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Life cycle inventory of
Miscanthus production on a
commercial farm in the US

Paul R. Adler*

United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Pasture Systems
and Watershed Management Research Unit, University Park, PA, United States
There has been considerable interest in use of Miscanthus (Miscanthus x

giganteus) as a feedstock for bioenergy production due to its potential to

reduce greenhouse gas emissions associated with cellulosic feedstock

production and more recently for alternative uses as a biomass crop. To date,

data on Miscanthus production in the US has been based on small scale research

plots due to the lack of commercial scale production fields. Research plot yields

are often much higher than commercial fields for a variety of reasons including

reduced spatial variability and location on better quality farmland. The objectives

of this study were to quantify the inputs for production of Miscanthus at the

commercial farm scale, evaluating methods to characterize fuel use for

establishment and management of Miscanthus production and using satellite

data to characterize spatial yield variation of production fields. We logged energy

use on agricultural machinery fromMiscanthus production planted onmore than

1000 ha of land and modeled N2O emissions and changes in soil carbon using

DayCent. Although fuel use was higher for land preparation in fields with

perennial vegetation, fuel to harvest Miscanthus dominated greenhouse gas

(GHG) emissions (>90%) from agriculture machinery for crop management. The

N2O emissions and changes in soil carbon were the largest source and sink of

GHG emissions associated with Miscanthus production, respectively. Although ~

50% of the established lands had Miscanthus yields < 5 Mg/ha, yields needed

to be > 5 Mg/ha for DSOC to be positive. Given the large impact of yield on

DSOC, net GHG for Miscanthus production with yields of 5 to 25 Mg/ha ranged

~130 to -260 kg CO2e/Mg biomass. Use of both energy use for Miscanthus

harvest and satellite imagery were good methods to characterize spatial

variability of commercial production fields. This demonstrates the potential to

use this within field yield data to better understand factors driving subfield yield

variability and use of satellite data to quantify early yield predictions.

KEYWORDS

bioenergy, biomass, greenhouse gas emissions (GHG emissions), life cycle assessment -
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(C) sequestration
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Introduction

Biomass crops such as warm-season grasses are being used for

feed, fiber, and fuel. Although commercial scale production of

cellulosic ethanol has been slow to develop, other commercial

scale uses of dedicated biomass crops such as Miscanthus

(Miscanthus x giganteus) have developed, such as a source of

fiber for compostable packaging, combustion, animal bedding,

erosion control, as an absorbent, and fiber supplement for pet

food (http://mfiber.net; https://aggrowtech.com/biomass/).

Marginal and abandoned or idle farmlands could be used for

perennial biomass crop production, providing both economic and

environmental benefits (Field et al., 2008; Richards et al., 2014;

Khanna et al., 2021). Lands enrolled in the Conservation Reserve

Program (CRP) could meet this goal while maintaining the

environmental benefits of the CRP program (Adler et al., 2009);

however, much of this land is in areas of low precipitation, and

yields could be below economic viability.

There are many types of marginal lands (Richards et al., 2014;

Khanna et al., 2021) which can have different effects on the life cycle

assessment (LCA) of biomass feedstock production. While drought

prone siteshave lower switchgrass yields, poorlydrainedsitesmayhave

similar yields to prime lands (Casler et al., 2017), resulting in lower

inputs per unit of production; however, nitrous oxide (N2O) emissions

may be greater on these poorly drained soils (Saha et al., 2017).

Nitrogen (as nitrous oxide (N2O) and greenhouse gas (GHG)

emissions associated with production of N fertilizers) and soil

carbon (C) are the largest source and sink of GHG emissions,

respectively, associated with feedstock productin (Adler et al., 2007;

Adler et al., 2012). For switchgrass production, N2O emissions and

GHG emissions associated with nitrogen (N) fertilizer production

account formore than80%ofGHGemissions (Adler et al., 2012).With

a lower requirement ofN fertilizer (Maughan et al., 2012),Miscanthus

could greatly reduce emissions (Saha et al., 2018) and water quality

impacts (Rau et al., 2019) associated with feedstock production. On

marginal lands with perennial grass vegetation, such as those in CRP,

there is less potential for further sequestration of soil C (Gelfand et al.,

2011). Prior vegetation, soil texture, and climate can all affect GHG

emissions, leading to many options for designing landscapes to

optimize GHG emissions (Field et al., 2018).

