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Winter wheat is one of the major food crops in China, and timely and effective

early-season identification of winter wheat is crucial for crop yield estimation and

food security. However, traditional winter wheat mapping is based on post-

season identification, which has a lag and relies heavily on sample data. Early-

season identification of winter wheat faces the main difficulties of weak remote

sensing response of the vegetation signal at the early growth stage, difficulty of

acquiring sample data on winter wheat in the current season in real time,

interference of crops in the same period, and limited image resolution. In this

study, an early-season refined mapping method with winter wheat phenology

information as priori knowledge is developed based on the Google Earth Engine

cloud platform by using Sentinel-2 time series data as the main data source;

these data are automated and highly interpretable. The normalized differential

phenology index (NDPI) is adopted to enhance the weak vegetation signal at the

early growth stage of winter wheat, and two winter wheat phenology feature

enhancement indices based on NDPI, namely, wheat phenology differential

index (WPDI) and normalized differential wheat phenology index (NDWPI) are

developed. To address the issue of “ different objects with the same spectra

characteristics” between winter wheat and garlic, a plastic mulched index (PMI) is

established through quantitative spectral analysis based on the differences in

early planting patterns between winter wheat and garlic. The identification

accuracy of the method is 82.64% and 88.76% in the early overwintering and

regreening periods, respectively, These results were consistent with official

statistics (R2 = 0.96 and 0.98, respectively). Generalization analysis

demonstrated the spatiotemporal transferability of the method across different

years and regions. In conclusion, the proposed methodology can obtain highly

precise spatial distribution and planting area information of winter wheat 4_6

months before harvest. It provides theoretical and methodological guidance for

early crop identification and has good scientific research and application value.
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1 Introduction

Food security is critical for the worldwide community, national

economic development, social harmony, and people’s daily lives.

Food security is eliciting increasing attention as a result of

urbanization, global climate change, and the loss of farmland due

to deterioration (Liu et al., 2014; Song et al., 2018). With the rapid

growth of Earth observation data in the past decades, remote

sensing has been widely recognized in informative agricultural

applications because of its advantages of broad spatial coverage,

high revisit frequency, low cost and simple accessibility (Griffiths

et al., 2019; Jin et al., 2019). Remote sensing technology can perform

timely and accurate mapping of crop types with high accuracy, and

it has been proven to be one of the most effective ways to determine

the spatial distribution of crop cultivation (Pan et al., 2012; Griffiths

et al., 2019). Crop identification and crop acreage estimation in

early or in-season can help in crop cultivation management, food

security scenario analysis and related policy formulation and also

have important applications in crop yield forecasting, agricultural

insurance, agricultural subsidies and agricultural restructuring.

Currently, the identification of crop types usually requires the

use of image data on their entire growth period, so the results of

crop distribution maps are often obtained after the season or in the

following year, with a certain delay. For example, the United States

Department of Agriculture Cropland Data Layer (CDL) Dataset is

published about five months after the end of the crop harvest, and

the Agriculture and Agri-Food Canada Annual Crop Inventory

(ACI) is usually published about eight months after harvest (Fisette

et al., 2014; Kussul et al., 2018). Although CDL and ACI datasets

have high accuracy, they both have time delay. Therefore, the

importance of in-season or early-season crop type mapping based

on remote sensing has become a valuable research topic.

The amount of information available for early crop remote

sensing identification is smaller than that for post-season

identification. The first manifestation is the reduction in remote

sensing data, which are limited to the early crop growth time period.

At the early stage of crop growth, the characteristic response on the

remote sensing image of crop growth is not significant due to the

effect of mixed image units caused by vegetation and soil; therefore,

fully exploiting the phenological and spectral information in the

early stage of crop growth can contribute to highly accurate early

crop mapping. Dong et al. (2016) developed a pixel-level rice

mapping method based on the Google Earth Engine (GEE)

platform by using the water signal characteristics at the rice

transplanting stage, and accomplished rice mapping in Northeast

China by using the enhanced vegetation index (EVI) and the land

surface water index (LSWI). Basing on the fact that corn is seeded

earlier than soybean in the United States, Sakamoto et al. (2014)

accomplished mapping and yield calculation for both crops. The

second manifestation is that early identification studies have little

opportunity to obtain sample dates in the current year (Johnson and

Mueller, 2021). A common strategy is to use a migration learning

approach that utilizes sample data from previous years to train the

model and apply it to the current year. Cai et al. (2018) completed

early-season mapping of maize and soybean by using a transfer

learning algorithm based on Landsat time series data. Zhang et al.
Frontiers in Plant Science 02
(2019) adopted artificial neural networks to predict the spatial

distribution of future crop plantings before the start of the

growing season on the basis of historical information and

effectively completed pre-season crop mapping and crop yields

estimation for a normal year.

In addition to the reduction in available remote sensing

information, the spatial resolution of remote sensing images is

another factor that affects identification accuracy. In previous

studies, MODIS data were the main data source for crop

mapping in large regions. Hao et al. (2015) employed MODIS

time series data to investigate the effect of time length on crop

mapping by using Kansas, USA, as the study area and achieved high

crop identification accuracy after five months of the sowing period.

However, most of China’s cultivated land is fragmented, and

villages, towns, and wheat are interspersed. The average planting

area per household is only 1.37 hectares, which account for 5% of

the MODIS image size, and the planting structure is complex.

