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Increased food production to cater the need of growing population is one of the

major global challenges. Currently, agro-productivity is under threat due to

shrinking arable land, increased anthropogenic activities and changes in the

climate leading to frequent flash floods, prolonged droughts and sudden

fluctuation of temperature. Further, warm climatic conditions increase disease

and pest incidences, ultimately reducing crop yield. Hence, collaborated global

efforts are required to adopt environmentally safe and sustainable agro practices to

boost crop growth and productivity. Biostimulants appear as a promising means to

improve growth of plants even under stressful conditions. Among various

categories of biostimulants, microbial biostimulants are composed of

microorganisms such as plant growth-promoting rhizobacteria (PGPR) and/or

microbes which stimulate nutrient uptake, produce secondary metabolites,

siderophores, hormones and organic acids, participate in nitrogen fixation,

imparts stress tolerance, enhance crop quality and yield when applied to the

plants. Though numerous studies convincingly elucidate the positive effects of

PGPR-based biostimulants on plants, yet information is meagre regarding the

mechanism of action and the key signaling pathways (plant hormone modulations,

expression of pathogenesis-related proteins, antioxidants, osmolytes etc.)

triggered by these biostimulants in plants. Hence, the present review focuses on

the molecular pathways activated by PGPR based biostimulants in plants facing

abiotic and biotic challenges. The review also analyses the common mechanisms

modulated by these biostimulants in plants to combat abiotic and biotic stresses.

Further, the review highlights the traits that have beenmodified through transgenic

approach leading to physiological responses akin to the application of PGPR in the

target plants.

KEYWORDS
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2023.1041413/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1041413/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1041413/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2023.1041413&domain=pdf&date_stamp=2023-01-30
mailto:aparna@ihbt.res.in
https://doi.org/10.3389/fpls.2023.1041413
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2023.1041413
https://www.frontiersin.org/journals/plant-science


Kaushal et al. 10.3389/fpls.2023.1041413
Introduction

Agriculture is presently facing several challenges due to shortage

of cultivable land, fluctuating weather conditions, increased incidence

of pests and pathogens and rising weed infestations. To increase crop

productivity, chemical fertilizers are used indiscriminately (Rouphael

and Colla, 2020; Hendriksen, 2022). However, extreme usage of

chemicals causes detrimental effects on the soil microorganisms,

human and the environment leading to decreased water holding

capacity, loss of soil fertility, imbalances in soil nutrients, and

increased salinity levels (Wan et al., 2021; Jin et al., 2022). To meet

the rising demand for food, boosting crop productivity is imperative.

Hence there is a need for a green, efficient, sustainable and

economically productive system to improve agronomic traits of

crops (Drobek et al., 2019; Cataldo et al., 2022). Currently,

biostimulants have emerged as one of the most potent and

promising tools for enhancing the growth and productivity of crops

naturally, simultaneously addressing the issues related to chemical

fertilizers. Biostimulants/bioeffectors/bioprotectors or biobased

products are different classes of organic or inorganic compounds

which consists of bioactive substances or microorganisms and when

applied on target plants promote its growth and productivity

(Shahrajabian et al., 2021; Franzoni et al., 2022; Monteiro et al.,

2022). Over the time, various researchers have classified biostimulants

into nine broad categories including seaweeds and plant extracts,

complex organic materials (obtained from sewage sludge extracts,

composts, manure urban and agro-industrial waste products), humic

substances, antitranspirants (kaolin and polyacrylamide), chitin and

chitosan derivatives, elements (Al, Co, Se, Na, and Si), hydrolyzed

proteins, nitrogen-containing compounds and microbial inoculants

(Colla and Rouphael, 2020; Teklić et al., 2021; Franzoni et al., 2022;

Monteiro et al., 2022). Out of this wide category, microbial-based

biostimulants including plant growth-promoting bacteria (Bacillus,

Serratia, Arthrobacter, Pseudomonas, Rhodococcus, Enterobacter,

Ochrobactrum, Acinetobacter, Azospiri l lum, Rhizobium,

Streptomyces and Stenotrophomonas) have surfaced as highly

valuable and inexpensive agricultural input for improving plant

yield (Orozco-Mosqueda et al., 2020; Baltazar et al., 2021; Miceli

et al., 2021; Ayed et al., 2022; Fadiji et al., 2022). These microbiome

based biostimulants trigger plant growth through solubilization of

minerals (Zn, P and K), nitrogen fixation, production of

phytohormones like indole-3-acetic acid (IAA), abscisic acid (ABA),

ethylene (ET), cytokinin (CK), jasmonic acid (JA), secondary

metabolites (siderophores, N-acyl homoserine lactone, lipopeptides,

rhamnolipids, cyclic lipopeptides), enzymes (chitinases, cellulose,

protease, glucanase etc.), volatile organic compounds (VOCs) (fatty

acids and derivatives, hydrocarbons (alkanes, alkenes and alkynes),

carbohydrates, (acids, alcohols, lactones, aldehydes, benzenoids, etc.)

terpenoids, nitrogen (metalloid, amides, amines and imines), volatile

inorganic compounds (HCN, H2S, NH3, CO2, CO, and NO) and

lipopolysaccharides (Caulier et al., 2019; Lephatsi et al., 2021). These

components modulate root morphology including biomass of roots,

its surface area and newly formed lateral roots, shoot length, leaf area,

soil structure (nutrient, water holding capacity, porosity and water

filtration), improve nutrient and mineral acquisition (N, P, Fe, Zn,

Mn etc.) and photosynthetic capacity of a plant. Further, they also
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enhance biotic and abiotic stress tolerance by activating genes

responsible for antioxidant defense system, production of phenolics,

enzymes, amino acids and organic acids (Backer et al., 2018; Rouphael

and Colla, 2018; Hamid et al., 2021; Aremu et al., 2022; Lin and Jones,

2022; Vocciante et al., 2022), but the exact functionality at cellular and

biomolecular mechanisms are yet to be deciphered (Lephatsi et al.,

2021; Othibeng et al., 2022). To elucidate the mechanism of action of

biostimulants on plants, combined potential of molecular tools,

proteomics, transcriptomics and metabolomics have been harnessed

by several researchers (Franzoni et al., 2022). Although progress has

been made in understanding the physiological and biochemical aspect

of plant-microbe interactions under stress, but the core mechanism

and elucidation of molecular interactions are still in infancy. Thus, the

present review comprehends the physiological and biochemical

modulations along with the signaling components of PGPR based

biostimulants in imparting abiotic (major detrimental stresses like

temperature, drought and salinity) and biotic stress tolerance in

plants. An in-depth understanding of the biochemical and

molecular mechanisms triggered by the microbial biostimulants

particularly PGPR based will aid in designing and developing novel

bioformulations for sustainable agriculture.
Role of PGPR-based biostimulants in
combating abiotic stress

Drought and heat stress

About 60% of the world’s region falls under arid and semi-arid

areas and depends mainly on irrigated agriculture (Swain et al., 2017).