Understanding the variation in forage yields across the landscapes

fromfield to subfield is important for cropplacement in the landscapes

to achieve both economic and environmental goals. Unfortunately,

there is still a lack of publicly available yield data at landscape scale in

theUS for biomass crops such asMiscanthus.Most yield data are from

plot scale plantings on research farms rather than marginal lands

where commercial scale entities are planting the crop. Research plot

yields are often much higher than commercial fields for a variety of

reasons including reduced spatial variability [soils, establishment

success] and location on better quality farmland (Wullschleger et al.,

2010). Crop yields vary across the landscape with biophysical factors,

such as climate, topographic attributes, and soils (Maestrini andBasso,

2018). These factors are very heterogeneous across the landscape,

leading to large variations incropyields, bothwithinandbetweenfields

across the landscape.Modeling studies (Miguez et al., 2012; Song et al.,

2015;Daly et al., 2018) and economic and life cycle assessments (Wang
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et al., 2012; Dwivedi et al., 2015; McCalmont et al., 2017a) have been

based on these data, potentially leading to over-estimates of the yield

potential of Miscanthus. Collection of high-resolution field scale yield

data from commercial farms is important to understanding the spatial

and temporal yield variability.

Satellite remote sensing has become an essential tool for

measuring and monitoring terrestrial ecosystems over large areas

because of its wide coverage, high spatial and temporal resolutions,

and consistency (Yuan et al., 2007; Gu and Wylie, 2010). Satellite

imagery has been used to estimate crop biomass yields (Johnson,

2014). In comparison to the commonly used Normalized Difference

Vegetation Index (NDVI), the Enhanced Vegetation Index (EVI)

has been shown to be more linearly correlated and less prone to

saturation at high biomass yields (Jiang et al., 2008). Satellite

imagery at moderate to high temporal and spatial resolutions can

be used to track biomass production at broad spatial scales, and to

identify areas in need of more intensive management intervention.

Monitoring and analysis tools developed for biomass crops can be

applied more widely to perennial and even annual crops.

Therefore, the objective of this study was to conduct life cycle

inventory data for Miscanthus production based on actual

commercial farm scale production inputs and yields. In addition,

to evaluate the performance of the ASABE standard methods

(ASABE, 2011) to characterize fuel use for agricultural farm

machinery. We also evaluated the use of satellite imagery to

characterize subfield Miscanthus cover and biomass yield.
Materials and methods

Site description

Miscanthus production fields were located in Ashtabula County

(Latitude 41.7, Longitude -80.7) in Northeastern Ohio (Figure 1) or

parts of the surrounding 6 counties. The mean annual precipitation

and growing degree days for this production region are shown in

Figure 1 with detailed monthly average temperature and total

precipitation in Table 1. There were ~1,860 ha of Miscanthus under

production. The soils in these production fields are a mixture [Mill silt

loam (Fine-loamy, mixed, superactive, nonacid, mesic Aeric

Epiaquepts), Platea (Fine-silty, mixed, active, mesic Aeric

Fragiaqualfs), and Darien (Fine-loamy, mixed, active, mesic Aeric

Endoaqualfs) silt loam]. They are very deep soils from somewhat to

poorly drained.
Miscanthus establishment

Prior land use history for the initial planting was about 15% row

crop, 35% hay, and 50% idled for > 5 years. Establishment began in

2012 with ~90% established the first year and the remainder in 2013.

Miscanthus (Miscanthus x giganteus (Mxg)) rhizomes were planted at

a density of ~12,500 rhizomes/ha using a 4 row WHL planter (W.H.

Loxton Ltd., UK; https://www.miscanthusplanter.com/) on 76.2 cm

centers. Land preparation depended on prior land use history

(Figure 2), with land idled for more than 5 years requiring brush
frontiersin.org
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TABLE 1 Monthly average of the mean daily temperature and total precipitation from 2012 to 2016 compared with the 30-yr average (1991-2020).