Moreover, the mixed image phenomenon at the boundary of the

land is serious, so accurately identifying the winter wheat planting

area is difficult (Zhang, 2008; Qiu et al., 2017). Tian et al. used

multi-source remote sensing data based on a phenological

algorithm to map the crop distribution and subsequently

compared and analyzed the difference in the accuracy of

identifying winter wheat by using Landsat-7, Landsat-8, and

Sentinel-2 remote sensing data and MODIS data (including 250

and 500 m) under the same method. The results showed that image

spatial resolution has a considerable influence on the remote

sensing recognition results, and the mapping accuracy increases

with the increase in spatial resolution. Moreover, MODIS data

cannot accurately identify village boundaries, rural roads, and other

features, and the overall accuracy of identification using high-

resolution remote sensing data is improved by 14.1% compared

with the overall accuracy of identification using MODIS data (Tian,

2019; Tian et al., 2019). Song et al. studied Landsat, Sentinel-2,

Sentinel-1 and MODIS remote sensing data at different spatial

resolutions for crop type mapping of soybean and corn in the

Continental United States (Song et al., 2021). Another study

evaluated the application efficiency and effectivity of rice mapping

based on the GEE cloud platform in Southern Punjab, Pakistan,

from coarse to fine resolution multispectral satellites (Sentinel-2

[10 m], Landsat-8 [30 m] and MODIS [250 m]) (Waleed et al.,

2022). These studies proved that the higher the spatial resolution of

optical remote sensing data is, the better the mapping accuracy of

crop types is; moreover, Sentinel-2 data can effectively enable field-

scale crop mapping, and the identification accuracy is affected by

parcel size, planting density, and crop diversity. However, Landsat

and Sentinel-2 data are usually studied in a small area due to their

massive data volume (Belgiu and Csillik, 2018). After GEE was

made available to the public in 2012, its powerful cloud computing

capabilities have facilitated extensive, high spatial-resolution crop

mapping based on Landsat and Sentinel series satellites. Gumma

developed a spatial distribution map of agricultural land in South

Asia on the basis of a machine learning algorithm by using Landsat

time series data on GEE (Gumma et al., 2020). Nasrallah extracted

the 10 m resolution winter wheat distribution in the Bekaa Valley of

Lebanon by using Sentinel-2 time series data (Nasrallah et al., 2018).
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The use of remote sensing data with high spatial resolution helps

alleviate the low identification accuracy caused by parcel

fragmentation. In addition, high-spatial-resolution remote sensing

images help describe farmland cropping patterns at the landscape

level and achieve highly effective extraction of crop phenology

information at the parcel scale (Pan et al., 2015; Qiu et al., 2020).

In North China, In North China, winter crops are usually sown

from September to October, with seedlings emerging before the

over-wintering period and harvested around June. Winter wheat,

garlic, and rapeseed are the principal winter crops of the North

China Plain, with winter wheat accounting for the majority of

production (Dong et al., 2020). Winter wheat and garlic are the two

primary crops grown throughout the winter in the Shandong

region. However, existing studies have focused on winter wheat,

and little importance has been given to remote sensing mapping

and area estimation of garlic (Chai et al., 2019). Garlic’s economic

value has increased recently, resulting in an increase in planting

areas. Given that winter wheat and garlic have almost the same

phenological period and vegetation characteristics, the

phenomenon of “ different objects with the same spectra

characteristics “ arises, and garlic is easily as winter wheat, which

makes the identification of winter wheat erroneous.

In summary, to address the problems of early-season

identification of winter wheat, such as weak vegetation signal,

limited spatial resolution of remote sensing data, heavy reliance

on training samples, and the “ different objects with the same

spectra characteristics “ of winter wheat and garlic, this study has

completed a refined early-season mapping of winter wheat in

Shandong Province with 10-m resolution on the basis of the GEE

cloud platform, by using Sentinel-2 time series data supplemented

by Landsat-8 data. In the study, a phenology feature index was

developed for weak vegetation signal enhancement of winter wheat,

and early-season identification discriminative rules were designed

in combination with other information for different periods of
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winter wheat. In addition, a unique spectral feature was developed

based on the growth differences between winter wheat and garlic.

The proposed method does not require training samples and can

achieve refined early-season identification of winter wheat with

automated premise. The winter wheat identification results can be

advanced to 4-6 months before the harvesting period, with high

identification accuracy.
2 Materials

2.1 Study area

Shandong Province is located on the eastern coast of China, and

it is between 34°22′N-38°24′N and 114°47′E-122°42.3′E. It is

situated in the lower reaches of the Yellow River and has a land

area of about 155,800 km2, as shown in Figure 1. The climate of

Shandong Province is warm-temperate monsoon, characterized by

concentrated precipitation in summer, rain and heat in the same

season, and coldness and dryness in winter. The average annual

temperature is between 11°C and 14°C, and the temperature

difference between the east and west is greater than that between

the north and south. The annual precipitation is between 550 and

950 mm and decreases from southeast to northwest (Chen et al.,

2012). The average annual amount of light is between 2,290 and

2,890 hours, and the sufficient heat conditions meet the needs of

crops to mature twice a year (Xu et al., 2019). The central part of

Shandong Province is mountainous, the southwest and northwest

parts are low-lying and flat, and the eastern part is gently

undulating. Plains account for 65.6% of the province’s area and

are mainly located in the northwest and southwest of Shandong.

The soil type in Shandong Province is mainly brown loam and

brown soil. The fertile soil and good climatic conditions make

Shandong Province the second major production center of winter
FIGURE 1

Location of the study area (It includes the location of Shandong Province in China, the coverage of Sentinel-2 relative orbits and the elevation data
of Shandong Province).
frontiersin.org

https://doi.org/10.3389/fpls.2023.1016890
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Liu et al. 10.3389/fpls.2023.1016890
wheat aside from Henan Province (Li et al., 2021). In 2021,

39,493,530,800 ha of winter wheat, which is the largest winter

crop in Shandong Province, was planted in the said province

Garlic, oilseed rape, vegetables, and greenhouse crops are also

grown in the region, with garlic being the most widely planted.

The phenological periods of winter wheat and garlic are basically

the same; the sowing period is from September to October, and the

harvesting period is in June. The specific phenological periods are

shown in Figure 2.
2.2 Data and preprocessing

In this study, the processing and analysis of remote sensing

images were carried out on the GEE, and the remote sensing data

mainly included Sentinel-2A/B MSI data and Landsat-8 OLI data.

This study also used SRTM elevation data, field sample data, and

winter wheat planting area statistics The elevation data were directly

derived from GEE (https://developers.google.com/earth-engine/

datasets/catalog/USGS_SRTMGL1_003), and the statistical data

were obtained from Shandong Provincial Bureau of Statistics

(http://tjj.shandong.gov.cn/tjnj/nj2021/indexch.htm).

2.2.1 Remote sensing image data
This study used two types of Sentinel-2 optical images are used

in the study, which are surface reflectance data and top-of-
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atmosphere reflectance data. The surface reflectance data were

employed to construct a time-series winter wheat phenology

curve, and the top-of-atmosphere reflectance data were adopted

to extract winter wheat phenology characteristics. Both types of data

were pre-processed via radiometric calibration, geometric

correction, and topographic correction, and the temporal

resolution of the data was five days. Landsat-8 surface reflectance

data were invoked on the GEE cloud platform and had already been

pre-processed via radiometric calibration and geometric correction.