With climate change, it is expected that there will be a decrease in

rainfall, a rise in temperature, an increase in atmospheric CO2 and

severe alternations in weather conditions leading to frequent floods

and droughts (Torres and Henry, 2018). In upcoming years,

agriculture will be increasingly challenged by water scarcity, and

plants will experience drought and heat stress leading to

compromised productivity. Drought stress occurs under low

humidity levels in soil, air and high ambient temperature (Lipiec

et al., 2013; Kaya et al., 2020; Kosar et al., 2021; Mansoor et al., 2021),

while heat stress can be described as an increase in temperature

beyond a threshold measure hampering the normal development of a

plant. It is observed that the combined action of both stresses restrict

the physiological (photosynthesis, respiration, etc.), biochemical and

cellular metabolism of plants such as cell membrane fluidity, integrity,

elasticity, water potential, stomatal conductance, the structure of

amino acids, proteins, nucleic acids, enzymes etc. (Rana et al., 2021;

Mitra et al., 2021; Murali et al., 2021a; Noor et al., 2022; Shaffique

et al., 2022). In order to adapt under environmental stress plants

regulate their diverse molecular signaling pathways such as

phytohormones, stress responsive proteins, antioxidants machinery,

and osmolytes (Kosar et al., 2021). While understanding the

physiological response of plants, it is crucial that both drought and

heat stresses must be considered together as the physiological

responses are closely interlinked and dependent (Dreesen et al.,

2012). Numerous studies have elucidated the positive impact of

PGPR functioning as a biostimulant on plants challenged by heat
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and drought (Rashid et al., 2022; Yasmin et al., 2022). Basically,

drought and thermotolerance is a complex mechanism, however,

microbial metabolites including organic acids, sugars, trehalose,

choline, amino acids, proline, glycine betaine, polyamines,

exopolysaccahrides (EPS), production of heat shock proteins

(HSPs), dehydrins, VOCs, ACC-deaminase, phytohormones etc.

play a vital role in imparting drought and heat tolerance

[Figures 1A, B; (Ahluwalia et al., 2021; Ansari et al., 2021; Yasmin

et al., 2021a; Notununu et al., 2022; Kour and Yadav, 2022; Shaffique

et al., 2022)].
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1-Amino Cyclopropane-1-Carboxylate (ACC) deaminase

produced by several PGPRs help in combating drought stress

experienced by its host plant by interfering with the ethylene

biosynthesis pathway leading to lowering of ethylene concentration

thereby counteracting stress signals. In one of the studies, the

application of B. licheniformis K11 capable of producing auxin and

ACC deaminase reduced the negative impact of drought in pepper

without the use of agrochemicals (Lim and Kim, 2013). Similarly,

improved growth was noticed in pea and maize under drought

conditions on treating with ACC deaminase producing strain
B

A

FIGURE 1

(A) Schematic representation of PGPR induced stress tolerance mechanism in plant challenged by abiotic and biotic stresses. Different elicitors released by
PGPRs modulates endogenous phytohormones which in turn influences secondary metabolites, osmolytes production, activity of antioxidant
enzymes and PR proteins. These combined metabolic pathways imparts stress tolerance and promotes plant growth under stressed environment.
(B) PGPR-based direct and indirect mechanism involved in activating cascade of abiotic and biotic stress signaling in plants. The activation events are
represented by arrows, inhibition process is represented by bar while dashed arrows represent signaling cascade. IAA, indole-3-acetic acid; ACC, 1-
Amino Cyclopropane-1-Carboxylate; AUX/IAA, auxin/indole-3-acetic acid; ARF, auxin response factor; ERF, ethylene response factor; P5CS1, D1 -
pyrroline-5-carboxylate synthase1; P5CS2, D1 - pyrroline-5-carboxylate synthase 2; DREB2b/DREB1/DREB3, drought-responsive element binding
protein 2b, drought-responsive element binding protein 1, drought-responsive element binding protein 3; MPK3/MPK6, mitogen–activated protein
kinase 3, mitogen-activated protein kinase 6; RD29A/RD29B, response-to-desiccation 29A, response-to-desiccation 29B; PDF1.2, protodermal
factor 1.2; CH1, chitinase; WRKY, W-box domain binding transcription factor; TIP2, tonoplast intrinsic protein 2; LTP1, lipid transfer protein 1; AQP7,
aquaporin 7; GST6, glutathione S-transferase; DIP1, dehydration stress-inducible protein 1; DHN1, dehydrin 1; RAB21, responsive to ABA protein 21;
PR, pathogenesis related proteins; LOX, lipoxygenase; AOS2, allene oxide synthase 2; PAL, phenylalanine ammonia lyase; ICS1, isochorismate
synthase 1; NH1, Arabidopsis NPR1 homolog 1; PAD4, p hytoalexin-deficient 4; AOS, antioxidant scavenging; SOD, superoxide dismutase; CAT,
catalase; APX, ascorbate peroxidase; POX, peroxidases; ROS, reactive oxygen species.
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Pseudomonas spp., Enterobacter cloacae, Achromobacter xylosoxidans

and Leclercia adecarboxylata primarily due to reduced ethylene

accumulation as compared to untreated plants (Arshad et al., 2008;

Danish et al., 2020). Additionally, these bacteria are capable of

supplying nitrogen by sequestering and degrading ACC to a-
ketobutyrate using ACC deaminase (Gupta and Pandey, 2019)

thereby promoting better vegetative growth of plants.

Production of reactive oxygen species (ROS) is a common

phenomenon observed under drought conditions causing damage

to cells (Cruz de Carvalho, 2008) and antioxidant enzymes such as

catalase (CAT), peroxidase (POD) and polyphenol oxidase (PPO)

scavenge ROS preventing stress related injury thereby imparting

stress tolerance [Figures 1A, B; (Zandalinas et al., 2018)]. These

antioxidants also promote faster recovery from water limitation and

dehydration compared to the control plants (Laxa et al., 2019). Hence,

the potential of PGPR in enhancing the production of antioxidants is

a desirable attribute. Several studies illustrate the beneficial trend of

antioxidant enzymes under severe drought, as was noticed in mentha

(Chiappero et al., 2019; Asghari et al., 2020) and in tomato

(Mekureyaw et al., 2022). Noticeably, seeds of Pearl millet treated

with Bacillus amyloliquefaciens (MMR04) enhanced expression of

ascorbate peroxidase (APX) and superoxide dismutase (SOD) genes

leading to the enhanced concentration of SOD and APX and

decreased level of malondialdehyde (MDA) compared to the

untreated lot (Murali et al., 2021b).

Accumulation of proline is one of the common mechanisms

involved in imparting drought tolerance. Proline helps to maintain

protein structure and activity thereby supporting membrane integrity

(Kishor et al., 2005). Also, proline has multiple roles as it can act as a

chelator of metals, a signaling molecule, and a defense molecule

triggering the production of a series of antioxidants (Hayat et al.,

2012). It has been observed that Bacillus subtilis (HAS31),

Pseudomonas strains apart from increasing antioxidants (SOD,

CAT and POD) activity also significantly enhanced the total soluble

sugars and proline in potato and sweet corn (Batool et al., 2020; Zarei

et al., 2020).

PGPRs have an inherent capability to produce plant growth

hormones like auxin, gibberellins (GA), JA, salicylic acid (SA) and

ABA. These hormones may be directly responsible for triggering a

series of responses in the host (plant) to combat stress conditions. The

role of SA in imparting drought stress has been illustrated to alter

nitrogen metabolism, triggering the production of antioxidants and

accumulation of glycine betaine thus conferring protection against

stress (Khan et al., 2022). An interesting research showed that under

heat-stress conditions inoculation of Bacillus tequilensis SSB07 strain

in soybean enhanced the endogenous level of JA, SA, and reduced the

level of ABA content (Kang et al., 2019a). All the treated plants had

better biomass and photosynthetic pigment compared to the control.

Two PGPR strains Bacillus sp. WM13-24 and Pseudomonas sp. M30-

35, promoted the growth of ryegrass subjected to drought stress by

modulating auxin distribution and ABA content in the plant (He

et al., 2021).

