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The root-knot nematode Meloidogyne incognita is a pathogenic pest that causes

severe economic loss to agricultural production by forming a parasitic relationship

with its hosts. During the development ofM. incognita in the host plant roots, giant

cells are formed as a nutrient sink. However, the roles of sugar transporters during

the giant cells gain sugar from the plant cells are needed to improve. Meanwhile,

the eventual function of sugars will eventually be exported transporters (SWEETs)

in nematode-plant interactions remains unclear. In this study, the expression

patterns of Arabidopsis thaliana SWEETs were examined by inoculation with M.

incognita at 3 days post inoculation (dpi) (penetration stage) and 18 dpi (developing

stage). We found that few AtSWEETs responded sensitively to M. incognita

inoculation, with the highest induction of AtSWEET1 (AT1G21460), a glucose

transporter gene. Histological analyses indicated that the b-glucuronidase (GUS)

and green fluorescent protein (GFP) signals were observed specifically in the galls

of AtSWEET1-GUS and AtSWEET1-GFP transgenic plant roots, suggesting that

AtSWEET1 was induced specifically in the galls. Genetic studies have shown that

parasitism ofM. incognita was significantly affected in atsweet1 compared to wild-

type and complementation plants. In addition, parasitism of M. incognita was

significantly affected in atsweet10 but not in atsweet13 and atsweet14, expression

of which was induced by inoculation withM. incognita. Taken together, these data

prove that SWEETs play important roles in plant and nematode interactions.
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1 Introduction

Plant parasitic nematodes are responsible for over US$157 billion worth of annual crop

losses worldwide (Abad et al., 2008). Root-knot nematode (RKN) is the most important one

out of the ten most damaging plant parasitic nematodes, causing significant economic losses

every year (Jones et al., 2013). RKN has a wide host range, parasitizing vegetables, fruit trees,

and ornamental plants and has been spreading worldwide (Triantaphyllou, 1985).
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Meloidogyne incognita, as one of the root-knot nematodes, interacts

with the hosts via a complex process. Second-stage juveniles (J2s)

infiltrate the root at the elongation zone, migrate to the tip, and then

turn 180° to enter the vascular cylinder and proceed upwards until

they reach the differentiation zone, where they generate numerous

giant cells (GCs) (von Mende, 1997; Bird et al., 2009; Perry and

Moens, 2011; Escobar et al., 2015; Cabrera et al., 2018). Neighboring

cells multiply in the vascular cylinder as GCs mature, and cortical cells

hypertrophy, generating a root-knot formation known as a gall.

Within a gall, RKNs become sedentary and feed on GCs until the

life cycle is complete (Dropkin, 1972; Wyss et al., 1992).

Sijmons first established culture conditions to successfully

establish a new model system for studying the infection and

development of M. incognita in Arabidopsis thaliana (Sijmons

et al., 1991). The infection of A. thaliana with M. incognita is a

well-suited model system for studying the molecular interactions

between nematodes and their hosts (Engler et al., 2016; Singh et al.,

2016; Teixeira et al., 2016; Warmerdam et al., 2018; Warmerdam

et al., 2020). Teixeira and Warmerdam studied early defense

responses against M. incognita in A. thaliana. Singh discussed the

establishment of GCs in M. incognita and A. thaliana interactions.

Engler identified several cell cycle genes driving giant cell

development in A. thaliana infected with M. incognita.

RKN infections are tightly linked to changes in sugar

concentration in plants. GCs serve as a nutrient sink for developing

nematodes, where the metabolism of carbohydrates and amino acids

is highly active (Baldacci-Cresp et al., 2012; Machado et al., 2012;

Gautam and Poddar, 2014). The amount of sucrose in root exudates

from tomato plants infected with M. incognita was double that of

healthy root exudates (Wang and Bergeson, 1974). According to

sensitive metabolomics methods, galls formed by M. incognita in

Medicago truncatula have enhanced amounts of starch, sucrose, and

glucose (Baldacci-Cresp et al., 2012). Coffee and bitter gourd roots

infected with Meloidogyne exigua and M. incognita yielded similar

results (Machado et al., 2012; Gautam and Poddar, 2014). Trehalase 1

(TH1) gene is an enzyme that catalyzes the hydrolysis of trehalose,

which was more highly expressed in the female stage of M. incognita

in Nicotiana benthamiana than in eggs or in the parasitic stage (Mani

et al., 2020). During the nematode feeding sites establishment,

transporters are responsible for sucrose supply (Hofmann et al.,

2007). AtSUC2 and AtSUC4, specific sucrose transporters, are

activated by Heterodera schachtii and mediate the transmembrane

transport of sucrose in the syncytia (Juergensen et al., 2003).