The main purpose of these data was to compensate for the lack of

effective observations of Sentinel-2 optical images due to poor

weather, with a revisit period of 16 days. The spectral parameters

of Landsat-8 and Sentinel-2 are shown in Table 1.

2.2.2 Field sampling data source
The data on winter wheat sample points were obtained from the

field survey of the national agricultural department, and the

sampling period was between November and December 2021,

with a total of 3,885 winter wheat sample points in Shandong

Province. Samples of other surface types were automatically

generated in GEE by using a sampling method. The detailed

operation is to used ESA-2020 and AGLC-2015 as the base data,

and calculate the concatenation of cropland types in the two

datasets was calculated to define them as cropland areas. Then

random points were generated in the non-cultivated area, and the

land type and coordinate information of the random points were
FIGURE 2

Winter wheat and garlic phenological calendar in Shandong Province.
TABLE 1 Remote sensing image waveband parameters.

Bands Name Landsat-8 wavelength range (mm) Sentinel-2 band center wavelength (S2A/S2B)

Aerosols B1(0.43~0.45) B1(443.9nm/442.3nm)

Blue B2(0.45~0.51) B2(496.6nm/492.1nm)

Green B3(0.53~0.59) B3(560nm/559nm)

Red B4(0.64~0.67) B4(664.5nm/665nm)

NIR B5(0.85~0.88) B8(835.1nm/833nm)

SWIR 1 B6(1.57~1.65) B11(1613.7nm/1610.4nm)

SWIR 2 B7(2.11~2.29) B12(2202.4nm/2185.7nm)

Red Edge 2 B5(703.9nm/703.8nm)

Red Edge 2 B6(740.2nm/739.1nm)

Red Edge 3 B7(782.5nm/779.7nm)

Red Edge 4 B8A(864.8nm/864nm)
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extracted In the end, a total of 2,500 random non-wheat sample

points were generated. A total of about 6,385 sample points were

obtained for the accuracy verification of the identification results.

2.2.3 Detection of clouds and cloud shadows
In this study, cloud and cloud shadow removal was performed

in accordance with the clouds presenting different features from

other ground features in an image (Lewis and Brown, 2001). The

details of the process are as follows: Clouds are bright and moist in

the cirrus band, blue band, and all visible bands, so the cloud score

of the image is calculated and the cloud probability is detected using

data from four bands (aerosol, blue, green and red bands) together

with two spectral indices (normalized difference humidity index

and normalized difference snow index). Cloud shadows are then

judged based on the solar geometry features and the position clouds,

so clouds and cloud shadows can be detected and removed

accurately at the same time. This method is more effective than

the QA60 band for cloud and shadow removal (You and

Dong, 2020).
3 Methods

3.1 Weak signal enhancement in
early winter wheat

At the early stage of winter wheat growth, the winter wheat

leaves are small and cannot cover the ground completely. The

winter wheat vegetation signal is also mixed with background

information, such as soil and snowmelt. The vegetation signal

features on remote sensing images are not noticeable due to the

background information, and the vegetation changes shown on

time-series images are less sensitive because of the slow growth of

winter wheat at the early growth stage. A new vegetation index

called normalized differential phenology index (NDPI) was selected

in this research to enhance the weak vegetation signal

characteristics at the start of winter wheat growth (Wang et al.,

2017). NDPI can suppress soil and snow cover compared with the

traditional vegetation index and can reduce the influence of weak

vegetation response at the early stage of winter wheat growth and

winter snow. NDPI is calculated as shown in Equation 1:

NDPI =
dNIR − (a � dRED + (1 − a)� dSWIR)
dNIR + (a � dRED + (1 − a)� dSWIR)

; (1)

where dNIR is the NIR band reflectance, dRED is the red band

reflectance, dSWIR is the shortwave infrared reflectance, and a is set

at 0.74 since it is the most potent value for reducing changes in the

soil and snow backdrop (Wang et al., 2017).

Extraction of time series variation characteristics based on

NDPI was performed using Sentinel-2 data. First, cloud and

cloud shadow removal and five-day-interval time-series NDPI

index median composition were conducted. Second, NDPI index

reconstruction was performed using the Savitzky-Golay filtering

algorithm. Lastly, NDPI feature images with a five-day interval at

10 m spatial resolution were acquired (Savitzky and Golay, 1964). In
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the study area for winter wheat and other major surface types

(including woodlands, grasslands, water bodies, and impervious

surfaces), 100 sample points were evenly selected for each surface

type. Their mean values were calculated to generate the

phenological curves and conduct a comparative analysis, as

shown in Figure 3.

The analysis of Figure 3 shows that, the first window period was

in the winter wheat sowing period (light yellow background), where

the NDPI value of winter wheat was the smallest, that is, about 0.1.

The NDPI values of forest and grassland (i.e., about 0.3) were higher

than that of winter wheat. The NDPI values of impervious surfaces

was low, generally less than 0.1, and the NDPI value of water bodies

was less than 0. The second window period ① (blue background,

black solid line area)was the early over-wintering period and over-

wintering period of winter wheat, in which the chlorophyll content

of winter wheat increased, so and the NDPI value also increased.

The NDPI of winter wheat was greater than 0.35. The NDPI values

of water bodies and impermeable surfaces were mostly unchanged,

whereas those of forest, grassland, and other withering vegetation

typically decreased to below 0.2. The second window period ② (the

region with a green background and a blue dotted box) had a start

time that was similar to that of the second window period ① and an

end time that was the regreening period of forest and grassland

(before March 15). At this time, winter wheat had entered the

regreening period for 2_3 weeks. At the end of the second window

period ②, the NDPI value of winter wheat increased from a low

value during the over-wintering period to be at par with the

maximum value of NDPI during the early over-wintering period,

with an NDPI value greater than 0.45. During the second window

period ②, forest and grassland had just entered the regreening

period; their NDPI values increased slightly, but most of the forest

and grassland NDPI values were still in the low-value period. The

NDPI value of impervious surfaces slightly increased because the

vegetation in the residential land returned to green and formed a

mixed image with the buildings. The NDPI value of water bodies

slightly increased but was lower than 0.1, which could be

well distinguished.