Several scientific investigations illustrated that microbial

applications induce the expression of specific genes related to

drought response. Treating Arabidopsis and soybean with

Paenibacillus polymyxa CR1 upregulated dehydration-responsive

genes (RD29A and RD29B), which equipped the plants to face
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drought conditions (Liu et al., 2020). Similarly, application of

Bacillus subtilis strain GOT9 triggered up-regulation of numerous

drought stress related genes particularly Response-to-desiccation 29B,

20 (RD29B, RD20), RAB18 (encodes dehydrin protein), 9-cis-

epoxycarotenoid dioxygenase (NCED3)) in Arabidopsis and

BrDREB1D, BrWRKY7 and BraCSD3 in Brassica thereby

minimizing the physiological damage. Enhanced expression of ABA

inducible genes clearly showed that GOT9 increased ABA

accumulation in plant and hence provided drought tolerance (Woo

et al., 2020). Inoculation of Pseudomonas putida GAP-P45 in

Arabidopsis modulated several important polyamine biosynthetic

genes (arginine decarboxylase (ADC), agmatine iminohydrolase

(AIH), N- carbamoyl putrescine amidohydrolase (CPA), spermidine

s yn tha s e ( SPDS ) , s p e rm ine s yn tha s e ( SPMS) and S -

adenosylmethionine decarboxylase (SAMDC) thereby impacting

cellular polyamine levels. The increased level of free cellular

spermidine and putrescine positively correlated with water stress

(Sen et al., 2018). In transgenic Arabidopsis overexpressing ABA

stress ripening 6 (OsASR6) (auxin activated) gene increased the

expression of auxin-responsive genes, small auxin up-regulated

family (SAUR32), Ser/Thr protein kinase (PINOID), and auxin

response factor 5 (ARF5) auxin transcription factor leading to

greater root density and biomass. These effects of OsASR6

expression were found to mimic the beneficial effects of PGPRs in

rice (Agarwal et al., 2019). PGPR strain Streptomyces mitigated

drought stress in tomato and regulated the expression of

transcription factors ethylene response factor 1 (ERF1) and WRKY70

[Figure 1B; (Abbasi et al., 2020)]. In another study, expression of ABA

independent genes, i.e. drought-responsive element binding protein

(DREB2 and DREB1-2) significantly enhanced due to PGPR (Bacillus

sp.) inoculation in Brassica under water scarcity indicating Bacillus-

mediated priming for drought tolerance (Bandeppa et al., 2019).

Pepper treated with B. licheniformis K11 upregulated genes Cadhn,

VA, sHSP and CaPR10 leading to higher production of dehydrin-like

protein, vacuolar H+-ATPase, small heat shock protein and

pathogenesis-related protein which helped in in survival of plants

under severe drought conditions (Lim and Kim, 2013). An interesting

study was carried out wherein it was elucidated that Pseudomonas

putida modulates the expression of important stress-responsive

miRNAs in response to drought and salt stresses (Jatan et al., 2019).

All these studies illustrate that PGPRs influence expression of

heat/drought related genes there by triggering production of series of

antioxidants, osmolytes, proline and several key biomolecules which

may contribute in mitigating heat and drought stress. Also, several

hormones produced by PGPRs as illustrated in Figure 1A trigger

cascade of biochemical reaction in host which enable plants to tie over

drought stress.
Cold stress

Low temperatures limit agriculture productivity in temperate

ecosystems. In these areas, the plants constantly face chilling stress

that leads to 51-82% annual yield loss (Hwarari et al., 2022). It

generally affects the critical processes of plants such as ROS

homeostasis, energy metabolism (electron transport chain),

photosynthesis efficiency, cell wall structure, fluidity, root hydraulic
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conductance and structure of biomolecules (enzymes, proteins and

nucleic acids) (Kazemi-Shahandashti and Maali-Amiri, 2018; Tiryaki

et al., 2018; Zhou et al., 2021). In order to survive under prolonged

low temperatures, the plants exhibit altered gene and transcription

factor expression, leading to changes in membrane lipids, proteins,

osmolytes levels, phytohormones, phenolic content and reactive

oxygen scavenging enzymes (Brüggemann et al., 1999; Saltveit,

2000; Ait Barka et al., 2006; Amini et al., 2021; Guo et al., 2021;

Ritonga et al., 2021; Saleem et al., 2021a; Eom et al., 2022; Hwarari

et al., 2022; Wei et al., 2022).

The application of PGPR to improve crop productivity is a

sustainable and safer means compared to chemical inputs. It has

been found that treatment of Burkholderia phytofirmans strain PsJN

(Bp PsJN) on Arabidopsis thaliana subjected to cold stress prevented

disruption of plasmalemma, exhibited cell wall strengthening of

mesophyll cells (Su et al., 2015). Inoculation of Vitis vinifera with

PGPR strain PsJN exhibited better CO2 fixation, increased content of

phenolics, proline and starch (Ait Barka et al., 2006). In another study,

PsJN improved cold tolerance in Vitis vinifera wherein higher

accumulation of proline, MDA and aldehydes (ALD) were observed

along with higher expression of phenylalanine ammonia lyase (PAL)

and stilbene synthase (STS) genes in primed plants compared to non-

treated plants (Theocharis et al., 2012). Similarly, another finding

revealed that under chilling stress treatment of tomato plants with

psychrotolerant Pseudomonas vancouverensis (OB155) and P.

frederiksbergensis (OS261) microbes minimized the stress effect by

increasing the level of proline, antioxidant enzymes [(SOD, APX and

glutathione (GSH)] (Subramanian et al., 2016). Further, Pseudomonas

fragi, P. chloropaphis, P. fluorescens and Brevibacterium frigoritolerans

inoculants also improved the growth of beans by regulating the

activities of SOD, CAT, POX, APX and GR during low temperature

stress [Figure 1A; (Tiryaki et al., 2018]. Subsequently, further research

reflected the key role of Bacillus spp. in wheat under cold stress. Under

cold stress, the bacterial treatment significantly reduced the level of

ABA, ET, MDA by directly targeting the ABA- response element

(ABARE), Ethylene response factor (ERF) and 4-Hydroxy-2-nonenal

(4-HNE; encodes a, b- unsaturated aldehyde during lipid peroxidation)
genes, but at the same time the expression of D1- pyrroline-5-

carboxylate synthase (P5CS), expansin (expA1), cytokinin (CKX2)

and auxin (ARF) increased (Zubair et al., 2019). Another study

evaluated the role of Rhizobium inoculation (RI) in legumes model

plant i.e. Medicago truncatula against cold stress. Compared to the

control plant, the treated plant showed a significant increase in the

SOD, CAT, APX, ascorbate, reduced glutathione, proline, soluble

sugars and glycine betaine, whereas POD, lipoxygenase (LOX) activity

and nitro-oxidative damage was notably reduced. Moreover, RI also

stimulated the nitrogen (N) uptake in cold stress seedlings by

enhancing the activity of nitrate reductase (NR) enzyme (Irshad

et al., 2021). In addition, Streptomyces sp. 506 (TOR3209) played a

distinct function in boosting tolerance to cold stress in tomato.

Expression profile of TOR3209 treated stressed plants showed an

increased level of HY5 (bZIP) mediated ABA signaling genes

[(zeaxanthin epoxidase (ZEP1), 9-cis-epoxycarotenoid dioxygenase

(NCED1), carotenoid dioxygenase and carotene beta-hydroxylase),

dehydrin (TASI4) (that triggers accumulation of soluble sugars,

proline). Besides this, TOR3209 also reduced the photosynthetic

damage by modulating the activities of RUBISCO (Ribulose 1, 5-
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bisphosphate carboxylase/oxygenase), NAD-MDH and NADP-MDH

(malate dehydrogenases) enzymes suggesting that main mechanism of

imparting cold tolerance is by ABA pathway (Ma et al., 2022). Over and

above, other finding highlights the role of cold active PGPR in rice

growth and development. It was observed that strains of Pseudomonas,

Enterobacter, Stenotrophomonas genera inoculation ameliorated the

effect of cold in rice by increasing the accumulation of metabolites

(proline and soluble sugars), protein content, nutrients (N, P and K),

antioxidants (SOD, POD and CAT) (Expósito et al., 2022).