Sugars will eventually be exported transporters (SWEETs) are a

family of sugar transporters that play a role in phloem loading and

pathogen nutrition utilization by mediating the uptake and extrusion

of sugars across the cellular membrane (Chen, 2013; Xue et al., 2022).

As a novel characteristic sugar transporter group, SWEETs have been

identified to bidirectionally transport monosaccharides and

polysaccharides and are closely involved in the interaction process

between pathogenic microorganisms and host plants (Chen et al.,

2010; Li et al., 2013; Chong et al., 2014; Cohn et al., 2014; Hu et al.,

2014; Gao et al., 2018). By analyzing all SWEETs in A. thaliana, the

four prolines in the TM1, TM2, TM5, and TM6 domains were found

to bind and transport sugars by stimulating structural rearrangements

to generate homologous or heterologous polymers by altering the

protein conformation (Tao et al., 2015). Chen et al. (2010) used a
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high-sensitivity fluorescence resonance energy transfer (FRET)

glucose sensor to determine that AtSWEET1 is a glucose uniporter

(Chen et al., 2010),and AtSWEET10, AtSWEET13, and AtSWEET14

are sucrose uniporters (Chen et al., 2012). Arabidopsis AtSWEET1 is

strongly expressed in stamen primordia and during the early stages of

floral development, according to an in situ hybridization study

(Wellmer et al., 2006).

SWEET genes are involved in the interaction between pathogens

and their hosts. It has been reported that AtSWEET1 expression was

highly induced by Pseudomonas syringae pv. tomato strain DC3000

and Golovinomyces cichoracearum, indicating a potential role in

pathogen nutrition (Chen et al., 2010). Several AtSWEET genes are

induced by Pseudomonas syringae pv. tomato DC3000,

Golovinomyces cichoracearum, and Botrytis cinerea in the model

plant A. thaliana; all three fungi have potential roles in pathogen

nutrition (Chen et al., 2010). When M. incognita infects a tomato

(Solanum lycopersicum), 17 SlSWEETs are up-regulated in the host’s

leaves and roots, with 10 upregulated in both tissues (Zhao et al.,

2018). The expression of eight SWEET genes is altered in soybean

plants after inoculation with Rotylenchulus reinformis (Redding

et al., 2018).

The syncytia are symplasmically isolated from surrounding

tissues in Arabidopsis, which indicates that the syncytia obtain

nutrients from their surrounding tissues requires protein carriers

(Juergensen et al., 2003). Several studies demonstrated that

AtSWEETs play a vital role in bridging nutrient communication

during different plant-pathogen interactions, which encourages us to

investigate the potential role of AtSWEETs in the roots of A. thaliana

upon infection by RKNs. In this study, we showed several AtSWEETs

were induced by the infection of RKNs. Among these induced

AtSWEETs, we conducted further studies for AtSWEET1 to gain the

spacial expression information using histochemical staining of b-
glucuronidase (GUS) assay. We also aimed to determine the role of

AtSWEET1 expression on RKN invasion, development and gall

formation in A. thaliana.
2 Materials and methods

2.1 Plant material and growth conditions

The 4056-bp genomic fragment containing the SWEET1

promoter and coding region was amplified using the primers

SWEET1CMF-1 (5’-GGGGACAAGTTTGTACAAAAAAGCAGGC

TTACCGCTTGTTCCATTCATTCTGATT-3’) and SWEET1CMR-

1 (5’-GGGGACCACTTTGTACAAGAAAGCTGGGTAAACTTGA

AGGTCTTGCTTTCCATT-3’) and cloned into the entry vector

pDORN221-f1. The pSWEET1:gSWEET1 cassette was switched to

the binary vectors pEG-TW1-EYFP and pMDC163 via LR reaction to

make pSWEET1::gSWEET1-YFP and pSWEET1::gSWEET1-

GUS, respectively.