To further enhance the weak vegetation signal characteristics of

winter wheat and highlight the time-series vegetation variation of

winter wheat, this study proposed two phenological indices for

early-season identification of winter wheat based on the

phenological characteristics of early winter wheat growth; the two

indices are winter wheat phenology differential Index (WPDI) and

the normalized differential wheat phenology index (NDWPI). The

formulas are as follows:

WPDI = Max NDPIPho _ 2
� �

−Min NDPIPho _ 1
� �

; (2)

NDWPI =
Max NDPIPho _ 2

� �
−Min NDPIPho _ 1

� �
Max NDPIPho _ 2

� �
+Min NDPIPho _ 1

� � ; (3)

where NDPIpho_1 denotes the time series data of NDPI in the

first time window of winter wheat, NDPIpho_2 denotes the time

series data of NDPI in the second time window of winter wheat.

Min{NDPIpho_1} denotes the minimum value of the NDPI

calculated in the first time window, and Max{NDPIpho_2} denotes
frontiersin.org
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the maximum value of the NDPI calculated in the second time

window. The settings of the time windows are shown in Figure 3.

In addition, the day of year (DOY) corresponding to the

maximum value of NDPI in the early over-wintering period is set

as an important feature for judging winter wheat.

DOYmax = argmax NDVIphojpho_ 1 ≤ pho ≤ pho_ 2
� �

; (4)

whereDOYmax is theDOY corresponding to themaximumvalue of

NDPI, pho_1 corresponds to the winter wheat sowing period, pho_2
correspondstothewinterwheatearlyover-winteringperiod,andargmax

{f(x)} indicates thexcorresponding to themaximumoff(x), that is,DOY.

The DOY corresponding to the maximum value of NDPI

represents the date of the most vigorous growth of winter wheat.

According to the winter wheat growth phenology calendar and the

analysis of Figure 3, the peak growth date of winter wheat is generally

after mid-November, and the peak growth period of woodland and

grassland is before winter wheat sowing. Therefore, DOY can be used

to help distinguish winter wheat from woodland and grassland.

In this study, NDPI was used to mitigate the mixed pixel effect

and enhance the weak vegetation signal in the early growth period of

winter wheat. Two feature indices, WPDI and NDPI, were also

developed based on the phenological characteristics to increase the

distinguishability of winter wheat from other ground features in the

time dimension. However, because garlic and winter wheat have

similar phenological characteristics, they cannot be effectively

distinguished from each other by using the abovementioned method.
3.2 Spectral characterization of winter
wheat and garlic

Winter wheat and garlic have similar phenological

characteristics, and both belong to green vegetation, as shown in
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Figure 4A. The two time-series NDPI curves in this study were

similar, although garlic had slightly lower NDPI values than winter

wheat throughout the growth stage. However, some variations in

NDPI values without obvious boundaries were observed.

Additionally, the harvest period for garlic was a little bit earlier

than the harvest period for winter wheat, but considering the length

of the harvest period and the interval satellite observations, precisely

differentiating between the two based on vegetation or phenological

characteristics was challenging. Nevertheless, garlic and winter

wheat have a few different planting practices, though. Winter

wheat is more resistant to cold than garlic is, so when garlic is

seeded, the mulch is often covered to prevent frost damage during

the overwintering season, as shown in Figure 4B.

In this study, a mulch characteristic index was created to

differentiate garlic from winter wheat by using the specific

qualities of plastic mulch utilized during the early stages of garlic

growth. In this study, 100 sample points from the winter wheat-and

garlic-growing regions were collected for spectrum analysis through

a field survey and visual interpretation of high-resolution Google

pictures. The data are displayed in Figure 5A. The plastic mulch

used at the earliest stage of the garlic planting process is often

colorless and transparent, and the ground surface it covers has

higher brightness characteristics than bare soil. The primary

chemical component of the plastic mulch is polyvinyl chloride,

which has a higher transmittance in the 1500–2500 mm range than

the visible near infrared band in terms of spectral characteristics.

Figure 5A shows that although the reflectance values of plastic

mulch decreased in the short-wave infrared band range, they

increased in the visible to near-infrared band range in the garlic-

growing region compared with the winter wheat-growing area. In

the study, a plastic mulched index (PMI) was developed based on

the special spectral characteristics of plastic mulch. PMI is

expressed as
FIGURE 3

Time-series NDPI curves for winter wheat and other landforms.
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PMI =
dNIR − dSWIR1

dNIR + dSWIR1
; (5)

where dNIR is the reflectance of the NIR band and dSWIR1 is the

reflectance of the shortwave infrared1 band. The reflectance of the

NIR and shortwave infrared1 bands was chosen in this study

because the PMI results are highly stable with a small range of

data fluctuations while maintaining a large difference.

As illustrated in Figure 5A, discerning between winter wheat

and garlic by using NDPI and NDVI vegetation indices is difficult.

Given that PMI data fluctuate less and the feature is stable, using the

PMI feature index suggested in the study allows for easy distinction

between winter wheat and garlic as a contemporaneous crop. The

PMI feature index is negative in areas where winter wheat is grown

and positive in areas where garlic is grown.
3.3 Decision tree algorithm classification

The decision tree technique is a popular classifier for classifying

remote sensing images. The fundamental idea behind this algorithm

is to create a set of rules using expert knowledge, divide them into
Frontiers in Plant Science 07
levels in accordance with the tree structure, and make logical

decisions at each level in accordance with the rules until the

classification is complete at the final leaf node. The decision tree

method has a clear structure, good interpretability, and quick and

easy operation (Friedl and Brodley, 1997).

On the basis of the findings presented in Sections 4.1 and 4.2, a

tree was constructed for refined early-season mapping of winter

wheat in this study, and the classification rules of the decision tree

are illustrated in Figure 6.

First, removal of clouds and cloud shadows was performed on

the GEE platform for Sentinel-2 and Landsat-8 data. Second, a

time-series vegetation index dataset was constructed. Owing to the

influence of cloud removal, remote sensing images in some areas or

times have no-data values. In this study, the median composition

algorithm was used to generate spatio-temporal continuous data at

five-day intervals. The three phenological periods’ time windows

were selected based on the results of the analysis in Section 4.1 and

Figure 3, and the defining images of each period were filtered in

accordance with the time windows.

