0.10 0.52 (+0.05) 0.80 (+0.01)

sj = 0.06 0.61 (+0.14) 0.84 (+0.05) sl = 0.15 0.55 (+0.08) 0.82 (+0.03)

sj = 0.07 0.60 (+0.13) 0.84 (+0.05) sl = 0.20 0.57 (+0.10) 0.82 (+0.03)

sj = 0.08* 0.63 (+0.16) 0.85 (+0.06) sl = 0.25 0.56 (+0.09) 0.81 (+0.02)

sj = 0.09 0.63 (+0.16) 0.84 (+0.05) sl = 0.30 0.55 (+0.08) 0.82 (+0.03)

sj = 0.11 0.63 (+0.16) 0.85 (+0.06) sl = 0.40 0.59 (+0.12) 0.83 (+0.04)

Scaling U (0.9.1.1) 0.46 (-0.01) 0.78 (-0.01) sl = 0.50 0.60 (+0.13) 0.83 (+0.04)

U (0.8,1.2) 0.49 (+0.02) 0.80 (+0.01) sl = 0.60 0.57 (+0.10) 0.81 (+0.02)

U (0.7,1.3) 0.50 (+0.03) 0.80 (+0.01) sl = 0.70* 0.60 (+0.13) 0.83 (+0.04)

U (0.6,1.4) 0.48 (+0.01) 0.80 (+0.01) Leaf Rotation (z) U (-30°,30°) 0.56 (+0.09) 0.82 (+0.03)

U (0.5.1.5)* 0.51 (+0.04) 0.81 (+0.02) U (-90°,90°) 0.59 (+0.12) 0.83 (+0.04)

Rotation (z) U (0,360°)* 0.58 (+0.11) 0.83 (+0.04) U (-135°,135)* 0.62 (+0.15) 0.84 (+0.05)

Rotation (x or y) sr = 1° * 0.50 (+0.03) 0.80 (+0.01) U (-180°,180°) 0.60 (+0.13) 0.84 (+0.05)

sr = 2° 0.47 (+0.00) 0.79 (+0.00) Leaf Rotation (PCA) U (-30°,30°) 0.52 (+0.05) 0.81 (+0.02)

sr = 2.25° 0.46 (-0.01) 0.79 (+0.00) U (-40°,40°) 0.53 (+0.06) 0.81 (+0.02)

sr = 3° 0.49 (+0.02) 0.80 (+0.01) U (-50°,50°)* 0.54 (+0.07) 0.82 (+0.03)

sr = 4° 0.49 (+0.02) 0.80 (+0.01) U (-60°,60°) 0.52 (+0.05) 0.81 (+0.02)

Translation U (-0.03,0.03) 0.46 (-0.01) 0.79 (+0.00) U (-70°,70°) 0.53 (+0.06) 0.82 (+0.03)

U (-0.05.0.05)* 0.48 (+0.01) 0.79 (+0.00) Leaf Crossover Nc = 1 0.61 (+0.14) 0.84 (+0.05)

U (-0.10.0.10) 0.47 (+0.00) 0.79 (+0.00) Nc = 2 0.61 (+0.14) 0.84 (+0.05)

U (-0.15,0.15) 0.46 (-0.01) 0.79 (+0.00) Nc = 4* 0.65 (+0.18) 0.86 (+0.07)

U (-0.40,0.40) 0.45 (-0.02) 0.79 (+0.00) Nc = 6 0.64 (+0.17) 0.85 (+0.06)

Cropping U (0,0.05) 0.58 (+0.11) 0.83 (+0.04) Nc = 8 0.62 (+0.15) 0.85 (+0.06)
For columns "Stemwork F1 Scores" and "Class-ave F1 Scores", values within the bracket refer to the improvement over the baseline result. The optimal parameters for individual augmentations
are marked by *. The overall best performance is emphasised with bold font.
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3.1.7 Brightness adjustment
Brightness adjustment achieved an obvious improvement

compared to the baseline result, as shown in Table 1. There were

two potential factors resulting in the improvement. Firstly, as

discussed in Section 2.3.1.7, there existed certain variations in

brightness during the imaging process, which increased the

diversity in the dataset. With brightness adjustment the diversity

of the training data was properly enriched, which improved the

stemwork segmentation. Generally, the color information of point

clouds within the dataset show a low brightness due to the exposure

settings. A brightness transform, in particular a brightness

enhancement operation, largely contributed to the separability of

color features for respective classes. This also explains why the

augmentation performance was better using a wider brightness

enhancement range. There are several feasible approaches for

brightness adjustment being proposed in literature, such as gray-

shade color constancy adjustment (Finlayson and Trezzi, 2004) and

gray-world color enhancement (Kwok et al., 2011). Only one type of

brightness adjustment method was actually employed in this paper,

but testing other types of brightness adjustment algorithms is

meaningful in future work to explore the optimal solution.