Month 2012 2013 2014 2015 2016 30-yr mean

Mean Air Temp, °C

Jan -1.7 -2.0 -8.1 -7.0 -4.1 -3.7

Feb 0.3 -3.9 -7.8 -12.6 -1.2 -3.0

Mar 8.8 -0.6 -3.3 -1.7 5.0 1.6

Apr 7.0 7.9 8.1 8.1 6.7 8.2

May 16.9 15.5 14.1 16.6 13.7 14.4

Jun 19.4 18.6 19.7 18.6 18.9 19.2

Jul 22.8 21.5 19.5 20.4 21.6 21.3

Aug 19.9 19.4 19.4 19.8 22.6 20.4

Sep 16.1 16.0 16.3 19.2 18.7 17.0

Oct 10.7 11.4 10.9 10.4 12.3 10.8

Nov 3.4 2.9 2.0 7.8 6.6 5.0

Dec 2.1 -1.5 1.2 5.6 -1.5 -0.4

Precipitation, mm

Jan 107.6 59.3 67.4 96.3 45.9 88.8

Feb 48.6 51.7 68.9 61.5 94.1 61.0

Mar 88.5 54.1 59.7 45.2 87.4 80.1

Apr 38.9 84.8 119.4 89.4 86.7 102.0

May 85.6 90.1 106.1 155.3 88.0 96.6

Jun 68.1 245.1 172.6 193.5 59.2 111.4

Jul 69.1 199.7 146.3 68.1 121.8 114.0

Aug 82.9 118.1 128.0 72.5 142.2 95.9

Sep 123.3 92.4 84.8 122.8 146.2 107.8

Oct 202.7 139.2 121.6 95.4 128.6 109.4

Nov 59.0 124.0 82.7 70.4 51.4 94.1

Dec 141.4 99.8 64.8 113.6 135.1 94.2
F
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FIGURE 1

Mean annual precipitation [cm, 30 yr, 1981-2010] and growing degree days (base temperature, 10°C) [30 yr, April 15 to October 15, 1981-2010] of
production region and the US.
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hogging and moldboard plowing, and hayed land requiring 2 passes

with an offset disk. Weed control consisted of a burndown prior to

tillage using Roundup (4.48 kg ai/ha of glyphosate) and preemergence

applicationofDegreeXtra (2.24kgai/haofacetochlor and1.12kgai/ha

of atrazine) in each of the first three years either prior to planting

Miscanthus in the first year or in each of the following two years prior

to Miscanthus emergence in the spring. Although N fertilizer has

shown a yield response in some regions (Maughan et al., 2012), a yield

response was not measured in these fields, so noNwas applied during

production years.
Farm data collection

We logged diesel fuel use on agricultural machinery for land

preparation, establishment, and production of Miscanthus on ~855
Frontiers in Plant Science 04
ha of land using a J1939 Mini Logger™(HEM Data Corporation,

Southfield, MI). The J1939 Mini Logger recorded fuel use as L/s

and was georeferenced allowing identification of field and subfield

location of the agricultural machinery and corresponding biomass

yields. Miscanthus from the 2016 growing season was harvested at

~15 cm height after a killing frost from early winter to spring 2017

prior to regrowth using a Claas Jaguar 930 forage harvester.

Chopped Miscanthus biomass was directly discharged into a

Meyer RT200 Series forage box (Dorchester, WI) pulled by a

Caterpillar Challenger 35 with tracks. Since the J1939 Mini

Logger were not able to be installed on the Caterpillar

Challenger 35, fuel use was calculated using the Nebraska

Tractor Test Laboratory data (NTTL, 1995) assuming it was

operated at 75% load and full throttle on average providing a

fuel use of 35.9 l/h. Total fuel use for harvesting each field was

quantified by summing all fuel use data while the harvester was

within the field boundaries. To characterize spatial Miscanthus

biomass yields, total field fuel use for harvest was indexed using

total field biomass yield to generate an average value of L fuel/Mg

biomass (Figure 3). When this index value was combined with

harvester speed, a field yield map was generated (resolution ~12.5

m2/data point), and data extracted and binned into 0.5 Mg units

and summed over area (Figure 3). To create an example spatial

Miscanthus yield map (Figure 4), the Fishnet tool in ArcGIS Pro

was used to create a 10 m grid. Since the chopping width of the

forage harvester was ~9 m and data collected every second, there

was an average of 8 data points per 10 m grid cell. The Inverse

Distance Weighting (IDW) tool in ArcMap was used to interpolate

a raster surface at 2, 5, and 10 m.

The three-band enhanced vegetation index [EVI] model

described by Jiang et al. (2008) was generated from US Landsat 8

Analysis Ready Data (ARD) surface reflectance imagery from

September 25 2016 at the time of peak Miscanthus biomass. The

average EVI for all fields was regressed against the corresponding

Miscanthus field average biomass yields (Figure 3C).