Image composition based on the time window of the winter

wheat phenological period can enhance the image features of early
A B

FIGURE 5

Spectral analysis of winter wheat and garlic W represents winter wheat, G represents garlic, (A) shows the spectral band information, and (B) shows
the spectral index information].
A B

FIGURE 4

Differences between winter wheat and garlic [(A) displays the phenology curves for winter wheat and garlic, and (B) displays fieldwork photos of
winter wheat and garlic at the early growth stage].
frontiersin.org

https://doi.org/10.3389/fpls.2023.1016890
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Liu et al. 10.3389/fpls.2023.1016890
winter wheat growth and reduce data redundancy. We completed

the minimum composite of time-series NDPI in the sowing period,

the maximum composite of time-series NDPI in the early over-

wintering period, and the maximum composite of time-series NDPI

in regreening period. From to the winter wheat phenology calendar

and phenology curve in Shandong Province, we found that NDPI

reached the maximum value in the tillering period, and we set the

threshold value of DOY corresponding to NDPI to 318. DOY

greater than the threshold value of 318 refers to a winter crop.

Winter wheat is often planted in plain areas with mild slopes, and

less land is cultivated in central and eastern mountainous areas

(Valero et al., 2021). In addition, 15° is used as the slope threshold,

and winter wheat is grown in areas where the slope is less than 15°.

Other characteristics including water bodies, forests, grasslands,
Frontiers in Plant Science 08
and impervious surfaces may be distinguished based on the five

abovementioned rules to extract the spatial distribution of winter

crops, but garlic, a contemporaneous crop of winter wheat, cannot

be extracted.

On the basis of the spatial distribution map of winter crops, garlic

was distinguished from winter wheat by using the PMI index

developed in this study. With the analysis conclusion in Section 3.2,

the PMImaximum composite of the sowing period was calculated, and

the area with PMI greater than 0 was established as the garlic planting

area with mulching. The other areas were winter wheat planting areas.

Automated early-season refined mapping of winter wheat was

achieved in all regions of Shandong Province without a large

number of training samples and by using only a priori knowledge

of winter wheat phenology.
FIGURE 6

Flow chart of early refinement mapping of winter wheat with the decision tree algorithm.
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3.4 Accuracy assessment

Accuracy verification is necessary to evaluate the recognition

performance and is mainly divided into type accuracy and

quantitative accuracy. Type accuracy is usually assessed using the

confusion matrix. Quantitative accuracy describes how closely a

particular type area matches the actual area. In this study, the

overall area accuracy was used to evaluate the quantitative accuracy

of recognition, and the area consistency index was adopted to

evaluate the consistency between the extracted area and the actual

area; the higher the area consistency was, the higher the extraction

accuracy was.

The confusion matrix is generally calculated based on the

acquired samples and classification results, and the specific

evaluation metrics include overall accuracy (OA), user accuracy

(UA), production accuracy (PA), kappa coefficient, and the derived

F1 score (Lewis and Brown, 2001). OA and kappa are used to

evaluate the overall classification results, and the F1 score is a

combined metric consisting of PA and UA; it provides a

comprehensive evaluation of each type of classification accuracy.

OA =
o
n

i=1
Aii

N
� 100% ; (6)

Kappa =

No
n

i=1
Aii −o

n

i=1
(Ai+ � A+i)

N2 −o
n

i=1
(Ai+ � A+i)

; (7)

PA =
Aii

A+i
� 100% ; (8)

UA =
Aii

Ai+
� 100% ; (9)

F1 _ Score = 2� PA ∗UA
PA + UA

; (10)

where n represents the number of classes, and it is also the total

number of rows or columns of the matrix; Aii represents the number

of image elements on the first row and column; and N represents

the total number of real samples. Ai+ represents the sum of the

pixels on row i, and Ai+ represents the sum of the pixels on

column i.

Total area accuracy (TA) refers to the closeness of the extracted

area to the true area. The true area uses the yearbook results

published by local and municipal statistical offices, as follows:

TA = 1 −
X − Yj j
X

� 100% ; (11)

where X is the statistical area in the yearbook and Y is the area

of the extraction results.

Area consistency accuracy is achieved through a regression

analysis of the crop area published in the yearbook of the municipal

statistical office with the results of identification, and calculation of

the coefficient of determination (R2) (Phalke et al., 2020). Large
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values indicate a high correlation of the dependent variable, which

also indicates good area consistency between the extracted area and

the statistical data. A comparison is then made between the linear fit

line and the 1:1 line, which is used to reflect the direction of

deviation. R2 is shown as

R2 = 1 −
S(yi − byi)2
S(yi − yi)

2 ; (12)

where yi is the identification area of the imunicipal unit, y ̂ is the
statistical area, and ȳ is the average of the area.
4 Results

4.1 Winter wheat and garlic
early-season mapping

The judgment indices for constructing the decision tree are

shown in Figure 7. For the two characteristic indices, WPDI and

NDPI, the results obtained from the sowing and early over-

wintering periods were selected as examples. Their large values

indicated that the vegetation change was great and that the

increasing trend of NDPI was obvious. Although the NDPI of

winter wheat increased a little relative to that of garlic, the

distinction between the two was not obvious because both winter

wheat and garlic were green in the early over-wintering period. The

comparison showed that the trend of DOY max had a strong

correlation with the trend of WPDI and NDPI, and the

macroscopic change trend was consistent.

On the basis of the decision tree algorithm, Figure 8A shows the

identification results of the early over-wintering period with the

date of January 15, and Figure 8B shows the identification results of

the regreening period with the date of March 15. The identified

winter wheat area in the regreening period was slightly larger than

the identified area in the early over-wintering period, and the

increased area was mainly in the eastern part of Shandong

Province. A comprehensive analysis revealed that the winter

wheat planting areas in Shandong Province were mainly

distributed in the western, northern, and southern regions, in

which four cities, namely, Heze, Dezhou, Liaocheng, and Jining,

had large and concentrated planting areas. This distribution was

mainly due to the wide distribution of mountains and hills in the

central and northeastern regions of Shandong, which are unsuitable

for the cultivation of winter wheat. Moreover, the soil texture in the

eastern coastal region was relatively poor, and the planting

suitability of winter wheat i was low; hence, the planting area of

winter wheat was small and scattered.