These studies illustrate that most of the cold tolerance by PGPRs

are due to cross-interlinkage of antioxidants, soluble sugars, proteins,

proline, phenolics, phytohormones etc. Further scientific

investigations will provide better insight into PGPR mediated cold

tolerance in plants but nevertheless, there are credential evidences

which indicate that the right microbial strains can boost productivity

in the temperate ecosystem.
Salinity stress

High salt concentration leads to osmotic stress that interferes with

physiology, biochemical functioning (photosynthesis, stomatal

conductance, enzyme activities, water and nutrient uptake), growth

and yield of crops (Yasmin et al., 2021b; Choudhary et al., 2022).

Microbial application triggers various mechanisms for improving

plant growth under salinity stress (Sarkar et al., 2018). It generally

includes the production of ACC-deaminase, EPS, phytohormones

(auxin, CK and SA), antioxidant enzymes, VOCs, synthesis of

osmoprotectant metabolites (proline, trehalose, alanine, glycine,

glutamic acid, serine, threonine, aspartate, choline, betaine and

organic acids), regulation of ion affinity transporters that in turn

maintains ionic, osmotic, water homeostasis, thus resulting in

improved plant growth under salt stress [Figure 1A; (Tewari and

Arora, 2018; Abbas et al., 2019; Kumar et al., 2019; Bhat et al., 2020;

Sunita et al., 2020; Choudhary et al., 2022; Gamalero and Glick, 2022;

Kumawat et al., 2022)].

PGPR based compounds modulate the phytohormones,

antioxidants and osmolytes levels in plants for their growth under

stress conditions (Choudhary et al., 2022). A study demonstrated that

under salt stress Rhodopseudomonas palustris G5 treated cucumber

seedlings showed higher expression of SOD, POD, PPO and soluble

sugars (Ge and Zhang, 2019) compared to untreated plants. Another

ACC- deaminase producing endophytic strain Pseudomonas spp.

OFT5 confers salt tolerance to tomato by reducing ethylene

production (Win et al., 2018). Inoculating paddy with halotolerant

Curtobacterium albidum strain SRV4 improved plant growth under

various salinity levels by significantly increasing SOD, CAT, POX,

APX expression, and by maintaining Na+/K+ homeostasis. This study

showed that EPS production by strain reduced sodium ions

availability to the plant and hence overcome effect of salinity stress

(Vimal et al., 2019). Furthermore, Planomicrobium sp. MSSA-10

regulated antioxidants, phenolics and nutrients mobilization

pathways in pea and promoted its growth in saline conditions. It

was observed that bio-inoculant treatment increased total phenolics,

POD, CAT and nutrients (N, P and K) uptake for reducing negative

effects of salt [Figure 1B; (Shahid et al., 2018)]. Additionally, it was

observed that salt tolerant Bacillus pumilus FAB10 significantly
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decreased antioxidant enzymes like SOD, CAT, glutathione reductase

(GR) activities, proline and MDA content in wheat at different salt

concentrations (Ansari et al., 2019). Furthermore, endophytic

bacteria Curtobacterium sp. SAK1 treatment reduced the effect of

salt stress in soybean by lowering endogenous ABA, JA, ROS, PPO

and POD levels, whereas glutathione (cellular antioxidant)

concentrations were found to be higher (Khan et al., 2019c).

Another research team observed that inoculation of soybean with

five halotolerant strains i.e. Arthrobacter woluwensis (AK1),

Microbacterium oxydans (AK2), Arthrobacter aurescens (AK3),

Bacillus megaterium (AK4) and Bacillus aryabhattai (AK5)

conferred salt tolerance by elevating the expression of SOD,

glutathione synthase (GSH) and enhancing K+ uptake. Besides the

antioxidants, microbial inoculation significantly reduced Na+ ion

concentration, ABA level, but increased the expression of IAA

related gene i.e. auxin resistant 1 (GmLAX3) and salt tolerant gene

(Soybean salt tolerance 1) (GmST1) (Khan et al., 2019b). In addition

to this, it was found that halotolerant bacteria Leclercia

adecarboxylata MO1 improved tomato growth under salt stress by

significantly increasing sugars (sucrose, glucose and fructose), organic

acids (citric acid and malic acid), amino acids (serine, glycine,

methionine and proline) and simultaneously decreasing

endogenous ABA level (Kang et al., 2019b). Similarly, PGPR

Pseudomonas PS01 imparted salt tolerance in Arabidopsis by

modulating the expression of stress related genes. Results illustrate

that PS01 inoculation in salt stressed plants increased expression of

lipoxygenase (LOX2) (related to JA synthesis), while decreased APX2,

GLY17 (ROS scavenging and detoxification). No significant change

was observed in the expression of RD29A and RD29B (ABA signaling

genes) (Chu et al., 2019). One more study figured out that in rice

inoculation with halotolerant Glutamicibacter sp. YD01 increased the

expression of antioxidants such as OsPOX1, OsFeSOD, OsGR2, abiotic

stress related genes (OsWRKY1, OsDREB2), OsHKT1 (related to ionic

balance) and downregulatedOsERF1 (related to ethylene production),

thus enhancing their tolerance to salt stress (Ji et al., 2020). In a

different fascinating research it was found that Pseudomonas

pseudoalcaligenes (SR16) and Bacillus subtilis (SR3) also provide salt

stress tolerance to hydroponically grown soybean seedlings. The

strain SR16 effectively reduced 100mM NaCl stress by increasing

the total protein, proline content, and activities of various

antioxidants (SOD, CAT, APX, POD, PAL and PPO) (Yasmin

et al., 2020). Recent findings suggest that soil application of

Kosakonia sacchari improved mung bean performance by reducing

the level of oxidative stress markers such as proline, MDA, H2O2

content, antioxidants like APX, CAT, SOD and GR. In contrast, the

level of antioxidant metabolites i.e. ascorbic acid and glutathione

increases in the foliage of treated plants which in turn reduced the

toxicity of NaCl (Shahid et al., 2021). Moreover, inoculation of salt-

tolerant PGPR Acinetobacter johnsonii provided tolerance to maize by

downregulating SOD, CAT, proline and MDA content. It was

observed that rhizobacterial inoculation improved dehydrogenase,

alkaline phosphatase, acid phosphatase, urease and enzyme activity in

the soil. Improved microbes mediated soil enzyme activities plays an

important role in balancing nutrient profile, plant growth under salt

stress (Shabaan et al., 2022). Additional evidence demonstrates role of

halotolerant Bacillus strains (NMCN-1 and LLCG23) in mitigating

200mM salinity stress in wheat. Application of both inoculants
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significantly downregulated the expression of ABA- response

element (ABARE), 4-Hydroxy-2-nonenal (4-HNE), whereas the

P5CS gene was found to be upregulated. This clearly illustrates that

these halophilic microbes regulate key stress signaling pathways (ABA

synthesis, MDA and proline production) that subsequently lowered

the effect of stress (Ayaz et al., 2022). From the cited literature

(Table 1), it is evident that PGPR could alleviate salt stress by

improving soil health, nutrient uptake, hormone production,

antioxidant activity, and stress- responsive genes.