Besides, giving that the color information of a point cloud was

provided by the images from 15 cameras (Section 2.1.2), the

proposed brightness adjustment augmentation altered the

brightness of these 15 camera images with a same strategy.

Further studies can also investigate the feasibility of adjusting the

brightness of each camera image with different strategies.

3.1.8 Leaf translation
With an increase of leaf translation sl , the stemwork

segmentation performance demonstrated a gradually increasing

trend, as shown in Table 1. This suggests that the lengths of stem

internodes was one of the main source of the dataset diversity.

However, the stemwork segmentation F1 score indicated a

convergence after sl ≥ 0:4. Similar phenomenon was also
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observed with the jittering, as described in Section 3.1.2. When

the sl value increases, the deformation of the augmented point

clouds increased as well, until passing an acceptable deformation

level. For example, certain leaves might not be properly connected

with the main stem after the leaf translation with a large distance, as

shown in Figure 9B. Once the deformation was large enough and

the positional information was no longer the most representative

information to identify the stemwork, the network turned to other

types of features (for example, color information) instead. Under

this circumstance, the positional information did not have a

significant influence on the segmentation performance anymore.

The reason why the stemwork F1 score was no longer sensitive for

the leaf translation sl can be explained. In this paper, the translation

distance of a leaf candidate was assumed to be independent from

the positions of other leaf candidates. This easily gave rise to certain

abnormal lengths of stem internodes (extremely long or short stem

internodes), which was the main reason for the unexpected

deformation. To improve this, certain constraints based on the

statistic analysis on stem internode lengths can be applied to the

selection of leaf translation distances to provide a better

generalization of the real circumstance.

3.1.9 Leaf rotation
In terms of the leaf rotation augmentation with respect to z axis,

an increasing trend was observed for the stemwork segmentation F1

score as the rotation range became larger (Table 1). According to

Section 2.3.2.2, the rotation angles for individual leaves was

supposed to respect a uniform distribution. This meant that the

phyllotactic orientation of a leaf was assumed to be random and

independent from the orientations of other leaves. In this case, the

best performance was expected to occur when the largest rotation

range ( ± 180 °) was selected, because a larger range provided a

better diversity of phyllotactic orientations. However, the best

segmentation performance was achieved with the rotation range

of ± 135°, which suggests that the selections of rotation angles for
BA

FIGURE 9

Potential deformation caused by the data augmentation operation with extreme parameter selections. (A) Reveals the jittering results with sj=0.05
(32.8mm specifically for this plant); (B) Reveals the leaf translation result with a proportional translation distance of 0.5 (328 mm specifically for this plant).
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individual leaves actually may not be independent events.

According to the manual measurements, the phyllotactic angles of

leaves had a mean value of 185.1° and a standard deviation of 57.0°.

Therefore, given the orientation of a leaf at rank n, the potential

orientation of the leaf at a higher rank n+1 should not be completely

random, but should respect a conditional probability distribution p

(O(rank=n+1)|O(rank=n)) instead. Consequently, the feasible

rotation angle for the leaf at rank n+1 should obey a conditional

probability distribution p(q| O(rank=n+1)) as well instead of a

uniform distribution U(−q, q). The inaccurate assumptions on the

rotation angle distribution may introduce a certain bias towards the

expectations. In future work, modifications can be applied to the

leaf rotation augmentation to test whether a better performance can

be achieved in this manner.

The segmentation with leaf rotation augmentation with respect

to the principle axis demonstrated an obvious improvement

according to Table 1, which supports the hypothesis that leaf

orientation difference was one of the sources of dataset diversity.