This study completed the early spatial distribution of winter

wheat in Shandong Province, and also acquired the spatial

distribution map of early mapping of garlic. Garlic cultivation in

Shandong Province was mainly distributed in Jinxiang County of

Jining City and its surrounding areas, among which Jinxiang had

the widest garlic cultivation area and the most concentrated

distribution. Meanwhile, garlic cultivation in the rest of the areas

was relatively fragmented. In this study, we adopted Jinxiang

County of Jining as an example to show the identification results
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of garlic, as indicated in Figure 9. Garlic is the main plantation in

Jinxiang County, and the distribution of garlic is relatively

concentrated. The main plantation zones are the central, eastern,

and western parts. The distribution of winter wheat is fragmented,

and the planting area is mostly in long and narrow patches. The

distribution of winter wheat in the north and south of Jinxiang

County is relatively concentrated, which is basically consistent with

the background survey of crop cultivation.
4.2 Accuracy verification

Early-season identification mapping of winter wheat was

conducted in two phenological periods, namely, early over-

wintering and regreening. We used three methods for accuracy

evaluation: calculation of the confusion matrix, statistical area
Frontiers in Plant Science 10
validation of municipal administrative units, and zoomed maps of

local areas.

4.2.1 Validation on sample points
On the basis of the data of 3,885 winter wheat sample points

and 2,500 non-winter wheat sample points, the accuracy of the

early-season identification results of winter wheat was evaluated by

calculating the confusion matrix for the early over-wintering and

regreening period. The results are shown in Figure 10. The analysis

revealed that the accuracy of the early-season identification results

of winter wheat in the regreening period was higher than that in the

early over-wintering period, with an overall accuracy of 82.64%, F1

score of 0.84, and kappa coefficient of 0.78. The accuracy of the

identification results in the regreening period was improved to some

extent, with an overall accuracy of 88.76%, F1 score of 0.89, and

kappa coefficient of 0.84. The reason for the higher accuracy of the
D

A B

C

FIGURE 7

Example of decision rule feature image. [(A–D) respectively show the images of four feature indices: WPDI, NDWPI, DOY max, and slope].
A B

FIGURE 8

Spatial distribution of winter wheat in Shandong Province.
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identification results in the regreening period is that the growth of

winter wheat in the regreening period is better and more uniform

than that in the early over-wintering period, and the vegetation

signal of wheat is more prominent. In conclusion, the early-season

identification results of winter wheat in the study have

high accuracy.

4.2.2 Verification of official statistics
To further verify the identification accuracy, this study

calculated the planted area in accordance with the early-season

identification results of winter wheat. The official statistics of winter

wheat planted area in Shandong Province in 2021 was 3,949,353 ha.

Meanwhile, the identified area in the early over-wintering period

was 3,206,666.8 ha and the identified area in the regreening period

was 3,990,686.7 ha; the overall area accuracy of the two periods was

81.2% and 98.9%, respectively. The identification results in the early

over-wintering period were underestimated, and the identification

results in the regreening period were overestimated. The reasons for

the underestimated results in the early over-wintering period

include the inconsistent growth of winter wheat in this period

and the late sowing and un-sowing, which lead to missed

identifications. The overestimated results in the regreening period
Frontiers in Plant Science 11
may be due to the situation of winter wheat being harvested for

green storage before the harvest stage, in addition to

misclassification. Another main reason is that the area of winter

wheat has been reduced by natural meteorological disasters or pests’

diseases. Furthermore, to validate the consistency of the

identification results, this study verified the area of winter wheat

identified in this work based on official statistics in 16 municipalities

in Shandong Province. The results are shown in Figure 11. The

analysis revealed that the early-season identification results of

winter wheat in both periods had good consistency, and the R2

values were both above 0.95. The identified area in the over-

wintering period was slightly lower than the statistical area.

In this study, we could not obtain garlic field sample points, so

the confusion matrix was not calculated for accuracy evaluation.

This study adopted Jinxiang County, a large garlic planting county,

as an example to verify the statistical area. A total of 35,933.5 ha of

garlic was planted in Jinxiang County in 2021, and the early-season

identification area of garlic in the study was 31,666.8 ha, with an

overall area accuracy of 88.13%. After excluding the garlic planting

area, the overall accuracy of the winter wheat area identification was

improved from 65.2% to 96.8%, which increased the

identification accuracy.
FIGURE 9

Early-season identification results of winter wheat and garlic in Jinxiang County.
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4.2.3 Classification result subset analysis
As shown in Figure 12, the early-season identification results of

winter wheat in the northern, eastern, southern and central-eastern

parts of Shandong Province were randomly selected with one sample

each, and the Google image was obtained from Google Earth with a

resolution of 1 m. The NDPI image was the result obtained from using

the Sentinel-2 image in the April elongation period with a resolution of

10 m. The remote sensing features of winter wheat in this period were

relatively obvious. The third column shows the early-season

identification results. The results indicate that the recognition of

winter wheat distribution based on the Sentinel-2 image with 10 m

resolution was good, and roads, settlements, bare land, water bodies,
Frontiers in Plant Science 12
and wide farmland boundaries could be distinguished. The identified

farmland details were relatively rich, which cannot be achieved by

lower-resolution remote sensing data.

To further evaluate the effectiveness of this study on differentiating

winter wheat and garlic, four validation samples were selected in

Jinxiang County for an accuracy assessment, as shown in Figure 13.

The first column is the Google image, the second column is the

calculated PMI index, and the third column is the identification result.

The results of the four validation regions showed that the

method in the study could identify garlic and winter wheat well.

Region 1 had an interspersed distribution of garlic and winter

wheat, and the PMI index could be used to distinguish them well.
A B

FIGURE 11

(A, B) Verification of consistency between the identification results and official statistics.
FIGURE 10

(A, B) Evaluation results of the confusion matrix for early-season identification of winter wheat.
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Region 2 contained many other objects, such as buildings, water

bodies, bare land and woodland. The developed method could also

accurately identify garlic and wheat without interference from the

other objects. Region 3 was mainly a large garlic planting area, and

the spatial continuity of the recognition results was good, almost

without the interference of noise points, and some main roads

between fields could be recognized. Region 4 mainly had an

interlaced distribution of winter wheat and garlic, and many

narrow parcels had high fragmentation. From the analysis, we

found that the recognition effect for narrow fields was not ideal,

but the overall recognition accuracy basically met the requirements.
5 Discussion

5.1 Comparison and analysis of
vegetation indices

At present, the main approach to extract phenological information

based on remote sensing technology is to construct time-series curves
Frontiers in Plant Science 13
from vegetation indices, and vegetation indices are often used as the

main discriminative feature for crop identification. Common

vegetation indices include RVI, NDVI, and EVI (Huete et al., 2002;

Ji and Peters, 2003). The main goal of was to achieve an early-season

identification of winter wheat. Winter wheat grows slowly at the early

stage of growth, and the leaf area is small and cannot cover the ground

completely, resulting in a weak vegetation signal; meanwhile, the

traditional vegetation index is affected by soil and snow cover (Dong

et al., 2020). To verify the advantage of NDPI over other vegetation

indices in enhancing the weak signal characteristics of vegetation in

winter wheat at the early growth stage, this study used NDVI and EVI

for a comparative analysis. NDVI and EVI are calculated as follows:

NDVI =
dNIR − dRED
dNIR + dRED

; (13)

EVI = 2:5� dNIR − dRED
dNIR + 6� dRED − 7:5� dBLUE + 1

; (14)

where dNIR is the NIR band reflectance, dRED is the red band

reflectance, and dBLUEis the blue band reflectance.
FIGURE 12

Validation of winter wheat identification results.
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In the study area, 200 winter wheat sample points were selected.