From the above studies it is clear that bacterial production of ACC

deaminase (lowers ethylene concentration), enhanced production of a

range of antioxidants (scavenges ROS) and higher production of

proline (signaling molecule) in stress affected plants are some of the

common mechanisms operate in PGPR treated plants to enable them

combat temperature, drought and salinity stress. Hence, application

of PGPR based biostimulants with proven PGP traits could be an

ecofriendly sustainable means to boost crop productivity under single

or combined abiotic stress.
Role of PGPR-based biostimulants in
imparting tolerance against disease
(biotic stress)

Plant resistance against pathogens is generally based upon two

mechanisms i.e. induced systemic resistance (ISR) and systemic

acquired resistance (SAR). ISR is mainly mediated by beneficial

microorganisms through root colonization, root immunity

modulation and production of certain elicitors like siderophores,

polysaccharides, VOCs, plant hormones, enzymes etc. whereas SAR

is defined as the plant’s acquired or adaptive resistance (Olowe et al.,

2020; Hamid et al., 2021). Both ISR and SAR resistance mechanism is

effective against wide group of pests and pathogens (Vlot et al., 2021;

Meena et al., 2022; Yu et al., 2022). Though numerous studies

reported that PGPR modulates various physiological, biochemical

and molecular processes in plants and helps their survival under

pathogens attack (Olowe et al., 2020; Castiglione et al., 2021; Yu et al.,

2022), but the core mechanism of action is not fully understood. The

results obtained through systematic studies indicate that induction of

resistance against multiple pathogens including virus, fungi, bacteria

rely on combined mechanisms that may work simultaneously (Yu

et al., 2022). It includes induction of specific defense response genes/

enzymes like ROS scavengers/antioxidants such as (CAT, APX,

guaiacol peroxidase (GPX), GR, POD and SOD), accumulation of

phytohormones (JA, ET, SA, GA and auxin), glucanases, chitinases,

sugars, osmolytes, pathogenesis related proteins (PR) and secondary

metabolites which in turn are directly involved in controlling growth

and proliferation of pathogen [Figures 1A, B; (Baxter et al., 2014;

Pieterse et al., 2014; Conrath et al., 2015; Camejo et al., 2016; Li et al.,

2016; Guo et al., 2019; Ebrahimi et al., 2020; Olowe et al., 2020; da

Silva et al., 2021; Luo et al., 2022)].

From the wide group of PGPR, Bacillus sp. has been considered as

an excellent agent for controlling pathogens attack in various plants

such as tomato, banana, tobacco, rice, wheat, cucumber, watermelon,

cotton (Saechow et al., 2018; Gamez et al., 2019; Wu et al., 2019; Fu

et al., 2020; Jiao et al., 2020; Dimopoulou et al., 2021; Kazerooni et al.,
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TABLE 1 PGPRs along with their mode of action in combating abiotic stress.

PGPR Strain Host
Plant

Stress Mechanism of action References

Pseudomonas aeruginosa Sorghum Heat Increased proline, chlorophyll, sugar, amino acids, and protein content Ali et al. (2009)

Rhizobium, Pseudomonas Maize Salinity Decreased electrolyte leakage and increased proline, relative water content Bano and
Fatima (2009)

Pseudomonas putida Wheat Heat Reduced membrane injury and the level of antioxidant enzymes such as SOD,
APX and CAT

Ali et al. (2011)

Pseudomonas fluorescens, Bacillus subtilis Green
Gram

Water Enhanced activity of CAT1 and POD Saravanakumar
et al. (2011)

Pseudomonas chlororaphis Arabidopsis
thaliana

Drought Up-regulation of genes such as NIT1 (associated with plant growth regulators),
Atcor15a (associated with ABA), RD21a, KIC (calcium binding protein)

Cho et al.
(2011)

Pseudomonas koreensis, Pseudomonas
fluorescens, Pseudomonas jessenii

Wheat Cold Increased relative water content, anthocyanin, proline, total phenolics, starch
and reduced electrolyte leakage

Mishra et al.
(2011)

Bacillus licheniformis Pepper Drought Increased content of stress proteins i.e. Cadhn, VA, sHSP and CaPR-10 Lim and Kim
(2013)

Bacillus pumilus, Bacillus firmus Potato Salinity/
Drought

Enhanced mRNA expression related to ROS scavenging enzymes (SOD, GR,
CAT, DHAR and APX) and proline level

Gururani et al.
(2013)

Bacillus megaterium, Bacillus subtilis Wheat/
Barley

Cold Significant reduction in the level of ROS and antioxidant enzyme (SOD, POD
and CAT)

Turan et al.
(2013)

Pseudomonas aeruginosa Mung bean Drought Increased expression of CAT, POX, SOD and drought responsive genes
(DREB2A, CAT1 and DHN)

Sarma and
Saikia (2014)

Bacillus amyloliquefaciens, Azospirillum
brasilense

Wheat Heat Increased level of DHAR (Dehydroascorbate reductase), MDHAR (Mono-
dehydroascorbate reductase) and GR whereas decreased APX and modulated
expression of SAMS1, HSP17.8

Abd El-Daim
et al. (2014)

Enterobacter sp. Arabidopsis Salinity Up-regulated expression of salt stress responsive genes such as DREB2b,
RD29A, RD29B, and RAB18, proline biosynthesis genes (P5CS1 and P5CS2),
MPK signaling genes (MPK3 and MPK6)

Kim et al.
(2014)

Tomato Enhanced expression of APX

Proteus penneri, Pseudomonas aeruginosa,
Alcaligenes faecalis

Maize Drought Increased relative water content, sugar, decreased proline, antioxidant enzymes
(SOD, POD and CAT)

Naseem and
Bano (2014)

Burkholderia phytofirmans Arabidopsis
thaliana

Salinity Enhancement of the proline and transcript level of ABA signaling genes (RD29,
RD29B), APX2 (antioxidant related), GYLI7 (glyoxylate pathway), decreased
expression of LOX2 (related to JA)

Pinedo et al.
(2015)

Bacillus megaterium, Enterobacter sp. Okra Salinity Increased ROS scavenging enzymes (CAT, SOD, APX, GR and DHAR) Habib et al.
(2016)

Bacillus pumilus Rice Salinity Augmented activity of antioxidants such as (SOD, POD and CAT) Khan et al.
(2016)

Dietzia natronolimnaea Wheat Salinity Enhanced expression of salt stress tolerant (TaST), Salt Overly Sensitive (SOS)
related genes (SOS1 and SOS4), antioxidant enzymes genes (APX, MnSOD,
CAT, POD, GPX and GR) and ABA signaling (TaABARE and TaOPR1)

Bharti et al.
(2016)

Pseudomonas frederiksbergensis,
Flavobacterium glaciei, Pseudomonas
vancouverensis

Tomato Cold Increased proline content and, enhanced antioxidant enzymes such as SOD,
APX and GSH

Subramanian
et al. (2016)

Bacillus aryabhattai Soybean Heat Enhanced levels of phytohormones IAA, JA, GA, ABA, antioxidants (CAT and
SOD), but CK decreased

Park et al.
(2017)

Bacillus megaterium Arabidopsis Salinity Enhanced level of CYP94B3 (responsible of JA-Ile catabolism), MDHAR and
ATP synthase

Erice et al.
(2017)

Bacillus subtilis Wheat Salinity Decreased proline, MDA content whereas SA and water storage capacity
enhanced

Lastochkina
et al. (2017)

Bacillus amyloliquefaciens Arabidopsis
thaliana

Salinity Up-regulation of genes such as GST and POX (antioxidant responsive), ACS7,
ACS2, ACS8, and ACS11(ET signaling), LOX (JA signaling) downregulated
NCED3, NCED4, ABI1 and MARD1 (ABA signaling)

Liu et al. (2017)

(Continued)
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TABLE 1 Continued

PGPR Strain Host
Plant

Stress Mechanism of action References

Pseudomonas chlororaphis, Pseudomonas
extremorientalis

Tomato Salinity Decreased H2O2, APX, GR level with simultaneous increase in SOD and CAT
activity

Egamberdieva
et al. (2017)

Azospirillum brasilense, Herbaspirillum
seropedicae

Maize Drought Decreased expression of ZmVP14 (involved in the biosynthesis of ABA),
proline, ET content but MDA level increased

Curá et al.
(2017)

Pseudomonas putida Finger
Millet

Drought Increased activities of SOD, CAT, APX and GPX antioxidants Chandra et al.
(2018)