Arabidopsis thaliana ecotype Col-0 and mutant genotypes in the

Col-0 background, atsweet1, AtSWEET1-GUS, AtSWEET1-YFP-w5-

2, and AtSWEET1-YFP-S2-2, were cultured in a growth chamber at

22°C under a 12h/12h light/dark cycle. For plant cultivation, sand was

passed through a 20-mesh (0.85 mm) sieve, sterilized at 165°C for 2 h,

and placed in a clean culture tube with a diameter of 4 cm and a
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height of 13.5 cm. The sand was moistened with sterile water.

Arabidopsis seeds (wild-type Col-0 and mutant) were planted

directly on the surface of the sand and covered with a transparent

film to maintain humidity.
2.2 Fresh weight statistics of atsweet1
and Col-0 roots

AtSWEET1 is a glucose transporter gene, one of the most

important carbohydrates in plants, that plays an important role in

Arabidopsis growth and development (Wellmer et al., 2006; Chen

et al., 2010). To test the effect of AtSWEET1 gene mutation on

Arabidopsis root growth, atsweet1 and Col-0 seeds were sown on a

sand surface. After 35 days of 12 h/12 h light/dark cycle culturing,

sand on the root surface was gently washed with water. Sixteen

seedlings were collected, and the water on the root surface was

dried with filter paper. The fresh weight of the roots was measured

using a 1/10000 balance. Photographs were taken after the roots were

separated as far as possible from each other under a Nikon SMZ800

microscope, as shown in Supplementary Figure 4.
2.3 Nematode acquisition and inoculation

M. incognita was maintained on the tomato cultivar L402 in a

greenhouse. Tomato plants were gently removed from the pots under

a running tap. Egg masses were picked from the root surface using

tweezers and placed in Petri dishes with distilled water. The collected

egg masses were surface-sterilized with 0.5% sodium hypochlorite for

5 min, rinsed with sterile water, and hatched in the dark at 28°C.

Freshly hatched second-stage juveniles (J2s) were collected over

two days.

For inoculation assays, the freshly hatched J2s concentration was

adjusted in 1% sodium carboxymethylcellulose to approximately 1000

ml-1, and seedlings were drenching inoculated with 1 ml of the J2s

suspension per plant at the four-leaf stage. Sterile water was used for

the control group. The roots of A. thaliana seedlings were collected

after gently washing the residual sand on their surface.
2.4 RNA isolation and quantitative reverse
transcription-PCR (RT-qPCR)

For each replicate, total RNA from Arabidopsis roots was isolated

from three plants in each experiment, and the experiment was

independently performed twice. Total RNA was extracted using

TRIZOL® reagent (ComWin Biosciences, Beijing, China) according

to the manufacturer’s instructions. A NanoDrop 2000 UV-Vis

spectrophotometer (Thermo Scientific, Waltham, MA, USA) was

used to determine the quality of the RNA samples prior to reverse

transcription. cDNA was used for reverse transcription with an oligo

(dT) primer using the PrimeScript™ RT Reagent Kit with gDNA

Eraser (Takara, Tokyo, Japan). RT-qPCR was performed using the

CFX Connect real-time PCR system (Bio-Rad, Hercules, CA, USA).

The reactions were performed in a total volume of 25 µL using SYBR®

Premix Ex Taq™ II (Takara, Tokyo, Japan). All reactions were
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performed under the following conditions: an initial denaturation

step (30 s at 95°C), followed by 40 cycles of denaturation (5 s at 95°C),

annealing (34 s at 60°C), and a melting curve reaction from 60°C to

95°C, with an increase of 0.5°C every 5 s. Col-0 plants were used as the

controls. Five biological replicates and three technical replicates were

used for each sample. Actin 8 was selected as the reference gene, and

relative gene expression levels were calculated according to the

method (Livak and Schmittgen, 2002; Livak and Schmittgen, 2013).

The primers used for RT-qPCR assays are listed in Supplementary

Table S1.
2.5 Nematode penetration and
development experiment

When the fourth leaf of Arabidopsis was fully stretched, the

nematode suspension was mixed with an equal volume of 1%

sodium carboxymethyl cellulose, and each seedling were drenching

inoculated with about 1000 J2 and water with an equal volume of 1%

sodium carboxymethyl cellulose were used in the control group.