We constructed the phenological curves of NDPI, NDVI and EVI.

The results are shown in Figure 14A that NDPI had a more sensitive

response to vegetation changes in early winter wheat compared with

the other vegetation indices. To quantitatively evaluate the change

in the three vegetation indices, the quantitative evaluation index of

Greenness Change Before Winter (GCBW) was defined in this

study with the following equation 15.The results are shown in

Figure 14B. The analysis showed that NDPI had the largest amount

of variation, with a mean value of about 0.25. NDVI and EVI had a

mean value of about 0.15, and the mean value of NDVI was slightly

higher than that of EVI. The results of the quantitative analysis

showed that NDPI index could more effectively reflect the changes

in vegetation at the early stage of wheat growth compared with the

other indices. This finding fully supports the selection of NDPI in

this study. NDPI can effectively enhance the weak signal

characteristics of winter wheat vegetation at the early stage of

growth, and it has greater advantages in early mapping of winter
Frontiers in Plant Science 14
wheat compared with NDVI and EVI.

GCBW = VImax − VImin; (15)

where VImax is the maximum value of the vegetation indices

before the over-wintering period, and VImin is the minimum value

of the vegetation indices before the over-wintering period.
5.2 Transferability analysis

To more comprehensively evaluate the migration ability of the

model in the study, we generalized the model in temporal and

spatial dimensions to verify its effectiveness in early-season winter

wheat refinement identification in other years and other regions.

We extended the model to the early-season refinement

identification of winter wheat in Shandong Province in 2020, and

because the crop types in Shandong Province hardly change from

year to year, we used the winter wheat samples in 2021 to verify the
FIGURE 13

Validation of winter wheat and garlic identification results.
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accuracy. The results are shown in Figure 15. The results of the

confusion matrix calculation were as follows. In the early over-

wintering period the overall accuracy was 79.43%, the F1 score was

0.82, and the kappa coefficient was 0.76. The accuracy of

identification in the regreening period was improved compared

with that in the early over-wintering period. The overall accuracy

was 87.31%, F1 score is 0.85, and Kappa coefficient is 0.80. The

accuracy of early-season winter wheat identification in 2020 was

slightly reduced compared with that in 2021. Specifically, the overall

accuracy was reduced by about 2% on the average, the F1 score and

kappa coefficient were reduced by 0.03 on the average, and the

identification effect was basically unchanged. The slight decrease in

accuracy may be due to the differences in winter wheat sowing dates

between years and differences in winter wheat growth due to
Frontiers in Plant Science 15
different temperatures and precipitation. Nevertheless, the model

still exhibited a strong transfer ability between years.

To verify the ability to transfer geospatially, the model was

applied to Henan Province, the largest winter wheat growing area in

China, for the early-season refinement identification of winter

wheat. Henan Province, located in the west of Shandong

Province, has the largest winter wheat cultivation area and

production in China. The climate is basically similar to that of

Shandong Province, which has a warm temperate monsoon climate,

and the province is mostly a plain area, which is highly favorable for

the cultivation of winter wheat in large areas. And there are nearly

have 800,004,000 ha of garlic planting area in Qixian and

Zhongmou counties in Henan province. The planting structure of

winter crops in Henan Province is basically the same as that of
A B

FIGURE 14

Comparison of vegetation indices for winter wheat. [(A) displays the Winter wheat phenology curve, (B) displays the Vegetation index GCBW
statistical results].
FIGURE 15

Evaluation results of the confusion matrix for early-season identification of winter wheat in 2020.
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Shandong Province. The early-season mapping of winter wheat in

the early over-wintering (January 15) and regreening (March 15)

periods was completed using the developed method, and the

identification results are shown in Figure 16. The analysis showed

that the identification results of the two periods were basically the

same, but the identification area of the regreening period was

slightly higher than that of the early over-wintering period.

Notably, winter wheat in Henan Province is mainly planted on

the eastern plains, and the area planted in western hilly areas is

relatively small.

Given that a sufficient amount of field sample point data in

Henan Province could not be obtained, this study used only the

official statistics released by Henan Province for accuracy

verification. A consistency test between the early-season

identification results of winter wheat and statistical data was

conducted for 17 prefectural cities in Henan Province, and the

results are shown in Figure 17. The early-season identification

results of winter wheat in Henan Province in both periods

showed high identification accuracy and were in good agreement

with the official statistics; the R2 of both reached 0.98. According to

the official statistics, 6,102,030 ha were planted with winter wheat in

Henan Province in 2021, and the identified winter wheat area in the

study was 5,465,360 ha in the early over-wintering period and

5,901,362.8 ha in the regreening period, with an overall area

accuracy of 89.6% and 96.3%, respectively. The recognition

accuracy in the early over-wintering period in Henan Province

was even better than that of Shandong Province possibly due to the

wider plain area in Henan Province, better natural conditions for

winter wheat cultivation, and higher degree of mechanized

cultivation compared with Shandong Province. Thus, the

developed method of this study has strong spatial generalization

ability and can be applied to other regions for high-precision early-

season winter wheat refinement recognition under automated

methods.
5.3 Impact factors of classification results

The decision tree model constructed in the study based on a

priori knowledge such as winter wheat phenology information, as a
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fully automated classification method, has a great advantage in

early-season refinement recognition of winter wheat. It can

complete the mapping of winter wheat spatial distribution 4-6

months before the winter wheat harvest period, and the method

has a strong generalization ability. In this study, we showed through

an experimental analysis that the present method can be extended

to temporal and spatial dimensions, and can complete the refined

mapping of winter wheat in historical years and other regions with

high recognition accuracy. Compared with supervised classification

methods (e.g., random forest and support vector machine), the

developed method does not require the manual labeling of a large

number of training samples (Dong et al., 2020; Zhang et al., 2021).