Google Earth imagery from September 2015 (15 cm resolution)

was used to determine Miscanthus coverage in the fields.

Coordinates from at least six, clearly defined features for each

image were identified, recorded, and used to rectify the imagery

in ArcGIS Desktop 10.5 using the Georeferencing tool (ESRI,

2023a). Once the imagery of all fields was rectified, an

unsupervised classification of the RGB pixel values was performed

using the Iso Cluster Unsupervised Classification tool (ESRI,

2023b). A total of 10 classes were used to group the pixels as

either Miscanthus or non-Miscanthus and each class was manually

assigned to a group. Miscanthus pixels were tabulated to determine

the percent coverage in each field (Figure 3D).
Life cycle assessment

Following ISO (2006) procedures, the life cycle assessment

(LCA) of field operations was conducted to the edge of the field

in two phases: 1) identify all sources of greenhouse gases for the life

cycle inventory (LCI) of Miscanthus production and 2) quantify the

impact of the sources of greenhouse gases on climate by converting
A

B

C

FIGURE 2

Fuel use for land preparation and Miscanthus production. (A) Fuel
use for a single pass of the operation. Harvest includes both the
forage harvester and forage wagon to collect chopped biomass
directly discharged from the forage harvester in the field. (B)
Cumulative fuel use for each operation over the three prior land use
histories encountered: land idled for > 5 years, hayed, and row
cropped. (C) Annual average fuel use over fifteen-year Miscanthus
production cycle.
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the inventory to CO2 equivalents ( l i fe cycle impact

assessment, LCIA).
DayCent model simulations

To quantify changes in soil organic carbon (SOC) and soil N2O

emissions during Miscanthus production for the LCA, we used the

DayCent biogeochemical model (Del Grosso et al., 2012); see Adler

et al. (2018) for more details about the model. DayCent has been

shown to reliably represent plant growth and GHG fluxes for

different biofuel crops including Miscanthus, showing a good

relationship between observed and predicted carbon in both

above and below ground (Davis et al., 2012; Hudiburg et al.,

2015). Daily weather data for Ashtabula County Ohio required to

drive DayCent were acquired from DAYMET (https://

daymet.ornl.gov) and was selected from the 1-km cell that was

closest to the area-weighted geographical center of cropped land.

SSURGO (https://websoilsurvey.sc.egov.usda.gov) was used to

characterize the soil texture from Miscanthus production fields.

Model outputs are sensitive to current SOC levels, which in turn

are influenced by previous vegetation cover and land management.

To acquire reasonable modern SOC levels, about 1788 years of
Frontiers in Plant Science 05
native vegetation followed by plowing and about 220 years of

cropping were simulated. A fire event and plow out of native

forested land was assumed to occur in the year 1788. Historically

accurate cropping systems were simulated, and improved cultivars,

fertilizer applications, and tillage intensity were introduced at

appropriate times. From 1789 to 1965, corn–wheat-grass hay

rotations were common, no N fertilizer was applied, and

conventional tillage was used. From 1966 to 1970, soybean was

introduced and shifted cropping to a corn-soybean rotation with N

fertilizer applied; in response to soil degradation, reduced tillage

methods were adopted. From 1971 to 2010, three different land use

history scenarios were modeled to align with lands planted to

Miscanthus: corn-wheat-soybean rotation using fertilizers and no-

tillage; continuous cool-season hay; and continuous cool-season

hay fields abandoned in 2002 allowing shrubs and trees to re-

establishing into the landscape. To transition from the prior land

use scenario to establish Miscanthus, when following row crops, the

establishment protocol included an application of a non-selective

herbicide and strip rototilling. For continuous hay, the same

management was used as row crops with the addition of two

offset disking events just prior to rototilling. In the final scenario

for abandoned hay fields, the fields were mowed, and moldboard

plowed in addition to the herbicide, disking, and rototilling.
D

A B

C

FIGURE 3

Characterization of Miscanthus yield within and across farm fields from the 2016 growing season: (A) subfield yield and harvested area [circles are
the % harvested area for each 0.5 Mg/ha increment of yield across a total harvested area of ~855 ha], (B) total fuel use for harvest [Claas Jaguar 930
forage harvester only] and total biomass per field, (C) EVI from 30 m Landsat imagery and average field yield, and (D) field average yield and
Miscanthus cover. Field sizes across the 48 different fields ranged from ~3.5 – 48.7 ha with a mean of ~17.8 ha and SD ~10.8 ha.
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Simulations of changes in soil N2O emissions and SOC fluxes