Arabidopsis roots were collected after gently washed the residual

sands on the roots surfaces from 15 seedlings for each treatment at 18

days post inoculation (dpi). The use of the sodium hypochlorite-acid

fuchsin staining method to dye the worms in the whole root tissue can

aid in the observation of nematode development stages and the

quantification of the number of worms of different instars in the

roots. Arabidopsis root tissues were stained using the method

described by Teixeira et al. (2016). At 18 dpi, the number of galls

and juveniles (second-stage juveniles, sausage [second-stage juveniles

to third-stage juveniles], globose [third-stage juveniles to fourth-stage

juveniles]) was counted for each plant under a Nikon

SMZ800 stereoscope.
2.6 Observation of GUS and YFP signal

GUS experiments were performed on Arabidopsis AtSWEET1-

GUS infected and uninfected transgenic root tissues that were taken

from the soil at 18 dpi. Roots were processed by double staining as

described by Teixeira (2017), with modifications. Briefly, seedlings

were infiltrated overnight at 37°C in the dark with GUS-staining

buffer containing X-Gluc (Real-Times Biotechnology, Beijing, China)

for 20 min, and root tissues were then cleaned with 70% ethanol and

50% ethanol. Roots were washed in water and stained with acid

fuchsin, as described previously. The expression of GUS in the roots

was examined under an Olympus BX 53 microscope, and images were

captured using a coupled Olympus DP 80 digital camera

(Tokyo, Japan).

The A. thaliana complemented lines (AtSWEET1-YFP-w5-2 and

AtSWEET 1-YFP-S2-2) were inoculated with M. incognita as

described above. Roots were collected at 18 dpi for microscopybasd

examination. Arabidopsis roots were cut into small sections, placed

on a glass slide, covered with a coverslip after a water droplet was

added, and observed microscopically. Observations were carried

out using a Olympus FV3000 laser scanning confocal microscope

(Tokyo, Japan) with an excitation and emission wavelength of 488

and 513 nm, respectively.
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2.7 Statistical analysis

Statistical analyses were performed using Microsoft Office Excel

2016, and significance analysis was performed using SPSS 22.0.

Student’s t-test was used for significance analysis between two

treatments, and Duncan’s test was used for the analysis of more

than three treatments. The error is shown as the standard deviation

between the biological replicates. For the collection and mapping of

real-time fluorescence quantitative PCR data, GraphPad Prism 7.00

software was utilized.
3 Results

3.1 AtSWEETs expression patterns in
Arabidopsis roots after inoculation
with M. incognita

M. incognita penetrates the roots of Arabidopsis and migrates

intercellularly, establishing a permanent feeding site. At 2 and 3 dpi,

most J2s were observed inside the root tip and vascular cylinder, and

feeding sites began to appear at 4 dpi (Teillet et al., 2013). To test which

SWEETs respond to the infection, we tested the expression patterns of

SWEET family genes by challenging withM. incognita at 3 (penetration

stage) and 18 (development stage) dpi. The expression of AtSWEET1,

AtSWEET2, AtSWEET3, AtSWEET6, AtSWEET7, AtSWEET9,

AtSWEET10, AtSWEET11, AtSWEET12, and AtSWEET13 in

Arabidopsis roots were up-regulated by M. incognita infection. Among

them, AtSWEET1 was most significantly induced. In contrast, the

expression of AtSWEET7, AtSWEET15, AtSWEET16, and AtSWEET17

was down-regulated at 18 dpi (Figure 1). Pathogen-related (PR) genes,

such as PR-1 and PR-5, were used as marker genes (Uehara et al., 2010;

Hamamouch et al., 2011), and AtPR1 and AtPR5 expression levels were

significantly induced by RKN infections in roots. These data suggest that

these AtSWEETs may be involved in RKN infections.
3.2 AtSWEET1 expression is induced
specifically at the galls in roots

During the process of Arabidopsis inoculation, galls formed on

the roots serve as a nutrient sink. AtSWEET1 was the most

responsible AtSWEET gene during the infection based on our

expression analysis. We investigated whether AtSWEET1

specifically accumulated in galls after infection. Microscopic

analysis was performed of GUS-expression patterns upon RKNs

infection in Arabidopsis plants expressing AtSWEET1-GUS under

the control of the endogenous promoter was investigated (Figure 2A).