Paraburkholderia phytofirmans Tomato Heat Augmented chlorophyll content, gas exchange, expression of APX2 and CAT1.
No significant change was observed in SOD, CHI3, TIV1, Frk2, Hxk1, Hxk2,
RbcL and RbcS level

Issa et al.
(2018)

Ochrobactrum pseudogrignonense,
Pseudomonas sp., Bacillus subtilis

Black gram/
Pea

Drought Downregulated expression of ACO, increased proline content and, antioxidant
enzymes (CAT and POD)

Saikia et al.
(2018)

Pseudomonas fragi, Pseudomonas
chloropaphis, Pseudomonas fluorescens,
Brevibacterium frigoritolerans

Bean Cold Decreased MDA, ROS (O2 and H2O2) and POX level whereas SOD, CAT, APX
and GR activity increased

Tiryaki et al.
(2018)

Arthrobacter woluwensis Soybean Salinity Upregulated expression of salt stress response genes such as GmLAXs and
GmST, Low level of ABA and JA. Significant change in the activities of PPO
and POD was also observed

Khan et al.
(2019a)

Ochrobactrum pseudogrignonense Wheat Salinity Increased activity of APOX, GR, SOD and germin-like proteins, whereas no
significant change in the level of POX and CAT

Chakraborty
et al. (2019)

Bacillus pumilus Wheat Salinity Reduced antioxidant enzyme (CAT, SOD, GR) activities, proline and MDA
content

Ansari et al.
(2019)

Bacillus velezensis Wheat Heat/
Cold/
Drought

Modulated various stress related proteins, antioxidant activity, amino acids
metabolic pathways and accumulation of g-aminobutyric acid (GABA)

Abd El-Daim
et al. (2019)

Pseudomonas fluorescens, Bacillus
amyloliquefaciens

Peppermint Drought Increased total phenolic content, antioxidant enzymes (SOD and POX), reduced
proline and MDA content

Chiappero et al.
(2019)

Bacillus sp. Guinea
grass

Drought Reduced proline accumulation GR activity and increased APX level Moreno-Galván
et al. (2020)

Cupriavidus necator, Pseudomonas
fluorescens

Maize Drought Increased nitrogen and phosphorous use efficiency Pereira et al.
(2020)

Azotobacter chroococcum, Azospirillum
brasilense

Peppermint Drought Augmented ABA, SOD, proteins, soluble sugars, phenolic, flavonoid and
oxygenated monoterpenes, but other antioxidant enzymes GPX and CAT
activity decreased

Asghari et al.
(2020)

Kocuria rhizophila Maize Salinity Increased antioxidant enzyme (APX, GPX and GR), proline and expression of
ZmGR1, ZmAPX (encoding antioxidants), ZmNHX1, ZmNHX2, ZmNHX3,
ZmWRKY58 and ZmDREB2A (salt tolerance genes), whereas decreased MDA

Li et al. (2020)

Bacillus cereus Soybean Heat Increased APX, SOD, GSH, proline, expression of GmLAX3, GmAKT2 (genes
involved in the regulation of the ABA). Decreased MDA content and
expression of GmHSP (heat shock protein)

Khan et al.
(2020)

Bacillus cereus Tomato Heat Increased proline content, and antioxidant enzymes (SOD, POD and CAT) Mukhtar et al.
(2020)

Bacillus cereus, Serratia marcescens,
Pseudomonas aeruginosa

Wheat Salinity Decreased antioxidant enzymes (SOD, CAT and POX), non-enzymatic
antioxidants (GSH, AsA, and a-TOC)

Desoky et al.
(2020)

Bacillus sp. Rye grass Drought Increased proline, antioxidant enzymes (CAT and POD), decreased MDA,
relative membrane permeability and H2O2 accumulation

He et al. (2021)

Bacillus sonorensis, Bacillus cereus, Bacillus
subtilis, Bacillus safensis, Bacillus
paramycoides, Bacillus tequilensis,
Brevibacillus sp.

Cotton Salinity Increased absorption of K+, while decreased absorption of Na+ and,
maintenance of the proline content, Chlorophyll Content Index (CCI), Relative
Water Content (RWC) and Relative Electrolyte Leakage (EL)

Saleem et al.
(2021b)

Pseudomonas putida, Alcaligenes sp.,
Klebsiella sp., Pseudomonas cedrina

Alfalfa Salinity Reduced proline, MDA and H2O2 level Tirry et al.
(2021)

(Continued)
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2021; Luo et al., 2022). Bacillus amyloliquefaciens (SN13) is a bio-

protective agent against Rhizoctonia solani (causative agent of sheath

blight disease), which enhances defense response in the rice plants.

The colonized plants showed alteration in phytohormone content

(increased level of SA, ABA and GA), and MAPKinases (increased

level of phospholipase D and serine-threonine protein kinases)

signaling pathways that helped in controlling disease proliferation.

Apart from these, SN13 treatment also modulated the production of

secondary metabolites (quinazoline) and ROS regulators (arabitol,

proline and mannitol, sugars like b-D-glucopyranose, fructopyranose,
and myoinositol, ferric reducatse glutathione S-transferase and

peroxidase precursor) (Srivastava et al., 2016). Moreover, cotton

(Gossypium hirsutum) plants treated with blend of Bacillus spp.

enhanced secretion of gossypol (allelochemical) and JA (defense

related phytohormone) which in turn reduced larval feeding of

Spodoptera exigua (beet armyworm). In addition, treated cotton

plants exhibited increased expression of genes involved in synthesis

of allelochemicals i.e. (+)-d-cadinene synthase (CAD1 gene family,

including Cad1- C1, Cad1-A, Cad1-C14 and Cdn-C3) and jasmonates

(allene oxide synthase) (GhAOS), 13-lipoxygenase (GhLOX1) and 12-

oxo-phytodienoicacid reductase 3 (GhOPR3 [Figure 1A; (Zebelo et al.,

2016)]. Another rhizobacterium strain Bacillus amyloliquefaciens

SQRT3 strongly inhibited tomato bacterial wilt disease (caused by

Ralstonia solanacearum). The application of SQRT3 increased the

expression of POD, PPO, stress marker genes like proteinase inhibitor

2 (PIN2) (related to JA pathway) and pathogenesis related protein-1a

(PR-1a) (related to SA pathway) and Omsotin-like (related to ET

pathway) (Chunyu et al., 2017). Likewise, Bacillus velezensis enhanced

resistance of pepper plants against Botrytis cinerea BC1301 (causative

agent of gray mold disease) by triggering antioxidants SOD, CAT,

POD and SA- mediated defense signaling genes namely non-expressor

of pathogenesis-related genes 1 (NPR1), pathogenesis related protein-1

(PR1) and peroxidase. However, no effect was observed in the

expression of proteinase inhibitor 2 (PIN2) and (TIN1) genes (Jiang

et al., 2018). In another study, anti-pathogenic role of Bacillus

amyloliquefaciens Ba13 against tomato yellow leaf curl virus

(TYLCV) was observed. It was found that inoculation of this

beneficial microbe improved tomato growth by elevating the

expression of systemic resistance related genes including

pathogenesis related protein-1, 2, 3 (PR1, PR2 and PR3), chitinase,

PAL, POD, PPO, and b-1,3-glucanase (Guo et al., 2019).
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Furthermore, an interesting work underline the effectiveness of

Bacillus amyloliquefaciens YN201732 against tobacco powdery

mildew disease (caused by Erysiphe cichoracearum). Results

highlight that bacterial treatment inhibited pathogenic fungi growth

over tobacco cultivar by increasing the expression of disease-related

genes like non-expressor of pathogenesis-related genes 1 (NPR1), plant

defensin 1.2 (PDF1.2), chitinase (chit) and PPO, whereas, no

significant change was observed in POD and PAL activity (Jiao

et al., 2020). Also, Enterobacter asburiae BQ9 imparted tolerance

against tomato yellow leaf curl virus by enhancing the expression of

antioxidant enzymes such as POD, CAT, PAL and SOD; defense-

related genes i.e. pathogenesis related protein-1a, 1b (PR1a and PR1b)