Although the developed method is not limited by samples, the

classification results are affected by the number of effective

observations of images, spatial inconsistency of winter wheat

phenology and other factors (Sun et al., 2012). Valid observation

data on complete and intensive time series could not be obtained

due to the influence of the revisit cycle and cloudy and rainy

weather, so this study could not complete winter wheat mapping in

the whole area of Shandong Province by using Sentinel-2 data. We

plotted the number of effective observations in Shandong Province

based on the time window of the phenological period for early-

season mapping of winter wheat, as shown in Figure 18. The larger

the number of effective observations, the more abundant the

vegetation information on the early growth of winter wheat is

and the better the mapping results are. However, as shown in

Figure 18, the number of effective observations in some areas was

fewer than three, reflecting little information on winter wheat, and

this situation is not conducive to the identification of winter wheat.

Therefore, supplementation with Landsat-8 data is necessary to

increase the number of effective observations, that is, to increase the

number of acquired cloud-free images.

In this study, the rules for building the decision tree were mainly

based on phenological information at the early stage of winter

wheat growth, and the precision of the phenological information

determined the accuracy of the mapping. In Shandong Province, the

eastern part is adjacent to the sea, the western part is a plain, and the

central part is hilly and mountainous; thus, the phenological

information is relatively complex. To verify the differences in

winter wheat phenology at early growth stages, this study
FIGURE 16

Spatial distribution of winter wheat in Henan Province.
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extensively collected winter wheat phenology information from all

counties in the province. The results showed that the DOYmax

corresponding to the maxima NDPI of winter wheat in the early

over-wintering period ranged from 335 to 352, and the spatial

distribution exhibited the patterns of being later in southern

Shandong than in northern Shandong and being later in the

inland than in the coast. The DOYmax corresponding to the

regreening periods was between 45 and 65, and the spatial

distribution of NDPI in the greening period was earlier in

southern Shandong than in northern Shandong and earlier in the

inland than in the coastal areas. The maximum difference in the

phenology period in the different regions was about 20 days, and

obvious spatial differences were observed, which made the effective

extraction of winter wheat features difficult. To reduce the errors

caused by inconsistent phenology, this study adopted the method of

time window synthesis to extract the most obvious phenological

features for enhancing the vegetation characteristics of the early

growth stage of winter wheat. The decision tree algorithm built

based on multiple rules in this study is affected by other factors,

such as crop conditions, sowing dates, and natural conditions, but it

has a good generalization ability. Delayed sowing and poor weather

conditions, such as temperature and precipitation, can lead to poor

crop growth when the NDPI increase in winter wheat is reduced. In
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addition, when cultivated land has poor soil fertility or insufficient

sunlight, the growth of winter wheat can be reduced. In particular,

winter wheat is grown at low latitudes under satisfactory natural

conditions such as sufficient light, temperature, and precipitation,

and winter wheat phenology may skip the over-wintering period

and grow non-stop, during which the threshold needs to

be adjusted.
5.4 Outlook

The proposed method has some advancements and advantages

in early-season identification of winter wheat, but it also has some

limitations that can be further improved in future research. First,

only NDPI and its derived phenological feature indices were used in

the study. This limitation can be further investigated in the future

via multi-feature fusion or by developing other effective weak

vegetation signal feature enhancement indices. Second, the

decision tree algorithm used in the study requires manual setting

of thresholds, which are based on the results of the phenology

analysis and may change under varying external conditions (e.g.,

temperature, precipitation and anthropogenic factors). Hence, a

dynamic adaptive threshold method could be developed to further
FIGURE 17

Verification of the consistency between winter wheat identification results and official statistics in Henan Province.
A B C

FIGURE 18

Availability of Sentinel-2 images. [(A) corresponds to the temporal window of the sowing period, (B) corresponds to the temporal window of the
early over-wintering period, and (C) corresponds to the temporal window of the regreening period].
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improve the automation and applicability of the model. Third the

phenology of the study area presents some inconsistencies. When

early-season identification of winter wheat in a large area is carried

out, partitioning based on the phenological differences should be

considered to ensure the consistency in all zones, which is

conducive to achieving high-precision, automated, early-season

identification in large areas. Fourth, with the in-depth application

of deep learning technology in remote sensing, deep learning

methods can now automatically extract the features of images and

distinguish the importance of features autonomously. Therefore, we

can conduct the early-season identification of winter wheat by using

deep learning methods (Xu et al., 2021). At the same time, we can

perform research on the early-season identification algorithm of

winter wheat on a large scale by using domestic satellite images.
6 Conclusions

Using the GEE cloud platform and the Sentinel-2 and Landsat-8

remote sensing data provided by it, this paper investigates the theory

and algorithm of early-season refinement mapping of winter wheat by

analyzing the characteristics and phenological features of winter wheat

of early growth stage. As an example, early-season refinement mapping

of winter wheat with 10m resolution was completed in Shandong

Province, and the earliest identification time was 4_6months before the

harvesting period. The main conclusions are as follows:
Fron
(1) In response to the weak remote sensing response of the

vegetation signal in the early period of winter wheat growth,

an enhanced index of the weak vegetation signal characteristics

of winter wheat was developed. Two winter wheat

phenological feature indices, namely, WPDI and NDPI, were

developed to enhance winter wheat information, and applied

to the early-season identification of winter wheat. The indices

achieved good identification effects.

(2)The problem that winter wheat and garlic are difficult to be

distinguished from each other due to the “different objects

with the same spectra characteristics” phenomenon was

solved. By analyzing the planting habits and quantitative

spectral differences between winter wheat and garlic, this

study developed a PMI index that can effectively achieve

early-season identification of winter wheat and garlic. Ideal

early mapping results on garlic were obtained for Shandong

Province (especially in Jinxiang County).

(3). An automated algorithm for early refinement of winter

wheat mapping was constructed based on winter wheat

phenological information. The overall accuracy of the

model was 82.64% and 88.76% in the early over-wintering

and regreening periods, respectively. The identification

results showed good agreement with the official

municipal statistics, with the R2 of the two being 0.96 and

0.98, respectively. We also performed temporal and

geospatial transfer learning by using our algorithm and

proved its effectiveness and strong generalization capability

for large-scale early-season mapping of winter wheat.
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