However, leaf orientation changes caused by the spatial utilization

and sunlight direction is usually complex. A simple leaf rotation

with respect to the principle axis might be insufficient to simulate

the real situation and introduce certain unrealistic leaf appearances,

especially when dealing with leaves with large curvatures.
3.1.10 Leaf crossover
As for the leaf crossover augmentation, the best performance

was obtained with Nc = 4 according to Table 1. Given that the

average number of leaves per plant was 7.4 in our training set, this

shows that the optimal segmentation performance was achieved by

exchanging approximately half of the leaves within a plant point

cloud. As introduced in Section 2.3.2.3, the leaf crossover operation

was usually followed by an online down sampling process. The

online down sampling process improved stemwork segmentation

F1 score to 0.58 (Section 3.1.1), while the leaf crossover

augmentation resulted in a stemwork F1 score of 0.65 with the

optimum Nc. This suggests that the leaf crossover operation further
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improves the stemwork segmentation performance on the basis of

online down sampling augmentation.
3.2 General discussions

As shown in Table 1, all the data augmentation methods

achieved certain improvement on the segmentation performance

more or less with the optimal parameter selections. Leaf crossover

with Nc = 4 resulted in the largest increase in F1 score, both on

stemwork segmentation as well as on the whole plant segmentation.

Comparing with other types of data augmentation methods, leaf

crossover enables a larger alteration over the original point cloud,

which leads to a wider diversity of the dataset with respect to plant

appearance. Meanwhile, leaf crossover is able to mostly maintain

the original attributes of the point cloud because the crossover

operation is only applied to leaf instances with the same cultivars

and ranks. The stemwork segmentation results with leaf crossover

augmentation are shown in Figure 10.

The data augmentation methods being used in this paper have

the potential feasibility to be applied to the 3D plant data other than

tomato plants. This requires the target plants to have a similar

architecture as the tomato plants being used in the proposed work.

Specially for the local data augmentation approaches, the instance

labels are always required to localize the plant organs, which may

slightly increase the working load during the manual point cloud

annotation process. In the proposed work, only one type of data

augmentation was used for each experiment of training. One

potential direction for future improvement would be the

combination strategy of different augmentation methods.

Figure 11 shows the training and test loss curves obtained with

the top five data augmentation methods - cropping, leaf translation,

leaf rotation with respect to the vertical axis, global jittering, and leaf

crossover - compared to the baseline result. A serious overfitting is

observed in the train-test loss curves of the baseline result after

training for 60 epoches, while the overfitting phenomenon has been
B C DA

FIGURE 10

Stemwork segmentation results with leaf crossover augmentation. (A) Shows the ground truth labels for individual points; (B) Reveals the network
predictions of labels; (C) Shows the differences between (A, B); (D) reveals the extracted stemwork points.
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significantly improved employing the data augmentations mentioned

above. Particularly in the train-test loss curves obtained with leaf

rotation with respect to the vertical axis, global jittering, and leaf

crossover, the overfitting problem is hardly observed.

The segmentation F1 scores for individual classes (soil base,

stick, stemwork, and other bio-structures) achieved by individual

data augmentation methods are shown in Figure 12. The result

presented in Figure 12 was obtained using the optimal parameters.

The segmentation performance of the soil base and other bio-

structures was always better than that of the stick and the stemwork.

This was mainly caused by the poor separability of the stick class

and the stemwork class. One of the factors leading to this poor

separability was the similarity in geometrical shape, because both

the stick and the stem have a long cylinder-like shape. Combined

with the fact that the stick and the stem were usually close together,
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it was rather tough to separate these two classes from each other. On

the other hand, as for petioles, rachis, and petiolules which are also

parts of the stemwork, the labeling process contained certain

subjective errors. Due to the limitations in point cloud density,

stemwork points close to the terminus of leaves or the top of the

plant could not be identified even manually, which led to certain

stemwork points to be labeled as other bio-structures by mistake.