(Li et al., 2016). These findings illustrate that treatment with PGPR

may activate biochemical and molecular changes to restrict

pathogenic invasions in plants. Additionally, in Nicotiana tabacum

cv. plants Peanibacillus lentimorbus B-30488 inoculation reduced

cucumber mosaic virus (CMV) RNA accumulation by ~12 fold

(91%). This ISR was linked with an increase in expression of stress

related genes Brassinosteroid signaling kinase 1 (BR-SK1), RNA

dependent RNA polymerase 2 (RdRP2), zinc finger – homeodomain

(ZF-HD), pathogenesis related protein 1(PR1), b-1,3-glucanase (Gluc),
asparagine synthetase (AsSyn), tetrahydrocannabinolic acid synthase

(TCAS) and antioxidant enzyme (APX, GPX, SOD and CAT) (Kumar

et al., 2016). Similarly, Peanibacillus lentimorbus B-30488 also

provides resistance against southern blight (caused by Scelerotium

rolfsii) disease in tomato. The treated plants showed alteration of the

ET pathway by significantly suppressing 1-aminocyclopropane-1-

carboxylate synthase (ACC synthase) and oxidase (ACO) enzymes,

and antioxidant enzyme activities (APX, GPX and SOD); whereas

systemic tolerance was associated with expression of pathogenesis –

related protein -1, 2A, 4, 7 (PR1, PR2A, PR4 and PR7), CAT, chitinase

(CHI3 and CHI9), b-1, 3- glucanase (GLU), calmodulin and PPO

(Dixit et al., 2016). Another report elucidates the role of Pseudomonas

aeruginosa in controlling fungus (Botrytis cinerea) infection in

Brassica napus by inducing the expression of transcription factor

(BnWRKY33),mitogen-activated protein kinase 3, 4 (BnMPK3 and

BnMPK4) and pathogenesis related protein-1 and 4 (BnPR1 and

BnPR4) (Monnier et al., 2018).

Apart from this, some PGPRs also impart resistance against

pathogens by secreting anti-microbial compounds (Hamid et al.,

2021; Ji et al., 2021). For example, different Bacillus strains such as
TABLE 1 Continued

PGPR Strain Host
Plant

Stress Mechanism of action References

Bacillus megaterium, Bacillus licheniformis Wheat Drought Increased proline, and antioxidant enzymes (SOD, CAT, APX, POD and GR) Rashid et al.
(2022)

Bacillus subtilis, Bacillus pumilus Cotton Salinity Modulated the ascorbate, aldarate, glyoxylate, dicarboxylate metabolism
pathways, and pentose, glucuronate interconversions pathway

Akbar et al.
(2022)

Bacillus subtilis, Pseudomonas sp. Brinjal Salinity Increased level of free polyamines (spermine, spermidine, puterscine),
expression of psbD, GR, GST and Protease I/II whereas lipases level decreased

Mokabel et al.
(2022)

Bacillus thuringiensis PM25 Maize Salinity Increased antioxidants (APX, POD, SOD, AsA), total soluble sugars, proteins,
flavonoids, osmolytes (free amino acids, glycine betaine and proline)

Ali et al. (2022)

Bacillus butanolivorans Pepper Drought Increased expression of P5CS, P5CR (proline synthesis genes), Cadhn, sHSP
(drought-sensitive gene), bZIP1 (ABA-related genes), LOX, COI1 (JA-related
genes), POX, glutathione, but decreased CAT and SOD

Kim et al.
(2022)
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Bacillus velezensis QST713, Bacillus velezensis (C2), Bacillus velezensis

OEE1, Bacillus subtilis release antifungal compounds such as

lipopeptides (fengycin, bacillomycin and surfactin), polyketides

(bacillaene, macrolactin and difficidin), dipeptide bacilysin,

antifungal VOCs (phenylethyl alcohol, benzeneacetic acid,

benzaldehyde, 1-decene, tetradecane) and lytic enzymes (chitinase,

protease and b-glucanase), 3-indolylacetonitrile and suppresses green

mold (caused by Trichoderma aggressivum f. europaeum),

Verticillium wilt disease (caused by Verticillium dahliae), Septoria

tritici blotch (caused by Zymoseptoria tritici), in button mushroom,

tomato, olive, wheat (Mejri et al., 2018; Pandin et al., 2018; Dhouib

et al., 2019; Azabou et al., 2020). Moreover, a research illustrated that

application of Herbaspirillum seropedicae (BAC) suppressed

Xanthomonas euvesicatoria (Xe), a causative agent of bacterial spot

disease in ‘Micro-Tom’ Solanum lycopersicum L by downscaling the

concentration of various organic acids such as oxalic acid, succinic

acid, citric acid that enhances pathogens virulence (da Silva et al.,

2021). The compiled studies (Table 2) clearly illustrate that PGPRs

help in imparting tolerance against pathogen by activating pathway(s)

that leads to production of array of defense related metabolites

in plants.
Developing stress resilient crops

To full fill the goal of providing nutritious food for an increasing

population, it is critical to develop resilient crops which can

withstand the pressure of climate change. Scientists are

strategizing, investigating, and discovering key genes which can

aid in developing new transgenic crops tolerant to biotic and abiotic

stresses without compromising on productivity. Wheat and rice are

major staple crops grown across different regions of the world.

Hence a lot of efforts are being made to develop better varieties

through the classical breeding approach and newer biotechnological

tools. The transgenic approach is one of the common techniques for

inserting a gene of interest to achieve the desired trait. Among the

transgenic approach, one of the studies illustrated that mutated

transcription factor (HaHB4) from sunflower belonging to

homeodomain-leucine zipper family (HD-Zip) improved water

use efficiency and productivity of wheat (González et al., 2019). In

another study introduction of beta gene-encoding choline

dehydrogenase enhanced the glycine betaine content making the

transformed wheat tolerant to drought (He et al., 2011). Similarly, in

rice introduction of transcription factor PeSNAC-1 lead to increased

production of proline, thereby making the plant tolerant to salinity

and drought (Hou et al., 2020). Also, insertion of gene MYB49 lead

to increased POD, SOD activity, chlorophyll content offering better

resistance to drought, salinity and pathogen Phytophthora infestans

in tomato (Cui et al., 2018). The transcription factor, SlDREB3

increased membrane stability and prevented ROS from imparting

tolerance to chilling (Wang et al., 2019). The above studies clearly

suggest that modifications at the genetic level either by inserting

specific genes; altering transcription factor families like WRKY,

DREB, MYB, NAC and ERF and modifying signal transduction

genes significantly enhances the tolerance of plants to various

stresses (Khan et al., 2019d). Similar physiological changes can

be introduced in target plants by applying appropriate PGPRs
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(Tables 1, 2 and Figure 2). In wheat, over expression of

TaWRKY2 (drought stress tolerance gene) improved drought

tolerance by withholding water for 8-10 days before re-watering

and enhancing proline content compared to wild type plant (Gao

et al., 2018). Similarly, application of Azospirillum lipoferum

significantly augmented the proline content in wheat seedling

resulting in higher drought tolerance by withholding water for 10

days before watering (Kanwal et al., 2017). Engineering of E. coli

cold shock protein (CspA and CspB) genes to convert it into plant-

preferred codon namely SeCspA and SeCspB resulted in better stress

tolerance potential by lowering MDA content, preventing water

loss, reduced Na+ level and higher levels of chlorophyll, proline

content under drought and salt stresses (200 mM NaCl) compared

to the control wheat plants (Yu et al., 2017), similar response was

evoked by endophytic strain Bacillus subtilis in wheat wherein lower

MDA level was observed in plants grown under (340 mM NaCl)

compared to control counter parts (Lastochkina et al., 2017).