using DayCent were run for 15 years following establishment of

Miscanthus, assuming a prior land use history of hay lands for 40

years. Unharvested Miscanthus residue was ~30% (Figure 5). See

Magenau et al. (2021) for detailed results on harvest height and

biomass yield. SoilN2Oemissionswere calculated as the sumofdirect

and indirect N2O. The direct N2O was the mean annual N2O
Frontiers in Plant Science 06
emissions over the simulation period. To calculate indirect N2O,

we combined DayCent outputs for NO3 leached and N volatilized

with IPCC (de Klein et al., 2006) methodology. IPCC (de Klein et al.,

2006) methodology assumes that 0.75% of NO3-N leached is

eventually denitrified to N2O-N in water ways and that 1% of

volatilized N (NOx+NH3) is deposited on soil and converted to

N2O. N2O emissions were converted to CO2e by assuming that its

global warming potential is 298 times that of CO2 on a mass basis

(Forster et al., 2007). The GWI of diesel (92 g CO2e MJ-1) as

documented by US EPA (2010) and includes end use in a light-

duty internal combustion vehicle. The CO2e emissions associated

with the manufacture of chemical farm inputs (i.e. herbicides) were

fromWest and Marland (2002).
Results

Diesel fuel use for agricultural machinery of individual operations

used for land preparation and Miscanthus establishment and

production ranged from 1 to almost 30 L/ha (Figure 2A). Brush hog

and moldboard plow were only used on land idled for more than 5

years, while offset diskswere alsoused onhay land. Thehighest fuel use

for land preparation and Miscanthus establishment was on land idled

for more than 5 years, ~50 L/ha (Figure 2B), while for hay land it was

~34 L/ha, and when row crops were the prior land use, little tillage was

required leading to a fuel use of ~24 L/ha. Although there were

significant differences in fuel use for land preparation, when fuel use

was annualized over a 15-year time frame, biomass harvest accounted

for ~90-95% (Figure 2C).

Collection of fuel use for establishment and management of

commercial Miscanthus fields demonstrated that the use of ASAE

standard methods was appropriate to quantify fuel use for crop

production. When field measurements of fuel use were compared
A

B

C

FIGURE 4

Spatial yield ranging from 0 to 22 Mg/ha across an example
Miscanthus field with yield increasing with pixel darkness across a
range of pixel resolutions (A) 10 m, (B) 5 m, and (C) 2 m.
FIGURE 5

Relationship between Miscanthus height and percent of total
biomass. Shoots were harvested in October prior to leaf drop.
Segments included stems (~67% of total biomass), leaves (~29%),
and panicles (~4%).
frontiersin.org

https://doi.org/10.3389/fpls.2023.1029141
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Adler 10.3389/fpls.2023.1029141
with those calculated using the ASABE standard methods (ASABE,

2011), they were all within 20% (Table 2). Field measurement of the

second pass of the offset disks and moldboard plow were only one

and two percent higher, respectively, than the ASABE standard

calculations (Table 2). Field measurement of the forage harvester

and first pass of the offset disk were 12 and 17% lower than the

ASABE standard calculations, while the moldboard plow and

second pass of the offset disk were within 2%.

Miscanthus biomass yields were variable within the fields, as

captured by both fuel use for biomass harvest and EVI.

Characterizing the within field yield variability, ~1% of land had

yields greater than 20 Mg/ha, ~18% had yield between 10-20 Mg/ha,

and ~32% yields were between 5-10 Mg/ha (Figure 3A), with the

remainder (~49%) < 5 Mg/ha, three to four years after

establishment. Although Miscanthus biomass yield was variable

both between and within fields, there was a good relationship

between measured field yields and fuel to harvest fields (R2 =

0.85) (Figure 3B) and between measured field yields and EVI (R2

= 0.50) (Figure 3C). Much of the within field biomass yield

variability could be explained by variation in Miscanthus cover

(R2 = 0.56) (Figure 3D). An example of the spatial variability of

Miscanthus yield can be seen in Figure 4, where yields varied from 0

to 22 Mg/ha over a range of data resolutions (2, 5, 10 m).
Frontiers in Plant Science 07
Both N2O emissions and DSOC varied with prior land use

history and Miscanthus yield and whether change was expressed

on a unit area or yield basis (Table 3). N2O emissions decreased

with prior land use history from row crop > hay > idle lands

whether expressed on a unit area or yield bases and increase with

yield on a unit area basis and decrease on a unit yield basis

(Table 3). DSOC increased with prior land use history from row

crop < hay < idle lands whether expressed on a unit area or yield

bases and increase with yield on a unit area basis and yield basis.