At 18 dpi, a strong GUS signal was observed within the developing

gall of M. incognita in Arabidopsis roots. However, GUS expression

was not detectable in uninfected regions of roots. Additionally,

AtSWEET1-YFP expressing plants (AtSWEET1-YFP-w5-2 and

AtSWEET1-YFP-S2-2) under the native promoter were examined

afterM. incognita inoculation. Similar to the GUS expression pattern,

the YFP signal was specifically observed in the galls of the transgenic

plant roots (Figure 2B).
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3.3 The invasion and development of RKNs
were delayed in atsweet1 mutant

Since AtSWEET1 was specifically induced in the galls by

inoculation with M. incognita, the function of AtSWEET1 in plant-

nematode interactions was investigated. The infestation and

development of M. incognita were examined using the sodium

hypochlorite-acid fuchsin staining method at 18 dpi in Atsweet1

mutants, complemented (AtSWEET1-YFP-w5-2 and AtSWEET1-

YFP-S2-2), and wild-type Col-0 plants. The reference morphology

of nematodes at different developmental stages is shown in Figure 3A.

RT-qPCR results showed that no transcript was detected in the

atsweet1 mutant compared to the wild-type Col-0 plants

(Figure 3B). Inoculation with M. incognita revealed that the

number of galls and the total nematode population in atsweet1

mutant plants was reduced when compared to the Col-0 plants

(Figures 3C, D), which indicates that AtSWEET1 negatively

regulates plant susceptibility to root-knot nematode disease. At 18

dpi, the percentage of nematodes at the J2 stage in atsweet1 mutant

roots was substantially higher than that in the Col-0 plants, while the

proportion of nematodes at the sausage and globose stages was

significantly lower in the atsweet1 mutant roots than in Col-0

plants (Figure 3E).

To verify whether the atsweet1 phenotype was caused by the loss

of function of AtSWEET1, AtSWEET1-YFP was expressed under the

control of the pAtSWEET1 promoter. RT-qPCR showed that

AtSWEET1 expression levels were similar between Col-0 and the

complementation lines (AtSWEET1-YFP-w5-2 and AtSWEET1-

YFP-S2-2) (Figures 4A, B). Inoculation with M. incognita revealed

that the number of galls and the total nematode populations were not

significantly different between complementation and Col-0 plants

(Figures 4C, D), nor were there differences in the proportion of

different nematode stages between complementation and Col-0

plants (Figure 4E).
3.4 Sucrose transporters AtSWEET10,
13, 14 have a potential role in
M. incognita infection

Chen et al. (2010) reported that AtSWEET10 expression is highly

induced by Pseudomonas syringae pv. tomato strain DC3000, and the

expression of AtSWEET13 was induced by G. cichoracearum and B.

cinerea. AtSWEET13 and AtSWEET14 may be involved in

modulating GA response in Arabidopsis (Yuri et al., 2016). The

expression patterns showed that sucrose transporters AtSWEET10,

AtSWEET13, and AtSWEET14 were induced by M. incognita

inoculation. Using the sodium hypochlorite-acid fuchsin staining

method, infestation and development of M. incognita in

Arabidopsis roots were investigated at 18 dpi in atsweet10,

atsweet13, and atsweet14 mutants and wild-type Col-0 plants

(Figure 5). The galls and total nematodes were reduced in atsweet10

mutant roots compared to Col-0 plants (Figures 5A, B), but no

significant changes were observed between Col-0, atsweet13, and

atsweet14 roots (Figures 5A, B). In addition, the development of

nematodes was hampered in each mutant plant (Figures 5C, D).
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4 Discussion

The plant genome contains three major sugar transporters: the

sucrose transporter (SUT/SUC), sugar transporter (STP), and

SWEETs (Doidy et al., 2012; Chen et al., 2015). SWEETs aid the

pathogen’s prey on the host’s nutrients during the infection process.