Cloning of Arabidopsis WRKY30 (AtWRKY30) transcription

factor followed by its over-expression in wheat seedling subjected

to drought stress by with-holding water for 12 days exhibited

enhanced activities of antioxidant enzymes CAT, SOD, POX and

APX (El-Esawi et al., 2019). Similar observation was made by

(Akhtar et al., 2021) wherein antioxidant enzyme namely SOD,

CAT and POX increased upon treating wheat with Bacillus sp.,

Azospirillum lipoferum and Azospirillum brasilense and subjected to

drought stress by withholding water to 40% field capacity.

Overexpression of TaFER-5B improved multiple stress including

heat stress tolerance in wheat induced by keeping 10 days old

seedling under 40°C, the protective mechanism was attributed to

ROS scavenging activity (Zang et al., 2017). Similarly, modulation in

expression of heat shock proteins (HSPs) was noticed in wheat seeds

primed with Bacillus safensis. The treated plants tolerated heat

shock (40°C) without generation of excessive ROS (Sarkar et al.,

2021). Introduction of HVA1 (ABA-responsive barley gene) in

wheat improved water use efficiency subjected to drought stress in

wheat (Sivamani et al., 2000). Similarly, application of bacteria

based bioformulation improved relative water content and range

of antioxidants of wheat seedlings experiencing drought stress (40%

the field capacity) (Akhtar et al., 2021). Several scientific studies

conclusively indicate that applications of PGPRs could lead to

development of resilient plants tolerant to sudden fluctuations in

the weather, rise in temperature, salinity, drought, disease and insect

attack. The association between plant and rhizospheric soil

microbes is a functionally dynamic association and changes in the

environment are perceived even at miniscule level triggering a

cascade of appropriate stress-related responses making the plant

tolerant to perceived challenges. In spite of beneficial attribute of

transgenic crops, their acceptability for human consumption is still

an issue of concern. Hence, knowledge-based application of the

right PGPR could be a sustainable and ecofriendly approach to

develop stress resilient crops.
Conclusion

A sustainable agriculture system strives to protect the

environment, without compromising crop yield to provide sufficient
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food for the growing population. In order to provide adequate food

for all, approaches like conventional breeding and genetic engineering

have been extensively used for crop improvement. But these processes

are costly, tedious, labor intensive and raise safety issues. Further, to

improve crop productivity, heavy doses of chemical fertilizers,

pesticides, and fungicides have been rampantly used which lead to

large scale deterioration of the environment and soil health ultimately
Frontiers in Plant Science 11
impacting human health. Hence, ecofriendly sustainable means are

being explored to increase plant productivity and in this respect

application of microbial based biostimulants in agriculture is one of

the promising means. PGPR modulates physiological responses in

crops and equips them to survive under abiotic and biotic stresses.

The majority of these responses are common to both biotic and

abiotic challenges implying that the impact of PGPR in plant systems
TABLE 2 PGPRs along with their mode of action in combating biotic stress.

PGPR Strain Host
Plant

Pathogen Disease Mechanism of action Benefits References

Bacillus
amyloliquefaciens
(SN13)

Rice Rhizoctonia
solani

Sheath
blight

Target phytohormones (SA, ABA, GA), MAPK,
ROS signaling. Increased secondary metabolite
production

Reduces fungal dry mass,
number, size, length and
diameter of spot lesions

Srivastava
et al. (2016)

Bacillus sp. Cotton Spodoptera
exigua

– Increased gossypol and JA production Significant reduction in larvae
mortality rate

Zebelo et al.
(2016)

Enterobacter
asburiae BQ9

Tomato Tomato
yellow leaf
curl virus

– Enhanced expression of PR1a, PR1b, POD, CAT,
POL and SOD

Milder disease symptoms
(stunting, yellowing, curling
of leaves)

Li et al.
(2016)

Peanibacillus
lentimorbus B-
30488

Tobacco
cv.

Cucumber
mosaic virus

– Targets PR genes and antioxidant enzymes Reduces CMV RNA
accumulation with 20-75%
viral elimination rate

Kumar et al.
(2016)

Peanibacillus
lentimorbus B-
30488

Tomato Scelerotium
rolfsii

Southern
blight

Increased expression of PR genes but down-
regulation of antioxidant enzymes and ethylene
signaling

Reduces fungal dry biomass,
mycelia growth

Dixit et al.
(2016)

Bacillus
amyloliquefaciens
SQRT3

Tomato Ralstonia
solanacearum

Bacterial
wilt

Modulates JA/ET/SA hormonal signaling and POD,
PPO expression

Suppresses disease incidence
with 84.1% biocontrol efficacy

Chunyu et al.
(2017)

Bacillus subtilis Wheat Zymoseptoria
tritici

Septoria
tritici blotch

Produces lipopeptides such as mycosubtilin,
surfactin, fengycin

Reduces mycelia growth Mejri et al.
(2018)

Bacillus velezensis Pepper Botrytis
cinerea

Gray mold Stimulates SA signaling genes and antioxidants
(SOD, CAT and POD)

Suppresses sporulation,
mycelia growth

Jiang et al.
(2018)

Pseudomonas
aeruginosa

Rapeseed Botrytis
cinerea

Gray mold Activates MAPK and PR genes Reduces pathogenic lesions
size, mycelium development

Monnier et al.
(2018)

Bacillus velezensis
QST713

Button
mushroom

Trichoderma
aggressivum f.
europaeum

Green mold Produces antifungal secondary metabolites
(macrolactin, bacillaene, bacillomycin D, fengycin,
surfactin,bacilysin, subtilin- like/ericin, difficidin
and bacillibactin (siderophore)

Inhibits fungus sporulation,
mycelium growth

Pandin et al.
(2018)

Bacillus
amyloliquefaciens
Ba13

Tomato Tomato
yellow leaf
curl virus

– Induces expression of resistance related genes and
defense enzymes

Milder disease symptoms
(stunting, yellowing, curling
of leaves) with decrease in
virus load in leaves

Guo et al.
(2019)

Bacillus velezensis
OEE1

Olive Verticillium
dahliae

Verticillium
wilt

Produces antifungal secondary metabolites/
lipopeptides (surfactin A, iturin C
and D, bacillomycin C, fengycin A, B and D,
plipastatin, macrolactin, bacillaene, difficidin and
bacilysin)

Inhibits conidia,
microsclerotia germination
(92% inhibition)

Azabou et al.
(2020)

Bacillus velezensis
(C2)

Tomato Verticillium
dahliae

Verticillium
wilt

Production of metabolites, lipopeptides and lytic
enzymes

Significant reduction in
disease incidence (70.43 ±
7.08%)

Dhouib et al.
(2019)

Bacillus
amyloliquefaciens
YN201732

Tobacco Erysiphe
cichoracearum

Tobacco
powdery
mildew

Promotes the expression of PPO and chitinases,
also triggers JA/ET signaling

Inhibits conidia germination
(86.11%)

Jiao et al.
(2020)

Herbaspirillum
seropedicae

Micro-
Tom
Tomato

Xanthomonas
euvesicatoria

Bacterial
spot

Reduces the concentration of organic acids 50% reduction in disease
severity

da Silva et al.
(2021)
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is broad-based, interaction is multifarious and beneficial in more than

one way. Further studies are necessary to unravel the underlying

mechanism of plant-microbe interactions and to understand the

signal transduction network in an integrated perspective. Holistic

information about plant-PGPR functionality will pave the way for

developing novel microbial based biostimulants for boosting crop

yield for future generations in a sustainable manner.
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