When prior land use N2O emissions and DSOC values were

weighted by land area represented by each prior land use history,

the trends were the same as the individual component prior land

use practices. N2O emissions and DSOC increased with

Miscanthus yield on a unit area basis (Figure 6A, B). However,

on a MJ ethanol basis (Figure 6C, D) or Mg biomass basis

(Figure 6E, F), N2O emissions decreased and DSOC increased

with Miscanthus yield. Over the 15-year simulation period,

Miscanthus yield needed to be >5 Mg/ha for DSOC to be

positive. Since N2O emissions and DSOC were the largest

source and sink for greenhouse gas emissions for Miscanthus

production, respectively, and varied with yield, the net GHG

varied with yield being positive for yields < 5 Mg/ha and

negative yields > 10 Mg/ha (Figure 7).
TABLE 3 Comparison of prior land use history on soil N2O emissions and change in soil carbon over a 15-year time period from establishment using
DayCent.

Prior Greenhouse gas Biomass yield (Mg/ha/yr)

land use source/sink Units 5 10 25

Row crop Total N2O (kg CO2e/ha/yr) 325 449 766

(kg CO2e/Mg) 64.1 45.2 30.4

(g CO2e/MJ) 9.17 6.46 4.34

SOC (Mg CO2e/ha/yr) -0.83 1.16 7.83

(kg CO2e/Mg) -164 117 311

(g CO2e/MJ) -23.5 16.7 44.4

Hay Total N2O (kg CO2e/ha/yr) 306 435 754

(kg CO2e/Mg) 60.3 43.8 29.9

(Continued)
front
TABLE 2 Comparison of field measurements of diesel fuel use for land preparation and Miscanthus establishment and production compared with
ASABE standard methods (ASABE, 2011).

Fuel Time Fuel ASABE

efficiency efficiency rate standard

Implement [L/ha] [ha/h] [L/h] (L/h)

Moldboard plow 14.6 1.7 24.6 24.1

Offset disk 1st pass 5.6 3.6 19.8 23.8

Offset disk 2nd pass 5.0 4.2 20.7 20.4

Forage harvester direct cut 18.7 3.3 60.3 68.8
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TABLE 3 Continued

Prior Greenhouse gas Biomass yield (Mg/ha/yr)

(g CO2e/MJ) 8.62 6.25 4.27

DSOC (Mg CO2e/ha/yr) -0.31 1.69 8.37

(kg CO2e/Mg) -61 170 332

(g CO2e/MJ) -8.7 24.3 47.4

Idle > 5 years Total N2O (kg CO2e/ha/yr) 296 426 740

(kg CO2e/Mg) 58.4 42.8 29.3

(g CO2e/MJ) 8.35 6.12 4.19

DSOC (Mg CO2e/ha/yr) 0.50 2.50 9.18

(kg CO2e/Mg) 98 251 364

(g CO2e/MJ) 14.0 35.9 52.0
F
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FIGURE 6

Variability in soil N2O emissions and changes in soil carbon on a unit area, fuel, and biomass basis averaged across the 15-year simulation period.
Values [see Table 3] are area weighted for prior land use history [15% row crop, 35% hay, and 50% idled for > 5 years].
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Discussion

Consistent with other studies of various cropping systems

modeling biogeochemical changes in soil carbon and nitrogen

with crop production (Adler et al., 2007; Wang et al., 2012; Adler

et al., 2018), soil N2O emissions were the largest source, and soil

carbon sequestration the largest sink of greenhouse gas emissions

during Miscanthus production. Modeled soil N2O emissions and

changes in soil carbon were similar with previous field

measurements. The predicted N2O values were in the range

observed in field studies (Holder et al., 2019a; Zeri et al., 2020).