Among the 21 rice SWEET gene family members, five (OsSWEET11-

15) have been shown to provide nutrition to Xanthomonas oryzae pv.

oryzae (Chu et al., 2006; Yang et al., 2006; Yuan et al., 2009; Römer

et al., 2010; Liu et al., 2011; Yu et al., 2011; Li et al., 2013; Streubel

et al., 2013; Zhou et al., 2015). When the VvSWEET4 gene in grapes

was inoculated with Pythium teroegenes, the glucose content in the

hairy roots increased, and the expression was significantly induced

(Meteier et al., 2019). The TAL20 effector of bacterial blight

(Xanthomonas axonopodis pv. manihotis) can cause high levels of

MeSWEET10a expression in cassava (Manihot esculenta), allowing
Frontiers in Plant Science 05
sucrose in the mesophyll cells to be transported outside the cell, where

pathogenic bacteria can easily use it to increase infectivity (Cohn

et al., 2014). With respect to plant parasitic nematodes, several

SWEET genes are triggered and expressed by nematode infections,

and they also play an important role in the interaction between

nematodes and host plants (Redding et al., 2018; Zhao et al., 2018). In

this study, the mRNA levels of Arabidopsis AtSWEET1, AtSWEET2,

AtSWEET3, AtSWEET6, AtSWEET7, AtSWEET9, AtSWEET10,

AtSWEET11 , AtSWEET12 , and AtSWEET13 were highly

upregulated during M. incognita infection.

M. incognita, a root-knot nematode (RKN), severely threatens

plant growth and yield. RKNs infect the roots and trigger the

formation of giant cells. Giant cells are the sink tissue where RKNs

hijack nutrients from host plants (Hammes et al., 2005; Caillaud et al.,

2008). Previous research has found that the metabolism of sugars is

accelerated in galls generated following inoculation withM. incognita,
FIGURE 1

RKNs infection-dependent expression of AtSWEETs, AtPR1, and AtPR5 in A. thaliana roots. Using noninoculated roots as control, expression levels of
AtSWEETs, AtPR1, and AtPR5 in A. thaliana roots inoculated with M. incognita at 3 dpi and 18 dpi were analyzed using quantitative reverse transcription
PCR. Five biological replicates and three technical repeats were performed per sample. The Actin 8 gene was used as an internal control. Error bars
indicate the SD between technical repeats (n=3). p-values were analyzed using student’s t-test (p*<0.05; p**<0.01). ns, no significant difference.
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and the contents of starch, sucrose, and glucose showed obvious

accumulation (Baldacci-Cresp et al., 2012). As a result, the

metabolism and transport of sugars play an important role in the

parasitic process of M. incognita. AtSUC2 and AtSUC4 are activated

by H. schachtii and mediate the transmembrane transport of sucrose

in the syncytia (Juergensen et al., 2003). The significant upregulation

of AtSUC4 in galls after inoculation with M. incognita suggests its

sucrose-supplying role in Arabidopsis (Hofmann et al., 2009).

Transcriptome analyses of wheat interaction with Heterodera

avenae revealed that the bidirectional sugar transporter SWEET12

was significantly induced at 3 dpi, and the genes encoding sugar

transport protein 4 and sugar carrier protein A were upregulated at 8

dpi (Qiao et al., 2019). The relative expression of 50 transporter genes

from 18 different gene families was significantly changed in response

to RKN infections in Arabidopsis, such as AtSUC1, AtSTPs, and

AtSFPs (Hammes et al., 2005). Although the role of sugar transporters

in the interaction with root-knot nematodes is poorly understood, it is

plausible that sugar transporters are expressed in giant cells, and that

sugars might be imported into giant cells via sugar transporters

(Hofmann et al., 2009; Bartlem et al., 2014).

Giant cells are extremely metabolically active, and high levels of

total protein, amino acids, glucose, glucose 6-phosphate, and ATP are

found in RKN-induced giant cells (Gommers and Dropkin, 1977). The

sucrose transporter gene AtSUC1 was significantly induced upon RKN

infestation. The expression of this gene is also higher in the feeding sites

than in the surrounding tissue (Hammes et al., 2005). It was recently

reported that plant-specific membrane traffickingmechanisms might be

involved in gall formation (Suzuki et al., 2021). We examined the status

of reactive oxygen species, callose, and PTI-related genes in the roots of
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the atsweet1 mutant and Col-0 inoculated with RKNs, and found no

significant differences (Supplementary Figures 1–3). To examine

whether AtSWEETs influence the parasitism of M. incognita on A.

thaliana, atsweet1, atsweet10, atsweet13, and atsweet14 mutant plants

were inoculated with RKNs. Nematode infection assays were performed

with significantly lower numbers of galls and slower development of

juveniles in atsweet1 and atsweet10 mutant roots than in wild-type

plants. AtSWEET1 and AtSWEET10 transport different types of sugars

and may have different functions during RKN infections.