These subjective errors in labels might somehow confuse the deep

neuron network during the training process, and result in certain

mis-classifications. It can be clearly observed in Figure 10C that

most of the errors in the predictions of stemwork points occur near

the terminus of leaves or the top of the plant, which provides

evidence for this view point. Apart from the separability, another

reason leading to the poor segmentation performance of stick and

stemwork classes was the calculation of loss value. In the original
A B

D E F

C

FIGURE 11

Training and test loss curves obtained with the top five data augmentation methods - (B) cropping, (C) leaf translation, (D) leaf rotation with respect
to the vertical axis, (E) global jittering, and (F) leaf crossover - compared to (A) the baseline result without using data augmentation.
FIGURE 12

Segmentation F1 scores for classes of soil base, stick, stemwork, and
other bio-structures respectively. The segmentation performance
achieved with individual data augmentation methods was
represented by selecting the optimal parameters.
FIGURE 13

Proportions of points for individual classes with respect to the point
clouds in test dataset.
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PointNet++ configuration, the loss value was obtained by averaging

the cross entropy loss values of individual points. However, in our

specific case, a problem of unbalanced number of points within

individual classes exists. As shown in Figure 13, stick and stemwork

points only occupied 3.0 and 11.2% of the total respectively, while

most of the points belong to the soil base and other bio-structures.

This led to a phenomenon that the network paid more attention to

the classes with the majority of points because they have a strong

influence on the averaged cross entropy loss, while classes with less

points were overlooked to a certain extent. In the same way, the

observation that the segmentation improvement for soil and other

bio-structures was not significant compared to that of the stick and

the stemwork can be explained. According to Figure 12, the data

augmentation methods achieved a comprehensive improvement on

the segmentation performance of all the classes. The segmentation

improvement of stick and stemwork class mostly benefited from the

corrections of false positives within the classes soil and other bio-

structures. However, the number of points being corrected only

included a small proportions within the soil and other bio-

structures classes, thus the corresponding improvement for these

classes was not obvious. In contrast, the points whose predictions

were corrected occupied large proportions within classes of stick

and stemwork, which resulted in a relatively obvious improvement.

This also provides an evidence for us to use stemwork F1 scores as

the metric to select the optimal parameters instead of the F1 scores

of other classes or the class-average F1 scores. Since the most

obvious improvement was found in the segmentation of stemwork

class, to use the segmentation performance of other classes or the

average performance as the criteria may decrease the separability

during the comparison of individual data augmentation methods.

This view point can be easily proven through Table 1 as well.

The stemwork segmentation F1 scores with respect to the stem

part and individual ranks are shown in Figure 14. The data

augmentation methods used in this paper illustrated a clear

improvement on the stemwork segmentation performance with

respect to the stem part and individual ranks. The stem part

generally yielded the highest part-wise F1 score, and the F1 score

gradually decreased when the rank increased. The main reason is

that the separability between stemwork and leaflets is getting poorer

when the rank increases. On the other hand, the manual labeling
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may also introduce subjective errors due to the low separability at

high ranks, which introduces a certain bias during the training

process. It is worthwhile to mention that the performance of rank

nine and rank ten was not that representative because in our dataset

only one test point cloud out of five contained rank nine and ten.
4 Conclusions

Semantic segmentation of plant point clouds is considered a

vital research domain for its contributions to modern plant

science. In this paper, we looked at 3D segmentation of tomato

plants point clouds, and conducted a deep research on potential

data augmentation methods aiming to solve overfitting problems

caused by the limited size of the training set. Employing PointNet

++ as the semantic segmentation backbone, five existing global

data augmentation methods were used to enhance the diversity of

the dataset. On top of that, we introduced two global

augmentation methods (cropping and brightness adjustment)

and three local augmentation methods (leaf translation, leaf

rotation, and leaf crossover) based on the specific attributes of

our tomato plant point cloud dataset. The results show that, when

using the optimal parameters, all the data augmentation methods

improve the segmentation result. The five data augmentation

methods with the best performance were leaf crossover, global

jittering, leaf rotation with respect to the vertical axis, leaf

translation, and cropping, which demonstrated stemwork

segmentation F1 score improvements by 0.18, 0.16, 0.15, 0.13,

and 0.12 respectively.

Nevertheless, there are some drawbacks of the presented work.

First, the test set being used contains only five point clouds and the

training set 35 point clouds. Therefore, there still might be certain

fluctuations within the test results although we repeated the training

for five times and get the average performance for the evaluation. In

this case, it was not sufficient either to make further discussions with

respect to the cultivars. Knowing that different tomato cultivars

maintain different plant structures, an evaluation of augmentation

performance with respect to the cultivars is able to provide

conclusions on the potential adaptability of each augmentation

method over different plant architectures.
FIGURE 14

Stemwork segmentation F1 scores for the stem part and respective ranks.
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