In addition to the soil environment affecting N2O emission in

Miscanthus fields (Saha et al., 2017; Saha et al., 2018), yield may also

be a contributing factor (Figure 6). Yield will vary spatially due to

variation in biophysical factors across and within fields and from

this study, we would expect soil carbon to increase with biomass

yields. It took a relatively long time for soil carbon to gain back loses

during land preparation for Miscanthus production as previously

observed in Holder et al. (2019b). In this study, ~49% of the

harvested area with < 5 Mg/ha biomass may not be sequestering

further SOC (Figure 6B). The changes in SOC predicted in this

study were similar to other studies (Clifton-Brown et al., 2007;

Agostini et al., 2015; McCalmont et al., 2017b; Richter et al., 2015;

Robertson et al., 2017). Within similar climates, we expect soil

carbon to vary with biomass yield, time from establishment, and

prior land use.

Although fuel use was higher for land preparation in fields on

land idled for >5 years or hay lands, than fields with row crops,

greenhouse gas emissions from agricultural machinery were small

compared with soil N2O emissions and DSOC. We have shown this

previously in studies with different cropping systems (Adler et al.,

2007; Adler et al., 2018). Although land preparation including
Frontiers in Plant Science 09
Miscanthus establishment consumed more energy than a single

harvest event, since harvest is an annual event, over a 15-year time

frame, it dominated energy use for Miscanthus production. Fuel to

harvest Miscanthus dominated greenhouse gas (GHG) emissions

from agriculture machinery for Miscanthus establishment and

management. This could be different with annual cropping

systems where land preparation occurs annually in contrast with

perennial cropping systems. This study confirms that using the

ASABE standard methods for estimating diesel fuel use for various

farm operations did a good job estimating field scale fuel use.

For new crops such as Miscanthus where commercial scale

production fields are rare, small plot trials are have been viewed as

the best available data to base and evaluate predictive models and

consequently what they are based on (Miguez et al., 2012; Song

et al., 2015; Daly et al., 2018). In contrast, this study measured

Miscanthus biomass yields on a commercial farm scale. Modeling

studies for Miscanthus over the US (Miguez et al., 2012; Song et al.,

2015; Daly et al., 2018) overestimated the biomass yields in the

region in this study by two to three times. Miscanthus yields on

commercial production fields have been previously quantified in the

UK where on-farm yields averaged ~9 Mg/ha (Richter et al., 2016),

more similar to yields measured in this study. In this study, the

average yield across ~855 ha was ~6.2 Mg/ha, 3-4 years

after establishment.

Understanding the reasons for spatial variability in Miscanthus

yield can help better target the location of production fields. That

wasn’t the focus of this study, but we did observe that Miscanthus

cover was related to biomass yield. Although it wasn’t clear what

caused the poor establishment and spatial yield variation, these soils

are poorly drained and it was thought that was probably the main

limiting factor for productivity. Precipitation during the 2012

establishment year was low, about 60% of the 30-year average for

June and July, progressively making up the deficit over the summer;

the annual precipitation was similar to the long term 30-year

average (Table 1). Richter et al. (2016) also found that soil

moisture was a limiting factor at their site. Although poor

establishment could account for the cover and low yields, gaps

are difficult to repair at commercial scale. Some soil areas were

clearly higher yielding, some areas of poor yield were missing plants

and may have been due to drought during establishment. However

other areas had stunted plants, which is consistent with a

constraining soil environment.

Satellite imagery has potential to capture spatial Miscanthus

biomass yield and better understand yields across biophysical

gradients using field scale yield data. We showed that there was a

good relationship between EVI from Landsat imagery and field

scale Miscanthus biomass yields, supporting the potential

application of using satellite imagery to predict Miscanthus

biomass yields in other regions of the US. Richter et al. (2016)

made a similar observation using NDVI that it did a good job

capturing field scale yields. There was also a good relationship

between fuel use for Miscanthus biomass harvest and field scale

biomass yield. Using fuel use for Miscanthus biomass harvest as a

proxy for within field biomass yields, has the potential for better

understanding subfield spatial yield variability due to biophysical

factors such as topography and soils. Soil properties and topography
FIGURE 7

Life cycle greenhouse gas emissions over a range of Miscanthus
yields during a fifteen-year production cycle are area weighted for
prior land use history [see Figure 6].
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show promise to explain spatial biomass yield variability. In this

region, poorly drained soils seem to drive much of the biomass

yield variability.
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