In Arabidopsis, there is a significant difference in the expression of

sugar transporter genes (Hammes et al., 2005; Zhao et al., 2018) and

genes related to other physiological activities (Suzuki et al., 2021) in

plants inoculated with parasitic nematodes. Sugar transporter genes

AtSUC2 and gall specific promoter TobRB7, have been identified to be

involved in the feeding site of nematodes (Opperman et al., 1994;

Juergensen et al., 2003). Recently, sucrose transport was found to be

mostly dependent on plasmodesmata-mediated sucrose supply from

the rice root phloem to M. graminicola-caused giant cells, and

OsSWEET11 to 15 and OsSUTs play no major role in this process

(Xu et al., 2021). In our experimental results, GUS activity in the

AtSWEET1 reporter was not observed in non-galls of the root, which

is consistent with Chen et al. (2010) finding that the AtSWEET1 gene

is not expressed in the root but M. incognita-caused galls of

AtSWEET1-GUS lines (Figure 2A). Similarly, we observed YFP

fluorescence intensity in galls formed by RKN infection (Figure 2B).

Meanwhile, the RT-qPCR assays showed that the AtSWEET1 gene

was significantly upregulated at 18 dpi (Figure 1). These results

indicate that the expression of AtSWEET1 near galls in Arabidopsis

roots is induced by M. incognita.
A

B

FIGURE 2

AtSWEET1 expression is induced specifically at the galls in roots. (A) Histochemical GUS assay of AtSWEET1-GUS lines infected with J2 of M. incognita at
18 dpi. Strong GUS activity in the nematode feeding sites of AtSWEET1-GUS but no GUS activity in the root of no nematode-infected AtSWEET1-GUS
lines was observed. N, nematode. Scale bars=200 mm. (B) The LSCM micrographs of A. thaliana complemented (AtSWEET1-YFP-w5-2 and AtSWEET1-
YFP-S2-2) plants inoculated with M. incognita. Scale bars=100 mm.
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FIGURE 3

Response of A. thaliana atsweet1 mutants and wild-type Col-0 plants to M. incognita infection. (A) The developmental morphology of nematodes at the J2 stage,
Sausage stage, and Globose stage. (B) The relative expression levels of the AtSWEET1 gene in atsweet1 mutant plants were analyzed through quantitative reverse
transcription PCR. Using col-0 plants as control, five biological replicates and three technical repeats were performed per sample. The Actin 8 gene was used as
an internal control. (C) The number of galls in the root of Arabidopsis inoculated with M. incognita at 18 dpi. The number of galls is significantly reduced in the
atsweet1 mutant plants than in the Col-0 plants; (D) It shows the total number of nematode-infected Arabidopsis. (E) Percentage of nematodes corresponding to
different developmental stages (J2 stage; Sausage stage; Globose stage) in the atsweet1 mutants and wild-type Col-0 at 18 dpi (n = 15). Data are presented as
mean ± SD, and p-values were analyzed using student’s t-test (p**<0.01). Scale bars=50 mm.
A

B

D

E

C

FIGURE 4

Response of A. thaliana complemented (AtSWEET1-YFP-w5-2 and AtSWEET1-YFP-S2-2) and wild-type Col-0 plants to M. incognita infection. (A, B) The
relative expression levels of the AtSWEET1 gene in A.thaliana complemented plants were analyzed using quantitative reverse transcription PCR. Using
col-0 plants as control, five biological replicates and three technical repeats were performed per sample. The Actin 8 gene was used as an internal
control. (C) The number of galls in the root of Arabidopsis inoculated with M. incognita at 18 dpi. There is no significant difference between
complemented plants and Col-0 plants. (D) The total number of nematode-infected Arabidopsis. (E) Percentage of nematodes corresponding to
different developmental stages (J2 stage; Sausage stage; Globose stage) in the complemented plants and Col-0 plants at 18 dpi (n = 15). Data are
presented as mean ± SD, and p-values were analyzed using student’s t-test. ns, no significant difference.
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AtSWEET1-GUS or AtSWEET1-YFP was localized in the galls,

implying a potential function of AtSWEET1 in plant-RKN

interactions. Inoculation of RKNs revealed that atsweet1 mutants

inhibited parasitism of RKNs, with a reduced total RKN number and

inhibition of RKN development. Expression of AtSWEET1-YFP in

atsweet1 successfully restored the number and development of RKNs

to the wild-type level, suggesting that AtSWEET1 indeed negatively

regulates plant defense against RKNs. This might be due to the

modulation of sugar availability in the giant cells inside the galls. In

addition, the results suggest that the YFP function at the C-terminus

of AtSWEET1 did not affect its function, which further confirmed

that AtSWEET1-YFP localization at the galls is confident. In this

study, we mainly discuss the fructose transporter AtSWEET1. The

number of galls, the total populations of nematodes, and the

proportion of nematodes at different stages were not significantly

different between complemented and Col-0 plants (Figures 4C, D),

but patterns were completely reversed in atsweet1 mutant

roots (Figure 3).

In the phloem sugar-loading process, SWEETs and SUTs

controlled the last two steps. AtSWEET11 and AtSWEET12 efflux

sucrose from the phloem parenchyma cells to the apoplast for SUT

import into companion cells for long-distance transport (Chen et al.,

2012). AtSUC4 was expressed in galls, implying that sugar loading in

galls might also require SWEET and SUT members. In this study,

AtSWEET10 was induced by RKN inoculation, and its mutant

inhibited RKN parasitism, suggesting that AtSWEET10 may play an
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important role in sucrose transport before it is transported into giant

cells via SUC4. STP is an importer that is activated by infection with

Pseudomonas syringe and transports apoplastic glucose into cells to

reduce the sugar content in the apoplast (Bezrutczyk et al., 2018). As

AtSWEET1 is a uniporter and effluxes glucose, it might also be

possible that AtSWEET1 effluxes sugars in neighboring cells of

giant cells, and STP will import glucose into giant cells, similar to

the SWEET-SUT module. AtSWEET1 is a member of clade I, which

are glucose transporters, whereas AtSWEET10, AtSWEET13, and

AtSWEET14 are members of clade III, which serve as sucrose

transporters (Chen et al., 2010). We assessed the changes of total

sugar, glucose, fructose, galactose, and sucrose content in atsweet1

and Col-0 roots. These results do not completely match our previous

results (Supplementary Figure 5). The reason for this might be that we

used whole roots instead of galls, that the sugars in the nematodes in

the roots could not be excluded in the detection process; or

AtSWEET11 and AtSWEET12, which are involved in phloem

transport in Arabidopsis after AtSWEET1 mutation, might also be

involved in nematode infection. Relative expression of AtSWEET12

gene was induced by RKNs infection (Figure 1). We hypothesized that

in addition to AtSWEET1 regulating sugar transport across the cells

near the AtSWEET12, which engages in phloem transport, affects the

change of sugar content in the roots of atsweet1 mutants inoculated

with RKNs.

In this paper, we discuss the roles of AtSWEET1 in A. thaliana

infected by M. incognita. The assays on the changes of total sugar
A B

DC

FIGURE 5

Response of A. thaliana mutants and wild-type Col-0 plants to M. incognita infection. (A) The number of galls in the root of Arabidopsis inoculated with
M. incognita at 18 dpi. (B) The total number of nematode-infected Arabidopsis. (C) Percentage of nematodes corresponding to different developmental
stages (J2 stage; Sausage stage; Globose stage) in the mutants and wild-type Col-0 at 18 dpi (n = 15). (D) The major developmental morphology of
nematodes in Col-0, atsweet10, atsweet13, and atsweet14 mutants at 18 dpi. Data are presented as mean ± SD, and p-values were analyzed using
student’s t-test (p**<0.01). ns, no significant difference. Scale bars=100 mm.
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in roots of Arabidopsis after inoculated with RKNs showed that not

only AtSWEET1 played a role. Meanwhile, qPCR assays showed

that the expression of AtSWEET12 gene was induced by RKNs, and

the development of nematodes in atsweet10 mutant was impact.

By integrating the results of all assays, we can conclude that

there are multiple SWEET sugar transporters involved in the

interaction between Arabidopsis thaliana and RKN and

AtSWEET1 gene negatively regulates plant defenses to root-knot

nematode disease.
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